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Outline

Quick recap
Back propagation through a CNN

Modifications: Transposition, scaling, rotation and
deformation invariance

Segmentation and localization
Some success stories



Story so far

* Shift-invariant pattern classification tasks such
as “does this picture contain a cat”, or “does
this recording include HELLO” are best

performed by scanning for the target pattern
using CNNs (or TDNNs)

* These are “shared parameter” models that

can be trained with variations of backprop



Backpropagation: Convolutional and

Pooling layers
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< Need adjustments here

For each training instance: First, a forward pass through the net
Then the backpropagate the derivative of the divergence
Regular backprop until the first “flat” layer

Subsequent backpropagation from the flat MLP requires special
consideration of

— The shared computation in the convolution layers

— The pooling layers



Backpropagation: Convolutional and
Pooling layers

* Required:

— For convolutional layers:

* Given the derivatives for the output activation maps
Y (1), how to compute the derivatives w.r.t. the affine

Z (1) maps
* Given the derivatives for the affine maps Z(l) How to
compute the derivative w.r.t. Y (Il — 1) and w(l)

— For pooling layers:

* How to compute the derivative w.r.t. input layer Y (I —
1) given derivatives w.r.t. pooled output Y (1)



Backpropagation: Convolutional and
Pooling layers

* Required:

— For convolutional layers:

* Given the derivatives for the output activation maps
Y (1), how to compute the derivatives w.r.t. the affine
Z (1) maps

* Given the derivatives for the affine maps Z(l) How to
compute the derivative w.r.t. Y (Il — 1) and w(l)

— For pooling layers:

* How to compute the derivative w.r.t. input layer Y (I —
1) given derivatives w.r.t. pooled output Y (1)



Backpropagation: Convolutional and
Pooling layers

* Required:

— For convolutional layers:

o Given the derivatives for the output activation maps
Y (1), how to compute the derivatives w.r.t. the affine

S Z (1) maps

J

* Given the derivatives for the affine maps Z(l) How to
compute the derivative w.r.t. Y (Il — 1) and w(l)

— For pooling layers:

* How to compute the derivative w.r.t. input layer Y (I —
1) given derivatives w.r.t. pooled output Y (1)




Backpropagating through the activation
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*  Backward computation: For every map Y ([, m) for every position (x, y), we already have the derivative of
the divergence w.r.t. y(I,m, x, y)
— Obtained via backpropagation

*  We obtain the derivatives of the divergence w.r.t. z(l, m, x, y) using the chain rule:

dDiv _ dDiv
dz(Lm,x,y) dy(l,mx,y)

f'(z(l,m,x,y))

— Simple component-wise computation 3



Backpropagation: Convolutional and
Pooling layers

* Required:

— For convolutional layers:

* Given the derivatives for the output activation maps
Y (1), how to compute the derivatives w.r.t. the affine
Z (1) maps

* Given the derivatives for the affine maps Z(l) How to
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— For pooling layers:

* How to compute the derivative w.r.t. input layer Y (I —
1) given derivatives w.r.t. pooled output Y (1)




The derivatives for Y ([ — 1, m)
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The D; affine maps are produced by convolving with D; filters
The m™'Y map always convolves the mt" plane of the filters

The derivative for the mt" Y map will invoke the mt" plane of all the filters
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Computing the derivative for Y ([ — 1, m)

w(m,n,x,y)

I =

T -7

dDiv
dy(l—1,m,x,y)

= =
wimnK+1—x,K+1—-y)

0Div
0z(lnx,y)

* This is just a convolution of the zero-padded

maps by the transposed and flipped filter
— After zero padding it first with K — 1 zeros on every side
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The filter derivative

Filter(n)
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* The derivative of the nt" affine map Z(l,n) convolves with
every output map Y (Il — 1, m) of the (I — 1) layer, to get
the derivative for w;(m, n), the mt “channel” of the nt" filter




Backpropagation: Convolutional layers
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* For convolutional layers:

(7 * How to compute the derivatives w.r.t. the affine combination
" Z(1) maps from the derivatives for activation output maps Y (1)
(v/] ¢ How to compute the derivative w.r.t. Y (I — 1) and w(l) given
= derivatives w.r.t. Z (1)




Backpropagation: Convolutional and
Pooling layers

* Required:

\/ For convolutional layers:

* Given the derivatives for the output activation maps
Y (1), how to compute the derivatives w.r.t. the affine
Z (1) maps

* Given the derivatives for the affine maps Z(l) How to
compute the derivative w.r.t. Y (Il — 1) and w(l)

— For pooling layers:

* How to compute the derivative w.r.t. input layer Y (I —
1) given derivatives w.r.t. pooled output Y (1)
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Pooling

* Pooling “pools” groups of values to reduce
jitter-sensitivity

— Scanning with a “pooling” filter

* The most common pooling is “Max” pooling ..



