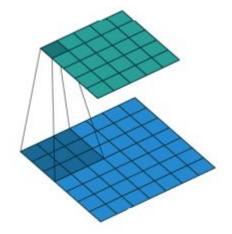
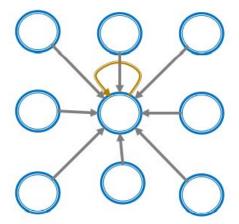
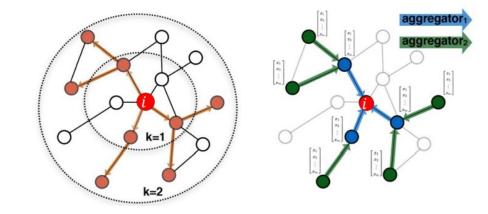
Recitation: Graph Neural Networks

- Quickly review GCN message passing process
- Graph Convolution layer forward
- Graph Convolution layer backward
- GCN code example

Key idea: Node's neighborhood defines a computation graph







CNN: pixel convolution

CNN: pixel convolution

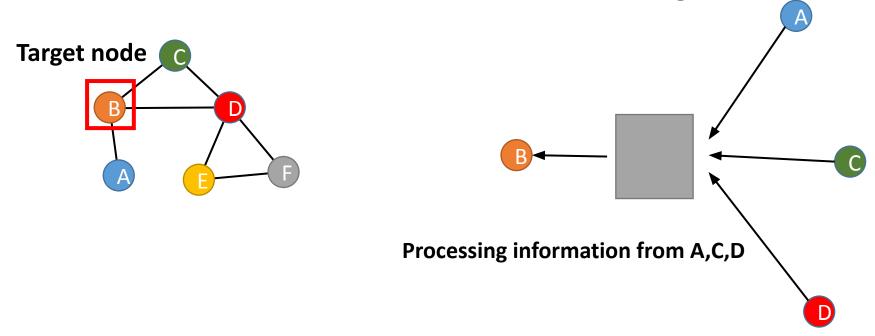
GNN: graph convolution

Learning a node feature by propagating and aggregating neighbor information!

Node embedding can be defined by local network neighborhoods!

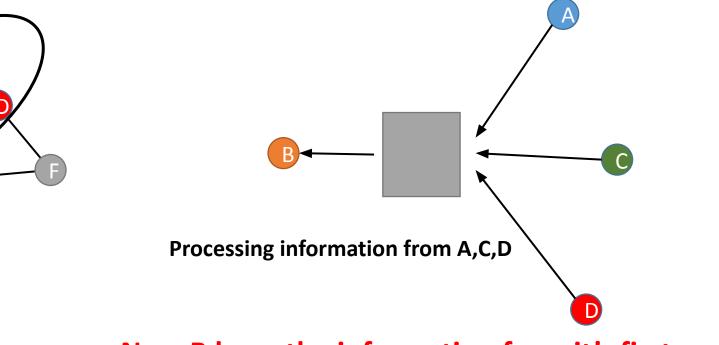
Key idea: Generate node embedding based on local network neighborhoods

Considering 1 step of feature aggregation of the nearest neighbor



Key idea: Generate node embedding based on local network neighborhoods

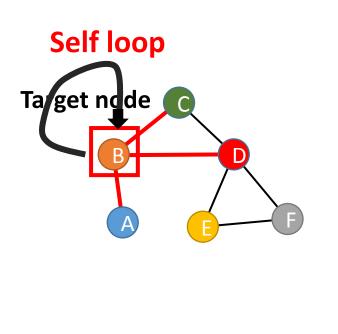
Considering 1 step of feature aggregation of the nearest neighbor



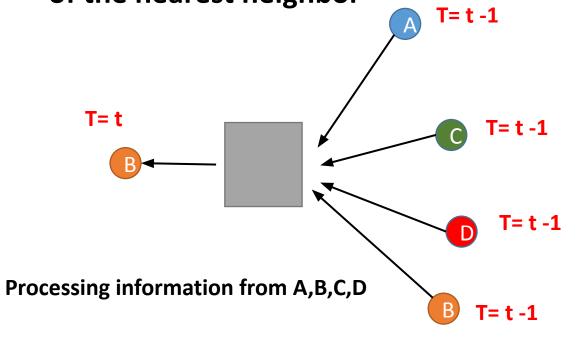
Target node

Now B have the information from it's first nearest neighbors

Key idea: Generate node embedding based on local network neighborhoods



Considering 1 step of feature aggregation of the nearest neighbor

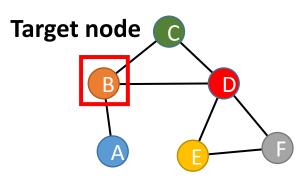


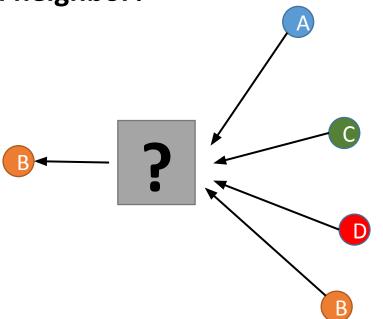
Also we don't want to lose information from B itself

