
Neural Networks

Variational Autoencoders
(based on slides from Dan Schwarts and Tom Manzini)

1

Recap

• Neural networks are universal approximators

• They can model
– Boolean functions
– Classification functions
– Regressions

• They can be
– Feature extractors
– Classifiers
– Predictors

2

A new problem

• All of the previous cases considered neural
networks that are functions
– They can operate on, or process a given input data
– They can learn to perform these tasks from data

• Can networks also generate data?
– And learn to do so from examples
– Topic for next series of lectures

3

A new problem

• From a large collection of images of faces, can a
network learn to generate new portrait
– Generate samples from the distribution of “face”

images
• How do we even characterize this distribution?

4

A new problem

• From a large collection of landscapes, can a network
learn to generate new landscape pictures
– Generate samples from the distribution of “landscape”

images
• How do we even characterize this distribution?

5

Neural nets as generative models

• We’ve seen how neural nets can perform
classification or regression
– MLPs, CNNs, RNNs..

• Next step: NNs as generic generative models
– Model the distribution of any data

– Such that we can draw samples from it

6

But first…

7

The story of generative models

• What are generative models
• How to estimate them

– Expectation maximization

8

What is a generative model

• A model for the probability distribution of a data
– E.g. a multinomial, Gaussian etc.

• Computational equivalent: a model that can be used to “generate”
data with a distribution similar to the given data
– Typical setting: a box that takes in random seeds and outputs random

samples like

– Question: how do we generate the random seeds…

magic box

seed

9

It’s turtles all the way down (kinda)…

10

Some “simple” generative models
• The category PMF

𝑃(𝑥 = 𝑣) ≡ 𝑃(𝑣)

– For discrete data
• 𝑣 belongs to a discrete set

– Can be expressed as a table of probabilities if
the set of possible vs is finite

– Else, requires a parametric form, e.g. Poisson

𝑃 𝑥 = 𝑘 =
𝜆௞𝑒ିఒ

𝑘!
 𝑓𝑜𝑟 𝑘 ≥ 0

• 𝜆 is the Poisson parameter

• The Gaussian PDF
𝑃 𝑥 = 𝑣

=
1

2𝜋 Σ
஽ exp −0.5(𝑥 − 𝜇)்Σିଵ(𝑥 − 𝜇)

– For continuous-valued data
– 𝜇 is the mean of the distribution
– Σ is the Covariance matrix

11

Learning a generative model for data

• You are given some set of observed data .

• You choose a model for the distribution of
– are the parameters of the model

• Estimate the such that best “fits” the
observations
– Hoping it will also represent data outside the training set.

12

An example: Multinomials

• A dice roller rolls dice and you plot the histogram of outcomes
– Shown to right

• The distribution is a multinomial
– Parameters to be learned: 𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ, 𝑝ହ, 𝑝଺

• Which of the two probability distributions shown to the right is more likely to be
the distribution for the dice?

– Why?

6 3 1 5 4 1 2 4 …

n1

n2

n3

n4

n5

n6

1 2 3 4 5 6

p1 p2

p3 p4

p5

p6

p1

p2

p3

p4

p5 p6

1 2 3 4 5 6

1 2 3 4 5 6

Histogram of
outcomes

13

An example

• The left figure shows the histogram of a collection of observations
• We decide to model the distribution as Gaussian

– Parameters: Mean and variance ଶ

• Which of the three Gaussians shown in the right figure is most likely
to be the actual PDF of the RV?
– Why?

14

Defining “Best Fit”: Maximum likelihood
• The data are generated by draws from the distribution

– I.e. the generating process draws from the distribution

• Assumption: The world is a boring place
– The data you have observed are very typical of the process

• Consequent assumption: The distribution has a high probability of
generating the observed data
– Not necessarily true

• Select the distribution that has the highest probability of generating
the data
– Should assign lower probability to less frequent observations and vice

versa

15

Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௫∈௑

– ௜
௡೔

ே
(is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑

16

Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௫∈௑

– ௜
௡೔

ே
(is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑

17

Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௫∈௑

– ௜
௡೔

ே
(is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑

Can be grouped by value (every instance of has the same probability)

This probability is a Gaussian

18

Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௜
௡೔

௜

– ௜
௡೔

ே
(is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

ଶ
௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑

19

Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௜௜ ௜

௜
௡೔

ே
(is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

ଶ ௫ିఓ మ

ଶఙమ௫∈௑

ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑

20

Poll 1

21

Maximum-likelihood estimation of probability distributions is
based on the theory that the world is a terribly boring place