Max Pooling

 Max pooling selects the largest from a pool of elements
* Poolingis performed by “scanning” the input

P(l,m,i,j) = argmax Y(l—1,m,k,n)
kE{i, i+Klpool_1}r

ne{jrj+Klpool_1}

Y(I,m,i,j) =Y({—1,m,P(,m,ij))
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Max pooling

Max ‘m

 Max pooling selects the largest from a pool of elements
* Poolingis performed by “scanning” the input

P(l,m,i,j) = argmax Y(l—1,m,k,n)
kE{i, i+Klpool_1}r
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Max pooling
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 Max pooling selects the largest from a pool of elements
* Poolingis performed by “scanning” the input

P(l,m,i,j) = argmax Y(l—1,m,k,n)
kE{i, i+Klpool_1}:

ne{jrj+Klpool_1}

Y(I,m,i,j) =Y({—1,m,P(,m,ij))
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Derivative of Max pooling

1 3 > 6
Max
6 5 5
dDiv
0 0 Backprop —
dDiv
dy 0
. dDiv
dDiv g if (k,)) =P(,m,ij)
- LmkD y(l,m,i,j) |
0 otherwise

 Max pooling selects the largest from a pool of elements

P(l,m,i,j) =

argmax

Y(I—1,m,k,n)

kE{i, i+Klpool_1}»
ne{f»f"'Klpool_l}

y(,m,i,j) =yl —1,m,P(l,m,i,j))
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Max Pooling layer at layer [

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

Max pooling

for j = 1:D,
for x = 1:W,_-K;+1
for vy = 1:H, ;-K;+1 ¢
pidx(l,],x,y) = maxidx(y(l-1,7,x:x+K,-1,y:y+K;-1))
y(l,3,%x,y) = y(1-1,3,pidx(1,3,%,¥))
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Derivative of max pooling layer at
layer [

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

Max pooling \

dy(:,:,:) = zeros(D, x W; x H;)
for j = 1:D,
for x = 1:W,
for vy = 1:H,
dy (1-1,3,p1dx(1,3,%x,y)) += dy(l,],x,¥)

“+=“ because this entry may be selected in multiple adjacent overlapping windows
23



Mean pooling

 Mean pooling compute the mean of a pool of elements
* Poolingis performed by “scanning” the input

- 1
y(l,m,i,j) = K2 z y(l—1,m,k,n)
lpool kE{i, i+Klpool_1}:
nE{f:f"'Klpool_l}
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Derivative of mean pooling

dDiv | dDiv dDiv

4 0 Yt / dY
o~

* The derivative of mean pooling is distributed over the
pool

k € {61+ Kipoor = 1}, dy(l —1,m, k,n) +=
) VAD - 2

.. dy(l,m, k,n)
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Mean Pooling layer at layer [

Mean pooling

for j = 1:D; #Over the maps
for x = 1:W,_,-K;+1 #K, = pooling kernel size
for vy = 1:H, ;-K;+1
v(l,3,x,y) = mean(y(l-1,7,x:x+K,-1,y:y+K;-1))




Derivative of mean pooling layer at
layer [

Mean pooling

dy(:,:,:) = zeros(D, x W; x H;)
for j = 1:D,
for x = 1:W,
for vy = 1:H,
for 1 = 1:Kj 001
for J = 1:Kj 001

dy (1-1,3,p, x+1,x+7) += (1/K2lpool)dy(l,j,x,y)

“+=“ because adjacent windows may overlap




Derivative of mean pooling
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* Thisis actually the channel-wise convolution of dy(l, m) by
a “uniform” filter

— After zero-padding on every side by (N-1) rows/columns for an
N X N mean pooling filter

Ld L] 1
— Allvalues in the filter are -~
28



Backpropagation: Convolutional and
Pooling layers

* Assumption: We already have the derivatives w.r.t. the elements of
the maps output by the final convolutional (or pooling) layer

— Obtained as a result of backpropagating through the flat MLP

* Required:
V — For convolutional layers:
* How to compute the derivatives w.r.t. the affine combination Z (1) maps from

the activation output maps Y (1)
* How to compute the derivative w.r.t. Y (Il — 1) and w(l) given derivatives w.r.t.

Z()

J — For pooling layers:
* How to compute the derivative w.r.t. Y (I — 1) given derivatives w.r.t. Y (1)

29



Poll 1

When backpropagating through a MAXpooling layer, derivatives from the pooling
output backpropagate only to the position of the largest input within the input
pooling window for that output

e True
e False

When backpropagating through a meanpooling layer, derivatives from the pooling
output are distributed uniformly over the input pooling window for that output

e True
e False



Poll 1

When backpropagating through a MAXpooling layer, derivatives from the pooling output backpropagate
only to the position of the largest input within the input pooling window for that output

e True
e False

When backpropagating through a meanpooling layer, derivatives from the pooling output are
distributed uniformly over the input pooling window for that output

e True
e False



Recap

Upsampling and downsampling layers can increase or
decrease the size of the map

Upsampling followed by convolution can be viewed as
convolution with a fractional stride

Convolution followed by downsamping can be viewed
as convolution with a stride greater than 1

How do we backpropagate through upsampling and
downsampling layers?



Recap: The Downsampling Layer

m

YPS = {yPs)
Y = {yij} J oss .