Key idea: Generate node embedding based on local network neighborhoods **Considering 2 steps of feature aggregation** T= t-1 of the nearest neighbor T= t-1 Self loop Taget ndde T= t-1 T=t+1 T= t-1 T= t T= t-1 T= t-1 T= t T= t-1 Now B have the information from its first and second T= t-1 T= t nearest neighbors T= t-1

Key idea: Generate node embedding based on local network neighborhoods

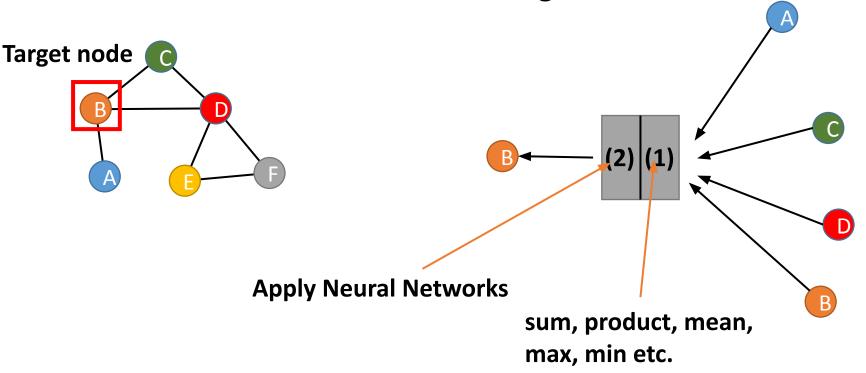
How to process and mix the information from neighbor?





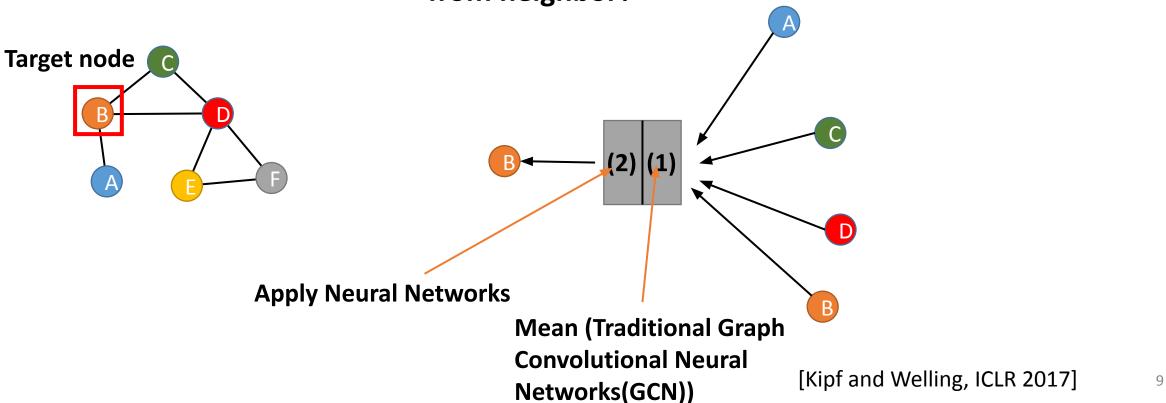
Key idea: Generate node embedding based on local network neighborhoods

How to process and mix the information from neighbor?



