Recitation: Graph Neural Networks

- Quickly review GCN message passing process
- Graph Convolution layer forward
- Graph Convolution layer backward
- GCN code example

A single layer of GNN: Graph Convolution

Key idea: Node's neighborhood defines a computation graph

CNN: pixel convolution

CNN: pixel convolution

GNN: graph convolution
— Learning a node feature by propagating and aggregating neighbor information!
\square Node embedding can be defined by local network neighborhoods!

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network neighborhoods

Considering 1 step of feature aggregation of the nearest neighbor

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network neighborhoods

Considering 1 step of feature aggregation of the nearest neighbor

Now B have the information from it's first nearest neighbors

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network neighborhoods

Considering 1 step of feature aggregation of the nearest neighbor

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network

 neighborhoods

Considering 2 steps of feature aggregation
of the nearest neighbor

Now B have the information from its first and second nearest neighbors

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network neighborhoods
 How to process and mix the information from neighbor?

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network neighborhoods

How to process and mix the information from neighbor?

Apply Neural Networks

sum, product, mean, max, min etc.

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network neighborhoods

How to process and mix the information from neighbor?

Apply Neural Networks

Mean (Traditional Graph
Convolutional Neural
Networks(GCN))

A single layer of GNN: Graph Convolution

Key idea: Generate node embedding based on local network neighborhoods

During a single Graph Convolution layer, we apply the feature aggregation to every node in the graph at the same time (T)

Apply Neural Networks

Mean (Traditional Graph
Convolutional Neural
Networks(GCN))

A single layer of GNN: Graph Convolution-Forward

Math for a single layer of graph convolution

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

We stack multiple $h_{v}^{t}(1 \times F)$ together into $H^{t}(N \times F)$

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
h_{v}^{(1 \times F)}=\sigma\left(\left.W_{k} \sum_{u \in N(v)}^{\sum_{u} \frac{(1 \times F)}{h_{u}^{t}}} \right\rvert\, \stackrel{(1 \times F)}{N(v) \mid}+B_{k} h_{v}^{t}\right), \forall t \in(0, \ldots \ldots, T-1)
$$

$$
D^{-1}(N \times N)
$$

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
h_{v}^{t+1}=\sigma\left(W_{k} \sum_{u \in N(v)} \frac{(1 \times F)}{|N(v)|}+B_{k} h_{v}^{t}\right), \forall t \in(0, \ldots \ldots, T-1)
$$

$$
\begin{gathered}
\boldsymbol{D}^{-\mathbf{1}}(\boldsymbol{N} \times \boldsymbol{N}) \\
\mathbf{N}\left[\begin{array}{ccc}
\frac{1}{|N(v)|} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{|N(v)|}
\end{array}\right] \\
\mathbf{N}
\end{gathered}
$$

Noted that W^{T} is a

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
\boldsymbol{H}^{t}(\boldsymbol{N} \times \boldsymbol{F})
$$

$$
W^{T}(N \times N)
$$

$\mathrm{N}\left[\begin{array}{ccc}W_{11} & \cdots & W_{1 n} \\ \vdots & \ddots & \vdots \\ W_{n 1} & \cdots & W_{n n}\end{array}\right]_{\mathbf{N}}$

N

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

Seems like nothing goes $H^{t}(N \times F)$ wrong, the result matrix

$$
\mathrm{N}\left[\begin{array}{|ccc}
W^{T}(N \times N) \\
w_{11} & \cdots & w_{1 n} \\
\vdots & \ddots & \vdots \\
w_{n 1} & \cdots & w_{n n} \\
\hline
\end{array} \times\right.
$$ N

 shape is still $(N \times F)$? No, it's wrong, because we are still mixing information among different nodes, which has the same function with adjacent matrix, feature within node does not receive any mixing

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

Learnable weight is used to mix information along the feature within a single node

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
h_{v}^{t+1}=\sigma\left({\left.\underset{W}{ } \sum_{u \in N(v)} \frac{(1 \times F)}{} \frac{h_{u}^{t}}{|N(v)|}+B_{k} h_{v}^{t}\right), \forall t \in(0, \ldots \ldots, T-1) .}_{(1 \times F)}\right)
$$

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
h_{v}^{t+1}=\sigma\left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|}+B_{k} h_{v}^{t}\right), \forall t \in(0, \ldots \ldots, T-1)
$$

$$
\text { Noted that } B^{T} \text { is a }
$$

Self loop adjacent matrix is a diagonal matrix!

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
\begin{aligned}
& (\mathbf{1 \times F}) \\
& h_{v}^{t+1}=\sigma\left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|}+B_{k} h_{v}^{t}\right), \forall t \in(0, \ldots \ldots, T-1) .(1 \times \boldsymbol{F})
\end{aligned}
$$

Now let's rewrite the scalar form above into matrix form

> Non-Linear

$$
\begin{aligned}
& \text { Aggregating neighbor Aggregating self } \\
& \text { node feature } \\
& \text { node feature }
\end{aligned}
$$

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
h_{v}^{t+1}=\sigma\left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|}+B_{k} h_{v}^{t}\right), \forall t \in(0, \ldots \ldots, T-1)
$$

$$
(N \times F) \quad(N \times N)(N \times N)(N \times F)(F \times F)
$$

$$
\boldsymbol{H}^{t+1}=\sigma\left(\boldsymbol{D}^{-\mathbf{1}} \widehat{A} \boldsymbol{H}^{t^{\prime}} \boldsymbol{W}^{\prime \boldsymbol{T}}\right)
$$