A downsampling layer simply “drops” S — 1 of S rows and columns
for every map in the layer

— Effectively reducing the size of the map by factor S in every direction

33



The derivative size rule

Gradient of Div w.r.t input map

b/s —m

* |mportant note: the gradient of the divergence with respect
to any variable will be the same size as the variable

— For the input maps of a D/S layer, they will be the same size as
the original input maps, regardless of the size of the output

34



Backprop through D/S layer

Gradient of Div w.r.t input map

D/S

 Backpropagation: Given the derivative of the divergence
with respect to the elements of the output of the
downsampling, compute derivatives with respect to every
element of the input to the down sampling

35



Backprop through D/S layer

b/s —m

* Step 1: Allocate a map of the size of the input that was
downsampled

— This information must be retained, or derived from the known size of
the outcome of the computation of previous layers

36



Backprop through the D/S layer

b/s p—————————>

Step 1: Allocate a map of the size of the input that was
downsampled

— This information must be retained, or derived from the known size of
the outcome of the computation of previous layers

Step 2: The “deleted” values (blackened) do not affect the output




Backprop through the D/S layer

b/s p—————————>

* Step 1: Allocate a map of the size of the input that was
downsampled

— This information must be retained, or derived from the known size of
the outcome of the computation of previous layers

e Step 2: The “deleted” values (blackened) do not affect the output

— The derivative with respect to these elements is 0




Backprop through the D/S layer

D/S

e Step 3: The remaining values are identical in the
original and downsampled maps in the forward pass

— The divergence derivatives too will be identical

39



Backprop through the D/S layer

- . —
- NN

e Step 3: The remaining values are identical in the
original and downsampled maps in the forward pass

— Their derivatives too will be identical

* Simply copy the derivatives for the output over to the
appropriate location of the input




Backprop through D/S pseudocode

# H and W are the height and width of the input

# to the downsampling layer in the forward pass

# S is the stride in the forward pass

# dz contains the divergence derivative for the D/S
# output z in the forward pass

function dy = backprop through DS(dz, S, H, W)
#c = number of channels in dz
dy = zeros(c,H,W) # preallocate to right size and set to O
for 1 = l:width(z)
for J = 1l:height(z)
dy(:, (1-1)S+1, (j-1)S+1) = dz(:,1i,3)

return dy



Recap: The Upsampling Layer
Y% = {y;j’}

Y = {yij}

U/s

 An upsampling (or dilation) layer simply introduces S — 1
rows and columns for every map in the layer

— Effectively increasing the size of the map by factor S in every
direction

* Used explicitly to increase the map size by a uniform factor

42



Backprop through the upsampling layer

<

dDiv
dy;;

—> U/S

* Backpropagation: Given the derivative of the divergence
with respect to the elements of the output of the
upsampling, compute derivatives with respect to every
element of the input to the upsampling

— The “map” of these derivatives will be the same size as the
input

43



Backprop through the upsampling
layer

dDiv
dy;;

—> U/S

* The zero elements introduced during the forward pass in
upsampling are not functions of the input

— They are always introduced as 0O, regardless of the input

* During backpropagation, they do not influence the
derivatives going backward

44



Backprop through the upsampling
layer

u/s yUs
dyij J

* The remaining elements are identical
— The derivatives are identical

* Simply copy the derivatives for the “valid”
locations over into the derivative for the input

45



Backprop through U/S pseudocode

# S is the stride in the forward pass
# dz contains the divergence derivative for the U/S
# output z in the forward pass

function dy = backprop through Upsampling (dz, S)
#c = number of channels in dz

= 1:S:width(z)

for J = 1:S:height (z)
dy(:,k, 1) =dz(:,1i,])

k++

return dy
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Convolutional layer with stride > 1

Conv
with
Stride 2

e Convolution is often performed with a stride larger than 1 to result in a
smaller output map

47



Convolutional layer with stride > 1

Conv
with
Stride 2

Conv
with 4»[ D/S by 2 ]—>
Stride 1

e Convolution is often performed with a stride larger than 1 to result in a
smaller output map

* For purposes of backprop, it is easiest to view this as Convolution followed
by down sampling

48



Convolutional layer with stride > 1

Conv
with
Stride 2

 C—  —

Conv

with 4-[ D/S by 2 ]—>

Stride 1

e Convolution is often performed with a stride larger than 1 to result in a
smaller output map

* For purposes of backprop, it is easiest to view this as Convolution followed
by down sampling
— Backprop will first propagate derivatives through the D/S layer, and then
through the Convolution layer

— Simpler than trying to modify backprop rules to account for stride in

. 49
convolution



Convolutional layer with fractional

stride

Conv
with

| Stride 0.5

]__

result in a larger output map

* Convolution is also sometimes performed with a fractional stride to

50



Convolutional layer with fractional

stride

Conv
with

| Stride 0.5

Upsample
by 2

]__

,[

Conv
with
Stride 1

-

Convolution is also sometimes performed with a fractional stride to

result in a larger output map

For purposes of backprop, it is easiest to view this as upsampling

followed by convolution.
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Convolutional layer with fractional

stride

Conv
with

| Stride 0.5

——

Upsample
by 2

]__

,[

Conv
with
Stride 1

-

Convolution is also sometimes performed with a fractional stride to

result in a larger output map

For purposes of backprop, it is easiest to view this as upsampling

followed by convolution.