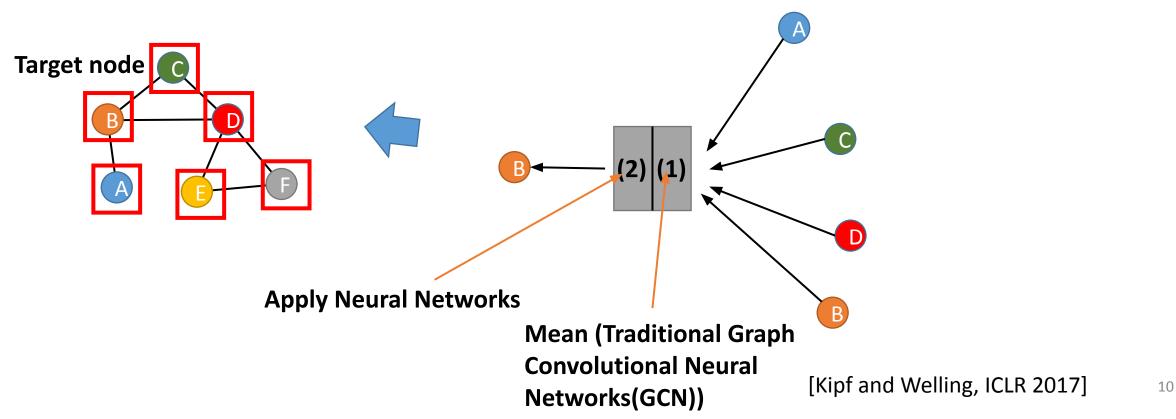
Key idea: Generate node embedding based on local network neighborhoods

How to process and mix the information from neighbor?

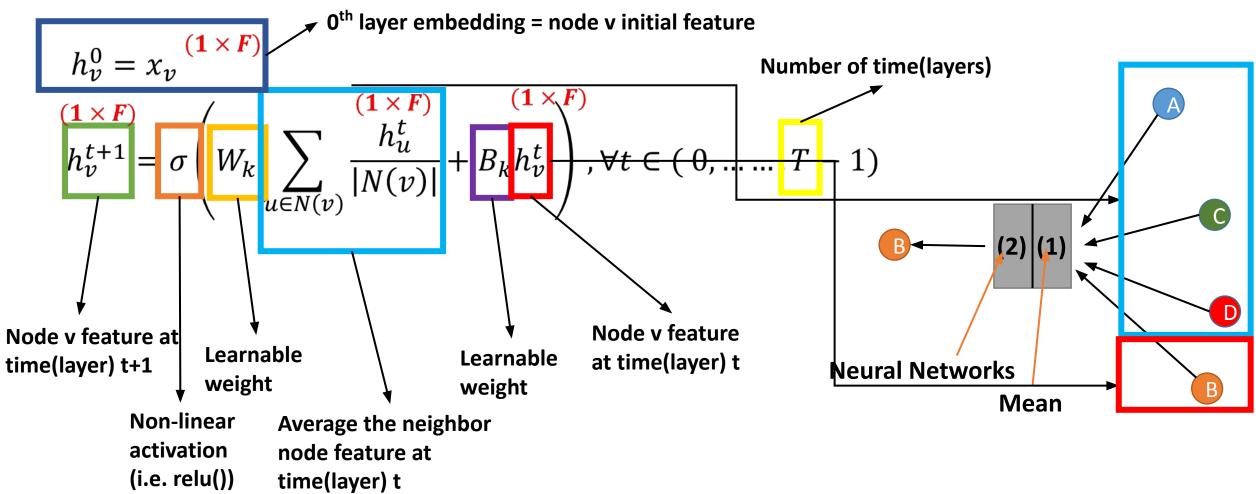


Key idea: Generate node embedding based on local network neighborhoods

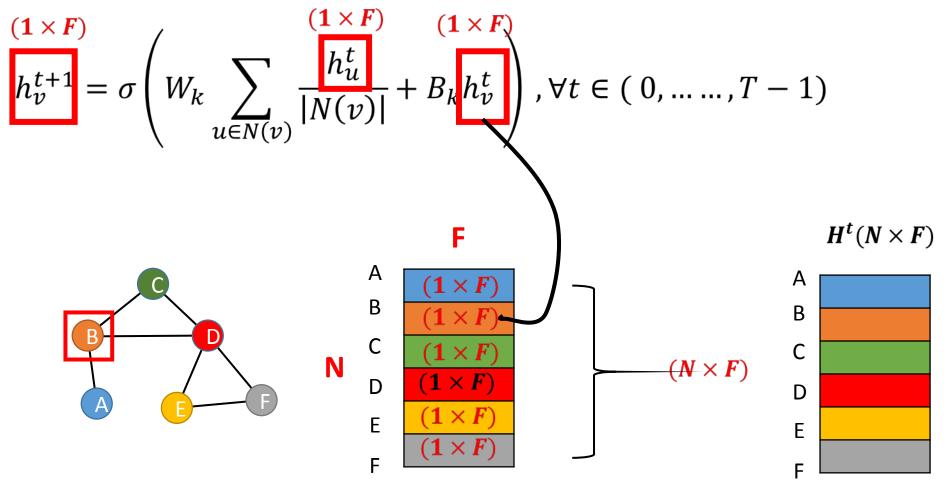
During a single Graph Convolution layer, we apply the feature aggregation to every node in the graph at the same time (T)