A single layer of GNN: Graph Convolution-Forward

Matrix form for a single layer of graph convolution

$$
h_{v}^{t+1}=\sigma\left(W_{k} \sum_{u \in N(v)} \frac{(1 \times F)}{(1 \times F)} \frac{h_{u}^{t}}{|N(v)|}+B_{k} h_{v}^{t}\right), \forall t \in(0, \ldots \ldots, T-1)
$$

A single layer of GNN: Graph Convolution-Backward

First, let's recall...

```
    Y = X @ W
4x2 4x3 3x2
```

How to express $\mathrm{dL} / \mathrm{dX}$ and $\mathrm{dL} / \mathrm{dW}$ with $\mathrm{dL} / \mathrm{dY}$?

A single layer of GNN: Graph Convolution-Backward

First, let's recall...

```
Y = X @ @ W W
```

How to express $\mathrm{dL} / \mathrm{dX}$ and $\mathrm{dL} / \mathrm{dW}$ with $\mathrm{dL} / \mathrm{dY}$?

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dX}=\mathrm{dL} / \mathrm{dY} @ \mathrm{dY} / \mathrm{dX} \\
&=\mathrm{dL} / \mathrm{dY} @ \mathrm{~W}^{\top} \\
& 4 \times 2 \quad 2 \times 3
\end{aligned}
$$

A single layer of GNN: Graph Convolution-Backward

First, let's recall...

How to express dL/dX and dL/dW with dL/dY?

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dX}=\mathrm{dL} / \mathrm{dY} @ \mathrm{dY} / \mathrm{dX} \\
&= \mathrm{dL} / \mathrm{dY} @ \mathrm{~W}^{\top} \\
& 4 \times 2 \quad 2 \times 3
\end{aligned}
$$

```
What about dL/dW?
Notice Y' = W' }\mp@subsup{}{}{\top}@\mp@subsup{\mathbf{X}}{}{\top
So dL/dW'
    =dL/d\mp@subsup{Y}{}{\top}@(\mp@subsup{X}{}{\top}\mp@subsup{)}{}{\top}
    = dL/dY' @ X
```

$$
\text { So } \begin{aligned}
\mathrm{dL} / \mathrm{dW}= & \left((\mathrm{dL} / \mathrm{dW})^{\top}\right)^{\top}=\left(\mathrm{dL} / \mathrm{d} W^{\top}\right)^{\top} \\
= & \left(\mathrm{dL} / \mathrm{d} \mathrm{Y}^{\top} @ \mathrm{X}\right)^{\top} \\
& 2 \times 4 \quad 4 \times 3
\end{aligned}
$$

A single layer of GNN: Graph Convolution-Backward

Now, let's derive the backward equation

$$
H_{N x F}^{t+1}=\sigma\left(D^{-1} \widehat{\operatorname{A}} \boldsymbol{H}^{t^{\prime}} \mathbf{W}^{\prime T}\right) \quad \begin{aligned}
& \text { N: \# of nodes } \\
& \text { F: \# of features }
\end{aligned}
$$

Let's define

$$
\begin{aligned}
& H^{\sim}=D^{-1} A^{\wedge} H^{t^{\prime}} W^{\top} \text { (what's inside the brackets) } \\
& H_{0}^{\sim}=H^{t^{\prime} W^{\prime T}}
\end{aligned}
$$

Want to derive:

$$
\begin{aligned}
& \mathrm{dL} / \mathrm{dH}^{\mathrm{t}^{\prime}} \\
& \mathrm{dL} / \mathrm{dW}^{\top}
\end{aligned}
$$

A single layer of GNN: Graph Convolution-Backward

Let's draw the computational graph

With these definitions
$H^{\sim}=D^{-1} A^{\wedge} H^{t^{\prime}} W^{\top}$ (what's inside the brackets)
$H_{0}{ }^{\sim}=H^{t^{\prime} W^{\prime} T}$
Want to derive:

A single layer of GNN: Graph Convolution-Backward

$\mathrm{dL} / \mathrm{dH}^{\sim}=\mathrm{dL} / \mathrm{dH}^{\mathrm{t}+1} * \mathrm{dH}^{\mathrm{t}+1} / \mathrm{dH}^{\sim}$
$\mathrm{dL} / \mathrm{dH}_{0}{ }^{\sim}=\left(\mathrm{dL} / \mathrm{dH}^{\sim} @\left(\mathrm{D}^{-1} \mathrm{~A}^{\wedge}\right)\right)^{\top} \quad$ (recall that $\left.\mathrm{H}^{\sim}=\left(\mathrm{D}^{-1} \mathrm{~A}^{\wedge}\right) \mathrm{H}_{0}{ }^{\sim}\right)$
Now also recall that $H_{0}{ }^{\sim}=H^{t^{\prime}} W^{\prime} T$
$d L / d H^{t^{\prime}}=\left(d L / d H^{\sim} @\left(D^{-1} A^{\wedge}\right)\right)^{\top} @ W^{\prime}$
$d L / d W^{\prime T}=\left(d L / d H^{\sim} @\left(D^{-1} A^{\wedge}\right) @ H^{t^{\prime}}\right)^{\top}$