— Backprop will first propagate derivatives through convolution layer,

and then the upsampling layer
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Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

53



Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”

54



Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map
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Pooling and downsampling
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Pooling and downsampling

* Pooling is typically performed with strides > 1

— Results in shrinking of the map

— “Downsampling”
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Pooling layer with stride > 1

Pooling
with
Stride 2

Pooling
with 4»[ D/S by 2 ]—>
Stride 1

e Convolution is often performed with a stride larger than 1 to result in a
smaller output map

* For purposes of backprop, it is easiest to view this as Convolution followed
by down sampling

59



Through the eyes of code

* As always, the code is simpler

60



Convolution: Forward layer [

Y(O,:,:,:) = Image
for x = 1:W,_-K;+1

for vy = 1:H,_ ;-K;+1

. L
for j = 1:D, Switching to 1-based

indexing with appropriate
z(1l,J,x,y) = 0 GdJUSTmenTS

for 1 = 1B
for x" = 1:K;
for y' = 1:K;

], X

yy) = wi(l,3,1,x",y")
Y(1-1,1i,x+x"-1,y+y’-1)

Y(1,3,%x,y) = activation(z(l,3,x%x,Vv))



Conv Backward layer [

dw(l) = zeros (D;xD;_;xK;xK;)
dY (l-1) = zeros(D;_;xW,_;xH,_;)
for x = W,_;-K;+1l:downto:1
for y = H, ;-K;+1:downto:1l
for j = D,:downto:l
dz (1,3,%x,y) = d¥(l,3J,%x,y).£" (z(1,]3,%x,¥))
for 1 = D,_;:downto:l
for x" = K;:downto:1
for y’ = K;:downto:1
dy (1-1,1,x+x"-1,y+ty’'-1) +=
w(l,J,1,x",y")dz(1l,],%x,V)
dw(l,J,1,x",y") +=
dz(l,73,%x,y)Y(1-1,1,x+x"-1,y+y’-1)



Convolution forward with stride layer [

The weight W(l,j)is now a 3D D, ;xK;xK; tensor (assuming square
receptive fields)

m =1
for x = l:stride:W,_,-K;+1
n =1
for y = l:stride:H,_-K;+1
for J = 1:D,

z(l,3,m,n) = 0
for 1 = 1:D;_,
for x" = 1:K;
for y’ = 1:K;
z(l,3,m,n) += w(l, 1 x’ ,y )
Y (1- y Xtx'=1,y+y’"-1)
Y(1,j,m,n) = activation(z(l J,m,n))
n++

m++

Y = softmax( {¥Y(L,:,:,:)} )



Conv Backward (with strides) at layer [

dw(l) = zeros (D;xD,_;xK,;xK;)
dY (1-1) = zeros (D;_{xW,_;xH;_;)
for x = W,:downto:1
m = (x-1)stride
for y = H,:downto:1
n = (y-1)stride
for jJ = D,:downto:l
dz (1,3,%x,y) = d¥(L,3J,%x,y).£" (z(1,],%x,¥))
for 1 = D,_;:downto:l
for x' = K;:downto:1
for y" = K,;:downto:1l

dY (1-1,1i,m+x’,n+y’) +=
W(l,j,i,X,,y,)dZ(l,j,X,Y)

dw(l,7J,1,x",y’) +=
dz(1,7,x,y)y(l-1,1i,m+x’,n+y’)



Max Pooling layer at layer [ with a
stride

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

1

Max pooling

for Jj = 1:D,

m = 1
for x = l:stride(l) :W,_;-K;+1
n =1
for y = l:stride(l) :H, ,-K,+1 |
pidx(l,J,m,n) = maxidx(y(l-1,7,x:x+K,-1,y:y+K,-1))

Y(lrjrmrn) = Y(l_llj/pidx(llj/mrn))
n = n+l

m = m+1
65




Derivative of max pooling layer at
layer [

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

Max pooling \

dy(:,:,:) = zeros(D, x W; x H;)
for j = 1:D,

for x = 1:W

for vy = 1:H

1 downsampled

1 downsampled

dy (1-1,3J,pidx(1,3,x,y)) += dy(l,J,x,y)

“+=“ because this entry may be selected in multiple adjacent overlapping windows
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Mean Pooling layer at layer [ with a

stride

a) Performed separately for every map (j).