Math for a single layer of graph convolution



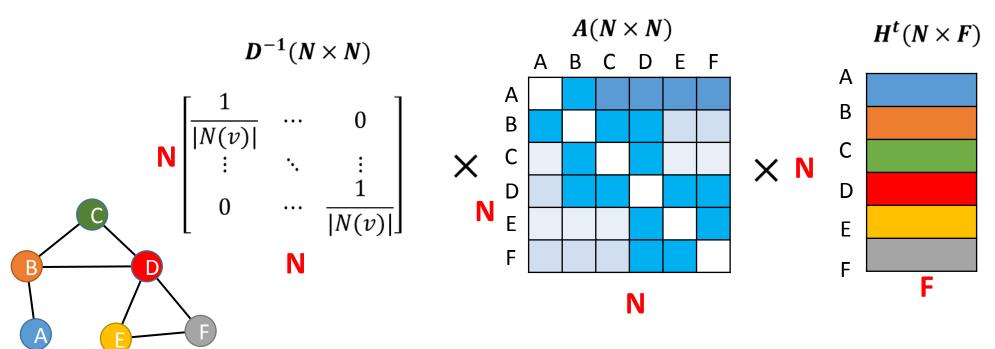
Matrix form for a single layer of graph convolution



We stack multiple $h_{v}^{t}(1 \times F)$ together into $H^{t}(N \times F)$

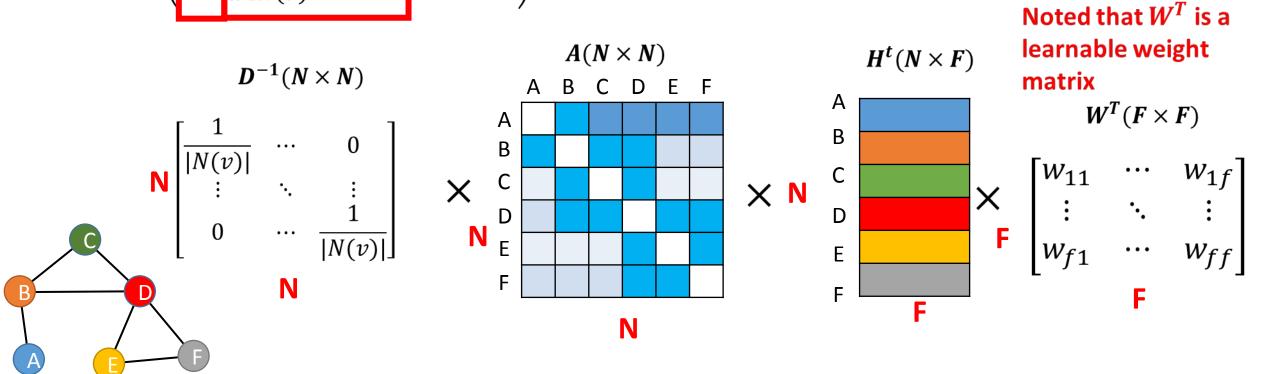
Matrix form for a single layer of graph convolution

$$(\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \\ h_{v}^{t+1} = \sigma \left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|} + B_{k} h_{v}^{t} \right), \forall t \in (0, \dots, T-1)$$



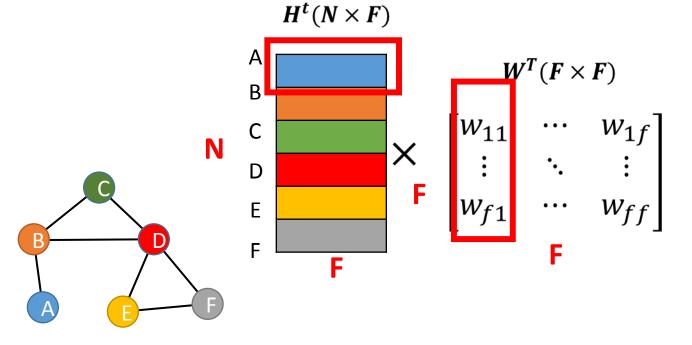
Matrix form for a single layer of graph convolution

$$(\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \\ h_{v}^{t+1} = \sigma \left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|} + B_{k} h_{v}^{t} \right), \forall t \in (0, \dots, T-1)$$



Matrix form for a single layer of graph convolution

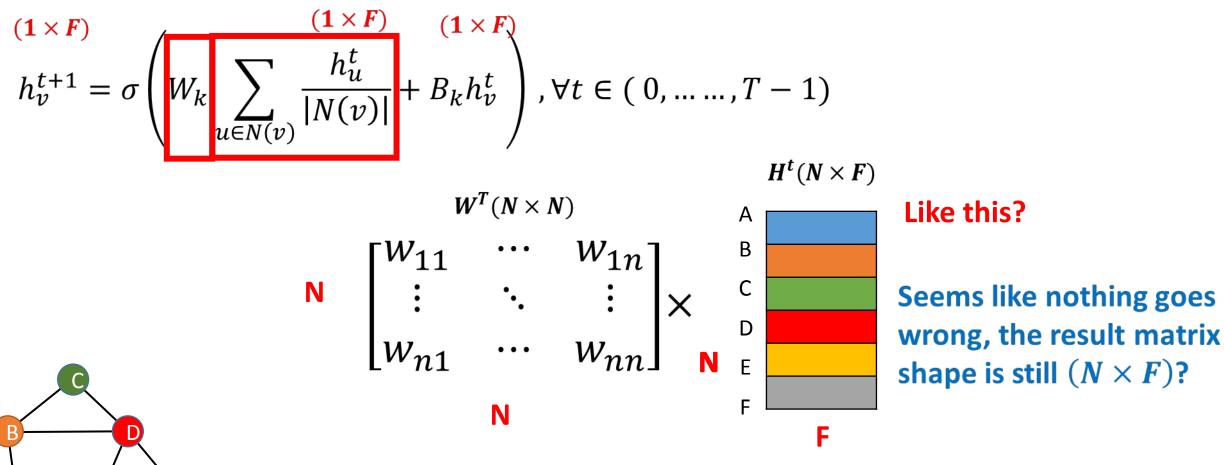
$$(\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \\ h_{v}^{t+1} = \sigma \left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|} + B_{k} h_{v}^{t} \right), \forall t \in (0, \dots, T-1)$$



Why put W^T on the right hand site of H^t ?

Why not left? With a shape of $(N \times N)$?

Matrix form for a single layer of graph convolution



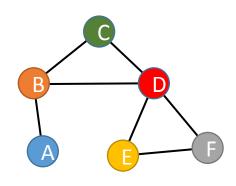
What happen if we still put W on the left hand site? ¹⁶

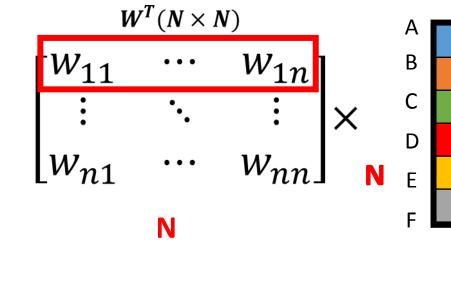
Matrix form for a single layer of graph convolution

$$h_{v}^{t+1} = \sigma \left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|} + B_{k} h_{v}^{t} \right), \forall t \in (0, ..., T-1)$$