Mean pooling

*) Not combining multiple maps within a single mean operation.

for j = 1:D; #Over the maps

m = 1

for x =
n =
for

l:stride(1l) :W,_;-K;+1 #K; F pooling kernel size
1
y = l:stride(1l) :H;;-K;+1}
y(l,J,m,n) = mean(y(l-1,7,x:x+K,-1,y:y+K;-1))

n = n+l
m+1




Derivative of mean pooling layer at
layer [ with a stride

Mean pooling

dy(:,:,:) = zeros(D;, x W, x H;)
for j = 1:D,

for x =1 :Wl_downsampled
n = (x-1)*stride
for Y = 1: Hl_downsampled

m = (y—-1)*stride
for 1 = 1:Kj 001
for J = 1:Kj 001
dy (1-1,3,p, n+i,m+3) += (1/K% . )y (1,3,x%,y)

“+=" because adjacent windows may overlap



Poll 2

The backward pass of an upsampling layer is downsampling?

e True
e False

The backward pass of a downsampling layer is upsampling?

e True
e False

We can simply use an upsampling layer as the backward pass of downsampling
and vice versa

e True
e False



Poll 2

The backward pass of an upsampling layer is downsampling?

e True
e False

The backward pass of a downsampling layer is upsampling?

e True
e False

We can simply use an upsampling layer as the backward pass of downsampling and
vice versa

e True
e False



Learning the network

e 7 [>L y® [>L |

M o (2)
I‘W\‘ M YMz
2

A

* Have shown the derivative of divergence w.r.t every intermediate output,
and every free parameter (filter weights)
 Can now be embedded in gradient descent framework to learn the

network
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Story so far

The convolutional neural network is a supervised version of a
computational model of mammalian vision

It includes

— Convolutional layers comprising learned filters that scan the outputs
of the previous layer

— Downsampling layers that operate over groups of outputs from the
convolutional layer to reduce network size

The parameters of the network can be learned through regular back
propagation
— Maxpooling layers must propagate derivatives only over the maximum
element in each pool

* Other pooling operators can use regular gradients or subgradients

— Derivatives must sum over appropriate sets of elements to account for
the fact that the network is, in fact, a shared parameter network



Invariance

e CNNs are shift invariant
 What about rotation, scale or reflection invariance




Shift-invariance — a different
perspective

y
...

w .
L
z(l,s,i,j) = Z ‘ Z w(ll,s,p,kkm)Y(l—1,p,i +k,j+m)
p k=1m=1

* We can rewrite this as so (tensor inner product)

z(s,i,j) = Y.shift(w(s), i, )
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Generalizing shift-invariance

—
i
o)

Zregular (S, 1,J) = Y.shift(w(s), i, )
e Also find rotated by 45 degrees version of the pattern

[

Zrotas(S,1,j) = Y.shift(rotate45(w(s)),i,j)
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Transform invariance

\ l. —
More generally each

filter produces a set of

transformed (and

shifted) maps

— Set of transforms Wy * —

must be enumerated
and discrete

'D

R

— E.g. discrete set of
rotations and scaling,

reflections etc.
The network becomes * /’/’E
invariant to all the
transforms considered

®
i\ .

z1,(s,1,j) = Y.shift(T,(w(s)),i,))



Regular CNN : single layer [

The weight W(l,j)is a 3D D,_;xK;xK; tensor

for x = 1:W,_,-K;+1
for v = 1:H, ;-K;+1
for j = 1:D,
segment = Y (1-1, :, x:xtK,-1, y:y+K;-1) #3D tensor
z(1l,3,%x,y) = W(l,Jj) .segment #tensor inner prod.
Y(1,3,%x,y) = activation(z(l,3,x%x,Vv))
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Transform invariance

The weight W(l,j)is a 3D D,_;xK;xK; tensor

for x = 1:W,_,-K;+1
for v = 1:H, ;-K;+1
m = 1
for j = 1:D,
for t in {Transforms} # enumerated transforms
T™W = T(W(1,3))

segment = Y (1-1, :, x:xtK,-1, y:y+K;-1)#3D tensor
z(l,m,x,y) = TW.segment #tensor inner prod.
Y(l,m,x,y) = activation(z(l,m,x,Vv))

m =m + 1
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BP with transform invariance

* Derivatives flow
back through the
transforms to update
individual filters

.

— Need point
correspondences
between original and
transformed filters

— Left as an exercise
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Story so far

CNNs are shift-invariant neural-network models for shift-invariant
pattern detection

— Are equivalent to scanning with shared-parameter MLPs with
distributed representations

The parameters of the network can be learned through regular back
propagation

Like a regular MLP, individual layers may either increase or decrease
the span of the representation learned

The models can be easily modified to include invariance to other
transforms

— Although these tend to be computationally painful



But what about the exact location?

 We began with the desire to identify the picture as
containing a flower, regardless of the position of the flower

— Or more generally the class of object in the picture

* But can we detect the position of the main object?
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Finding Bounding Boxes

ﬁ » Class Output

W}

¥
=
s
¥

Btk

R
\U\f}u\

Toput D D E Coordinates of
e P bounding box
300 g o - (x1y1), (x2.y2)

(x3,y3),(x4,y4)

The flatten layer outputs to two separate output layers
One predicts the class of the output

The second predicts the corners of the bounding box of the object (8 coordinates)
in all

The divergence minimized is the sum of the cross-entropy loss of the classifier
layer and L2 loss of the bounding-box predictor

— Multi-task learning 82



Pose estimation

=1 _rl ap mp
=E i D ? 0L i &?

W] e e

~0 0 B = .
J= 17" HAE mp Sl
e = =

* Can use the same mechanism to predict the
joints of a stick model

— For pose estimation
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Poll 3

To find the position of an object using a CNN, we need multiple output layers after the final
convolution, one to identify the class and another to predict the position of the object

e True
e False

CNNs are invariant to the position, but not the orientation or scale of the target pattern

e True
e False

To make them invariant to a transform, transformed versions of every filter must be included
in the model, for every transform considered

e True
e False



Poll 3

To find the position of an object using a CNN, we need multiple output layers after the

final convolution, one to identify the class and another to predict the position of the
object

e True
e False

CNNs are invariant to the position, but not the orientation or scale of the target pattern

e True
e False

To make them invariant to a transform, transformed versions of every filter must be
included in the model, for every transform considered

e True
e False



Model variations

* Very deep networks
— 100 or more layers in MLP

— Formalism called “Resnet”

* You will encounter this in your HWs

* “Depth-wise” convolutions

— Instead of multiple independent filters with
independent parameters, use common layer-wise
weights and combine the layers differently for

each filter



Conventional convolutions

Conventional

byt

2 >
A el o

Alternate view of conventional convolution:

Each layer of each filter scans its corresponding map to produce a convolved map
N input channels will require a filter with N layers
The independent convolutions of each layer of the filter result in N convolved maps

The N convolved maps are added together to produce the final output map (or channel) for that
filter



Conventional convolutions

o (] o
l M&/

‘ convolve collapse
N i »

convolve collapse

B
1}l »/

* This is done separately for each of the M filters
producing M output maps (channels)

<
NN NN




Depth-wise convolution

W
se\N\‘
G o
» Collapse with weiiht w,

/ ) ey
convolve e Wiz, e,
'Sht W
3 /

* |n depth-wise convolution the convolution step is performed only once

DN

N

 The simple summation is replaced by a weighted sum across channels

— Different weights (for summation) produce different output channels
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Conventional vs. depth-wise
convolution

Conventional

piLit
(oD
(oo

M input channels, N output channels:

N independent MxKxK 3D filters,
which span all M input channels

Each filter produces one output channel

Total NMK? parameters

Depth-wise

it

ORBEREOOO

/ /W

M input channels, N output channels in 2 stages:
Stage 1:
* M independent KxK 2D filters, one per input channel
* Each filter applies to only one input channel
* No. of output channels = no. of input channels
Stage 2:
e N Mx1x1 1D filters
e Each applies to one 2D location across all M input
channels
Total NM + MK? parameters 90



Poll 4

Filters in depth-wise convolutions convolve all the input channels
simultaneously and sum the result

e True
e False

Depthwise convolutions require far fewer parameters and computation than
regular convolutions

e True
e Flase



Poll 4

Filters in depth-wise convolutions convolve all the input channels simultaneously
and sum the result

e True
e False

Depthwise convolutions require far fewer parameters and computation than
regular convolutions

e True
e Flase



Story so far

CNNs are shift-invariant neural-network models for shift-invariant pattern
detection

— Are equivalent to scanning with shared-parameter MLPs with distributed representations

The parameters of the network can be learned through regular back propagation

Like a regular MLP, individual layers may either increase or decrease the span of
the representation learned

The models can be easily modified to include invariance to other transforms
— Although these tend to be computationally painful

Can also make predictions related to the position and arrangement of target object
through multi-task learning

Several variations on the basic model exist to obtain greater parameter efficiency,
better ability to compute derivatives, etc.



What do the filters learn?
Receptive fields

O/ seetissis

 The pattern in the input image that each neuron sees is its “Receptive Field”
* The receptive field for a first layer neurons is simply its arrangement of weights

* For the higher level neurons, the actual receptive field is not immediately obvious
and must be calculated
— What patterns in the input do the neurons actually respond to?

— We estimate it by setting the output of the neuron to 1, and learning the input by

backpropagation
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Features learned from training on different object classes.
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Training Issues

e Standard convergence issues

— Solution: Adam or other momentum-style
algorithms

— Other tricks such as batch normalization

* The number of parameters can quickly
become very large

* |nsufficient training data to train well
— Solution: Data augmentation



Data Augmentation

Original data Augmented data

£}

A v e

' -~
- L R
O g, "

f | ' \ £ |4

rotation: uniformly chosen random angle between 0° and 360°

translation: random translation between -10 and 10 pixels

rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
flipping: yes or no (bernoulli)

shearing: random shearing with angle between -20° and 20°

stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-

uniform)
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Convolutional neural nets

* One of the most frequently used nnet
formalism today

* Used everywhere
— Not just for image classification
— Used in speech and audio processing