Ν

 $(1 \vee \mathbf{F})$

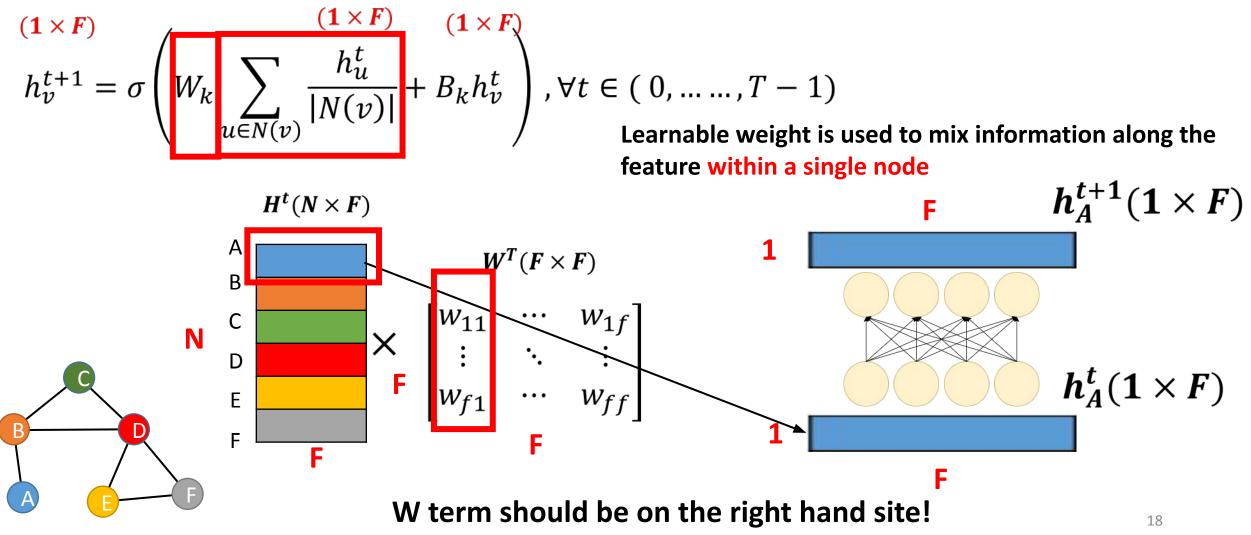




Seems like nothing goes $H^t(N \times F)$ wrong, the result matrix shape is still $(N \times F)$? No, it's wrong, because we are still mixing information among different nodes, which has the same function with adjacent matrix, feature within node does not receive any mixing 17

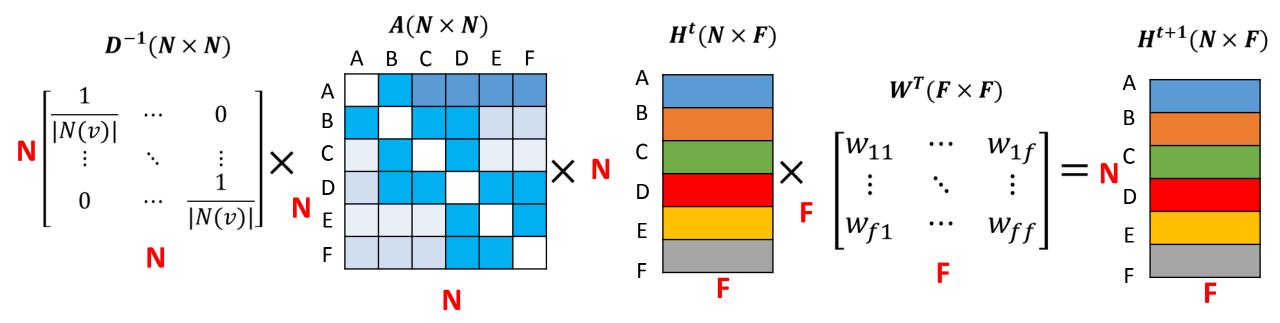
F

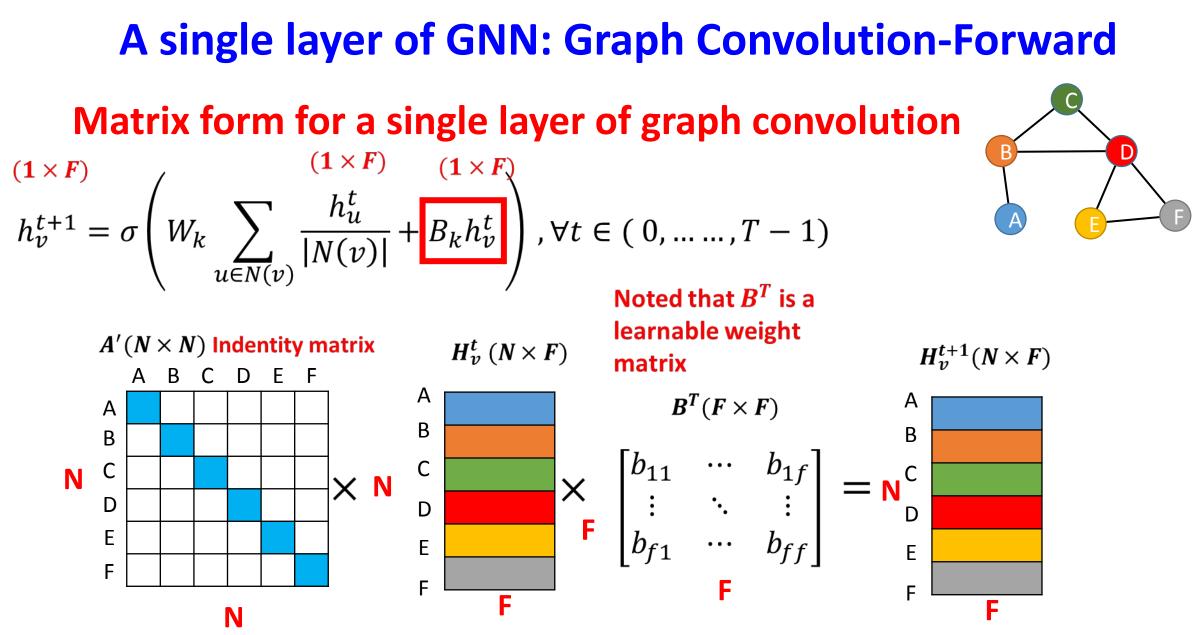
Matrix form for a single layer of graph convolution



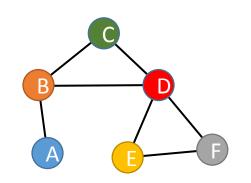
Matrix form for a single layer of graph convolution

$$(\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \qquad (\mathbf{1} \times \mathbf{F}) \\ h_{v}^{t+1} = \sigma \left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|} + B_{k} h_{v}^{t} \right), \forall t \in (0, \dots, T-1)$$





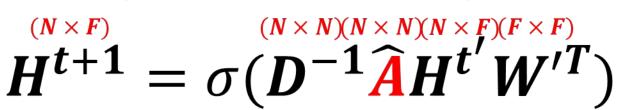
Self loop adjacent matrix is a diagonal matrix!

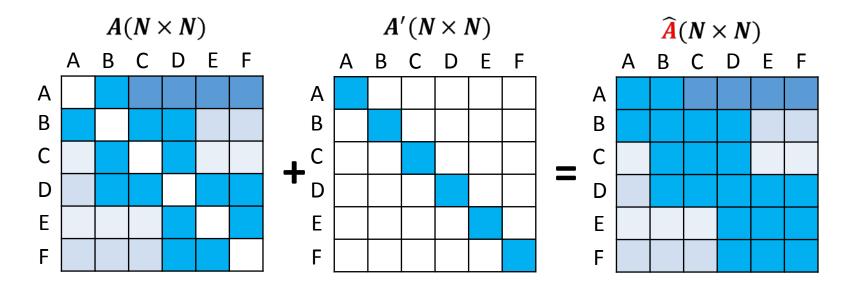


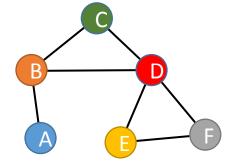
Now let's rewrite the scalar form above into matrix form

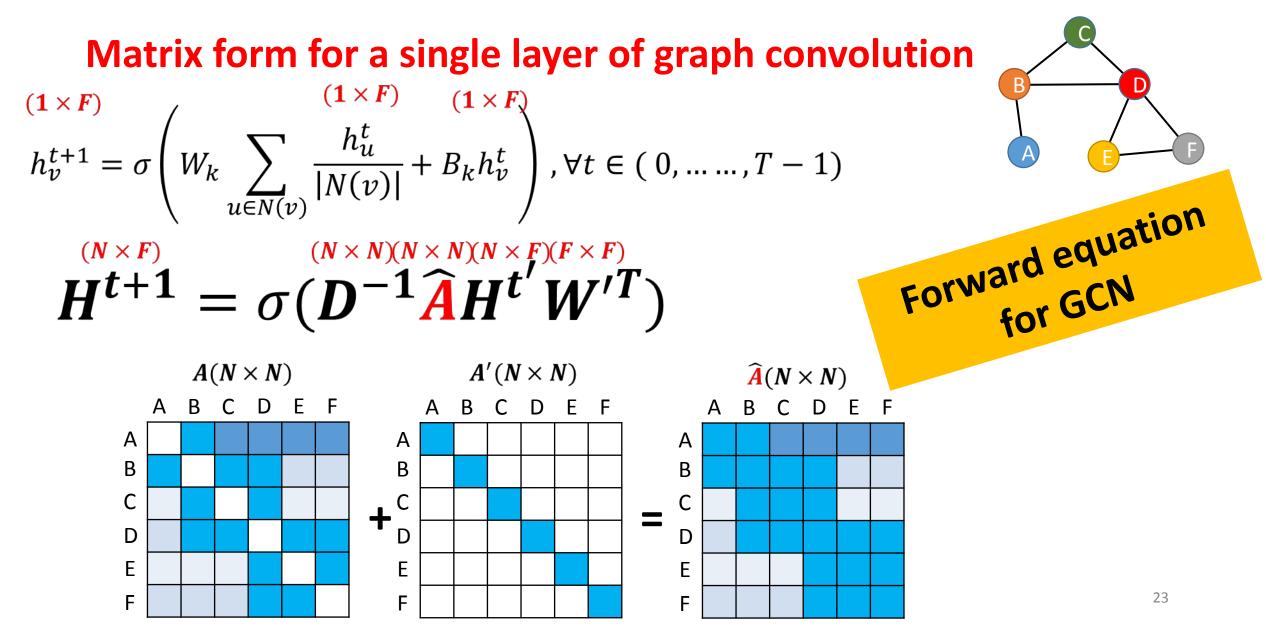
Matrix form for a single layer of graph convolution $(1 \times F)$

$$h_{v}^{t+1} = \sigma \left(W_{k} \sum_{u \in N(v)} \frac{h_{u}^{t}}{|N(v)|} + B_{k} h_{v}^{t} \right), \forall t \in (0, ..., T-1)$$









First, let's recall...