* Convnets on spectrograms

— Used in text processing



Nice visual example

* http://cs.stanford.edu/people/karpathy/convn
etjs/demo/cifar10.html



Digit classification

EJ 5| 'IE'- 51 m n:
mput feature maps  feature maps feature maps feature maps output
32x32 0 I8xJE ___ l4x14  10x10  Jx3
. K“'{" ™
N\ \"\ﬂ . el
[ — UG N
*_:'T_{‘_T_ - g J — \ \ "xl l"'- C}m—ﬂ
5x%5 ~ 2x2 sx5 o[ .,,\\' N\
convolution N subsampling  convoluton | 2y \\"'\ ':JJ' fully N\

whm:mhng \-q.‘. muutcted N

feature extraction ciamﬁmhﬂu

100



Le-net 5

C i 5[ { 5' (i 11 oy

gt I'-::thuc-:uapb feamire ALY fen‘l!iuc-ump-. [catm::-nmp-.- cutput
.13::.1'.’_ _345'_.‘:_3.$_ _!_-.I-_xl_-.l-_ _]1_}_‘.-:]_2_ Ix3 e
< "% .3
o T 7 N\\O% o5 0,
. 1 = % 5
3 1 = == \ \ i % {ﬂr = 9
- = NN AN
5x5 2x2 x5 e
convolution \ subsampling convoluton 2x2 \\ o fully \
“, subsanmpling \ N\ conectad N
feature extraction classification

Digit recognition on MNIST (32x32 images)
— Convl: 6 5x5 filters in first conv layer (no zero pad), stride 1
* Result: 6 28x28 maps

— Pooll: 2x2 max pooling, stride 2
* Result: 614x14 maps

— Conv2: 16 5x5 filters in second conv layer, stride 1, no zero pad
* Result: 16 10x10 maps

— Pool2: 2x2 max pooling with stride 2 for second conv layer
* Result 16 5x5 maps (400 values in all)

— FC: Final MLP: 3 layers
* 120 neurons, 84 neurons, and finally 10 output neurons
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The imagenet task

FLE BT RN S efS B 0
B 45 MR Txr Dl M0 ST 0T
1 S SET I LR rass

mammal —. placental —. carnivore —. <canine . dog _.worklngdog —_— husky

-la‘ it liﬁ! - In l
w7 - I DS Eal) wnD e

vehicle craft ——  watercraft —— sailingvessel ——  sailboat ——  trimaran

Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
http://www.image-net.org/challenges/LSVRC/

Actual dataset: Many million images, thousands of categories

For the evaluations that follow:
— 1.2 million pictures
— 1000 categories
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AlexNet

* 1.2 million high-resolution images from ImageNet LSVRC-2010 contest

e 1000 different classes (softmax layer)

* NN configuration
* NN contains 60 million parameters and 650,000 neurons,
* 5 convolutional layers, some of which are followed by max-pooling layers
e 3 fully-connected layers

- 3| e N \ — d
8 | 192 192 128 2048 2048 \UENSE
5 27 128 R ]
{-' 13-y 13 \ 13
5\ o' 3 T
224 S| |7 3} 3ok [ A !
\ i I N - A 13 ' dense’| [dense
) ' 27 £ e 3| 3 13
3|\ 1000
: 2048 2048
Max‘ 128 Max pooling
pooling pooling

3 48

Krizhevsky, A., Sutskever, |. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



Krizhevsky et. al.

Input: 227x227x3 images

Convl: 96 11x11 filters, stride 4, no zeropad
Pooll: 3x3 filters, stride 2
“Normalization” layer [Unnecessary]
Conv2: 256 5x5 filters, stride 2, zero pad
Pool2: 3x3, stride 2

Normalization layer [Unnecessary]
Conv3: 384 3x3, stride 1, zeropad
Conv4: 384 3x3, stride 1, zeropad
Conv5: 256 3x3, stride 1, zeropad

Pool3: 3x3, stride 2

FC: 3 layers,
— 4096 neurons, 4096 neurons, 1000 output neurons



Alexnet: Total parameters

650K neurons
60M parameters
630M connections

Testing: Multi-crop

10 patches

— Classify different shifts of the image and vote over

the lot!
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Learning magic in Alexnet

Activations were RELU
— Made a large difference in convergence

“Dropout” — 0.5 (in FC layers only)
Large amount of data augmentation
SGD with mini batch size 128
Momentum, with momentum factor 0.9
L2 weight decay 5e-4

Learning rate: 0.01, decreased by 10 every time validation accuracy
plateaus

Evaluated using: Validation accuracy

Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7
networks

— Lowest prior error using conventional classifiers: > 25%



ImageNet

Figure 3: 96 convolutional
kernels of size 11x11x3 learned
by the first convolutional layer
on the 224x224x3 input images.
The top 48 kernels were learned
on GPU 1 while the bottom 48
kernels were learned on GPU 2.
See Section 6.1 for details.

Krizhevsky, A., Sutskever, |. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



The net actually learns features!

motor scooter

mite " container s ip

mite container ship ‘maotbr scooter B o)
1] black widow lifeboat go-kart jaguar e FT
il cockroach amphibian moped cheetah
| tick fireboat | bumper car snow leapard
| drilling platform golfcart

\

Madagascar cat |

grille mushroom cherry
convertible agaric m.mh S I monkey
grille mushroom grape spider monkey
pickup Jelly fungus elderbarry titi . 4
beach wagon gill fungus (ffordshire buliterrier indri lr . oy } g - Ty : o
fire engine || dead-man's-fingers currant howler monkey |'w @i S50 0 £ B Ud L) < .