Y = X @ W

4x2 4x3 3x2

How to express dL/dX and dL/dW with dL/dY?

First, let's recall...

Y = X @ W

4x2 4x3 3x2

How to express dL/dX and dL/dW with dL/dY?

dL/dX = dL/dY @ dY/dX= $dL/dY @ W^T$ 4x2 2x3

First, let's recall...

Y = X @ W

4x2 4x3 3x2

How to express dL/dX and dL/dW with dL/dY?

```
dL/dX = dL/dY @ dY/dX
= dL/dY @ W^T
4x2 2x3
```

What about dL/dW? Notice $Y^T = W^T @ X^T$ So dL/dW^T = dL/dY^T @ dY^T/dW^T = dL/dY^T @ (X^T)^T = dL/dY^T @ X So $dL/dW = ((dL/dW)^T)^T = (dL/dW^T)^T$ = $(dL/dY^T @ X)^T$ 2x4 4x3

Now, let's derive the backward equation

NXN NXN NXF FXF

$$H^{t+1} = \sigma(D^{-1}\widehat{A}H^{t'}W'^{T})$$

N: # of nodes F: # of features

Let's define $H^{\sim} = D^{-1}A^{\wedge}H^{t'}W^{\prime \top}$ (what's inside the brackets) $H_{0}^{\sim} = H^{t'}W^{\prime \top}$

Want to derive: $dL/dH^{t'}$ dL/dW^{T}

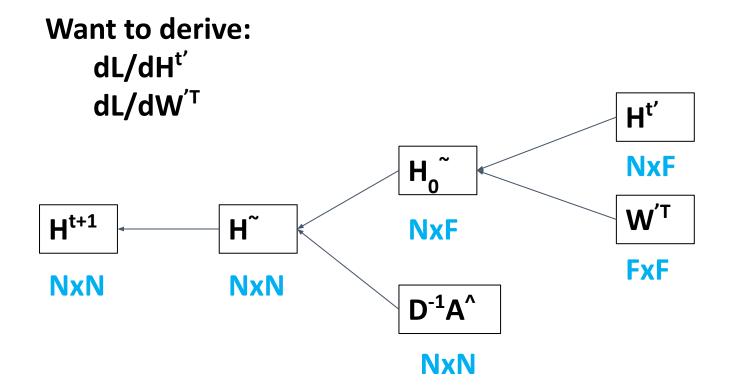
NxF

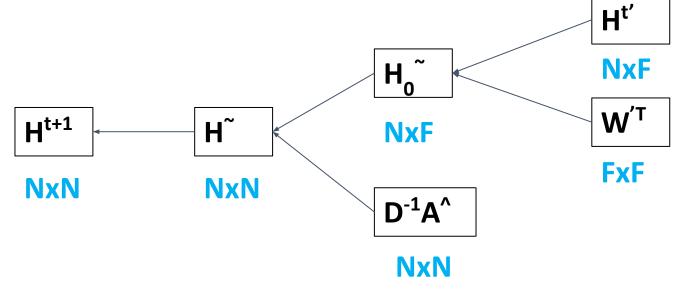
Let's draw the computational graph

```
With these definitions

H^{\sim} = D^{-1}A^{\wedge}H^{t'}W^{\prime T} (what's inside the brackets)

H_{0}^{\sim} = H^{t'}W^{\prime T}
```





 $dL/dH^{\sim} = dL/dH^{t+1} * dH^{t+1}/dH^{\sim}$ $dL/dH^{\sim} = (dL/dH^{\sim} @ (D^{-1}A^{\sim}))^{T}$ (reca

Now also recall that $H_0^{\sim} = H^{t'}W^{T}$

 $dL/dH^{t'} = (dL/dH^{\sim} @ (D^{-1}A^{\wedge}))^{T} @ W'$ $dL/dW^{'T} = (dL/dH^{\sim} @ (D^{-1}A^{\wedge}) @ H^{t'})^{T}$