Eight ILSVRC-2010 test images and the five labels
considered most probable by our model. The correct
label is written under each image, and the
probability assigned to the correct label is also
shown with a red bar (if it happens to be in the top
5).

Elwptl cat

Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that
produce feature vectors in the last hidden layer with
the smallest Euclidean distance from the feature
vector for the test image.

Krizhevsky, A., Sutskever, |. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada



image size 224 110 -

filter size 7

lstride 2

Input Image

Layer 2

ZF Net Architecture

e Zeiler and Fergus 2013

13 A3 13
113 3
-,l,, 512 wlri w1024
33 max
pool
stride 2
6
Layer 3 Layer 4 Layer 5

e Same as Alexnet except:
— 7x7 input-layer filters with stride 2
— 3 conv layers are 512, 1024, 512
— Error went down from 15.4% 2 14.8%

* Combining multiple models as before

256

units

class
softmax

Layer6 Layer7 Output
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VGGNet

Simonyan and Zisserman, 2014
Only used 3x3 filters, stride 1, pad 1
Only used 2x2 pooling filters, stride 2

Tried a large number of architectures.

Finally obtained 7.3% top-5 error

using 13 conv layers and 3 FC layers
— Combining 7 classifiers
— Subsequent to paper, reduced error to

6.8% using only two classifiers

Final arch: 64 conv, 64 conv,

64 pool,

128 conv, 128 cony,

128 pool,

256 conv, 256 conv, 256 cony,

256 pool,

512 conv, 512 cony, 512 cony,

512 pooal,

512 conv, 512 conv, 512 cony,

512 pooal,

FC with 4096, 4096, 1000

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | comv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | comv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | comv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | comv3-512 | conv3-512 | conv3-512 | conw3-512
conv3-512 | conv3-512 | comv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4006

FC-4096

FC-1000

soft-max

.~ Madness! 110

~140 million parameters in all! <




Googlenet: Inception

3x3 convolutions 5x5 convolutions 1x1 convolutions

1%1 convolutions 4 3 }

1x1 convolutions 1x1 convolutions 3x3 max podling

AVERAGE
PooLING

 Multiple filter sizes simultaneously

e Details irrelevant; error 2 6.7%
— Using only 5 million parameters, thanks to average pooling;



VGG-15 34-layer plain I4-Fayer residual
- . image

X

Y

weight layer
F(x) ] relu

weight layer

F(x) +x
Figure 2. Residual learning: a building block. ' =
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Resnet: 2015

— Current top-5 error: <3.5%

— Over 150 layers, with “skip” connections..
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Resnet details for the curious..

weight layer

F(x)

‘ relu

weight layer

F(x) +x
Figure 2. Residual learning: a building block.

Last layer before addition must have the same number of filters as

the input to the module

Batch normalization after each convolution

SGD + momentum (0.9)

Learning rate 0.1, divide by 10 (batch norm lets you use larger

learning rate)
Mini batch 256
Weight decay le-5

X
identity
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Densenet

e All convolutional
 Each layer looks at the union of maps from all previous layers
— Instead of just the set of maps from the immediately previous layer

 Was state of the art before | went for coffee one day
— Wasn’t when | got back..
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Many many more architectures

* Daily updates on arxiv..

 Many more applications
— CNNs for speech recognition
— CNNs for language processing!
— More on these later..



CNN for Automatic
Speech Recognition

« Convolution over frequencies

 Convolution over time

max pooling

P

layer bands

pooling size

convolution

layer bands

shared weights

input bands | v,

filter size

e S(f) ™
A S(t)

A3 b.(f)
(D)
S
A s

A2 S(f+l)

glrin)
A S(H—n)

(r+n)

)
A7 s )
Vi

Frequency |
bands

bth band of »n
consecutive
frames
mncluding
dynamic
features

Static, A, AA
(’J\“

Convolution layer
feature maps

max pooling
layer nodes

|
Frames N
> .~ Share same weights
r

Deep Networks Phone Error Rate
DNN (fully connected) 22.3%
CNN-DNN; P=1 21.8%
CNN-DNN; P=12 20.8%
CNN-DNN; P=6 (fixed P, optimal) 20.4%
CNN-DNN; P=6 (add dropout) 19.9%
CNN-DNN; P=1:m (HP, m=12) 19.3%
CNN-DNN; above (add dropout) 18.7%

Table 1: TIMIT core test set phone recognition error rate comparisons.



CNN-Recap

Feature maps

* Neural network with specialized connectivity T
structure .

- Feed-forward: Pooling
- Convolve input T
- Non-linearity (rectified linear) Non-linearity

- Pooling (local max)
« Supervised training

: : : : Convolution
« Train convolutional filters by back-propagating error (Learned)
« Convolution over time T
Input image

.5 C3: f. maps 16@10x10
: feature maps S4:f. maps 16@5x5
'3*“;:’;’27 6@28x28 4

6@14x14

| Fullcoml.ection [ Gaussian connections
Subsampling Convolutions  Subsampling Full connection

x(t) x(t-1) x(@-2) x(t-3) Convolutions

x(t) —]—B>—|