 True
 False

Maximum-likelihood estimation estimates the values of the
parameters of a probability distribution such that they maximize
the probability of the training data

 True
 False

Poll 1

22

Maximum-likelihood estimation of probability distributions is based on the theory that the world is a
terribly boring place

 True
 False

Maximum-likelihood estimation estimates the values of the parameters of a probability distribution
such that they maximize the probability of the training data

 True
 False

Maximum Likelihood Estimation
• Sometimes the data provided may be incomplete

– May be insufficient to write out the complete log probability
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have missing
components
– E.g. Data vectors have some missing components

• Or because of the structure of the model
– Mixture models, multi-stage Generative models

23

Maximum Likelihood Estimation
• Sometimes the data provided may be incomplete

– May be insufficient to write out the complete log probability
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have missing
components
– E.g. Data vectors have some missing components

• Or because of the structure of the model
– Mixture models, multi-stage Generative models

24

Examples of incomplete data:
missing data

• Objective: Estimate a Gaussian distribution from a collection of
vectors

• Problem: Several of the vector components are missing
• Must estimate the mean and covariance of the Gaussian with these

incomplete data
– What would be a good way of doing this?

Blacked-out components are missing from data

?

25

Maximum likelihood estimation with
incomplete data

• Original problem: Estimate the Gaussian given a collection of complete
vectors

ఓ,ఙమ

ఓ,ఙమ
௫∈௑

• Unfortunately, many components of each vector are missing in our data

Blacked-out components are missing from data

?

where P() is a Gaussian

where X is the entire data

26

Maximum likelihood estimation with
incomplete data

• These are the actual data we have: A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ

27

Maximum likelihood estimation with
incomplete data

• These are the actual data we have: A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ

28

Maximum likelihood estimation with
incomplete data

• These are the actual data we have: A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ

29

Maximum likelihood estimation with
incomplete data

• Maximum likelihood estimation: Maximize the likelihood of the observed data
– That is all we really have

ఓ,ఙమ ఓ,ఙమ
௢∈ை

• Unfortunately, the Gaussian is defined on the complete vector :
– 𝑃 𝑥 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥; 𝜇, 𝜎ଶ)

– In order to compute 𝑃 𝑜 we must derive it from 𝑃 𝑥

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ

30

The log likelihood of incomplete data

• The probability of any vector with observed and missing parts
and

• Compute the probability of the observed components by
marginalizing out the missing components

• The log probability of the entire observed training data:

31

Maximum likelihood estimation with
incomplete data

• Maximum likelihood estimation: Maximize the likelihood of the observed data

ఓ,ఙమ ఓ,ఙమ

ஶ

ିஶ௢∈ை

• This requires the maximization of the log of an integral!
– No closed form
– Challenging on a good day, impossible on a bad one

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ

32

Maximum Likelihood Estimation

• Sometimes the data provided may be incomplete
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have
missing components
– E.g. Data vectors have some missing components

• Or because of the structure of the model
– Mixture models, multi-stage Generative models

33

The Gaussian Mixture

• Often, when trying to model a complicated distribution, we model it as a mixture
of Gaussians (GMM)

– A weighted sum of Gaussians

𝑃 𝑜 = ෍ 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞
ଶ)

௞

– The weights sum to 1.0

• Problem: Given a number of samples from the original (complicated) distribution,
how to determine the parameters of the parameters of the GMM to best fit them

34

The Gaussian Mixture

• Often, when trying to model a complicated distribution, we model it as a mixture
of Gaussians (GMM)

– A weighted sum of Gaussians

𝑃 𝑜 = ෍ 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞
ଶ)

௞

– The weights sum to 1.0

• Problem: Given a number of samples from the original (complicated) distribution,
how to determine the parameters of the parameters of the GMM to best fit them

35

The Gaussian Mixture

• Often, when trying to model a complicated distribution, we model it as a mixture
of Gaussians (GMM)

– A weighted sum of Gaussians

𝑃 𝑜 = ෍ 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞
ଶ)

௞

– The weights sum to 1.0

• Problem: Given a number of samples from the original (complicated) distribution,
how to determine the parameters of the parameters of the GMM to best fit them

36

Examples of incomplete data:
missing information in Gaussian mixtures

• The generative model characterizes the data as the outcome of a two-level process
– In the first step the process chooses a Gaussian from a collection
– In the second, it draws the vector 𝑜 from the chosen Gaussian
– The overall model is a mixture Gaussian

• Objective: Learn the parameters of all the Gaussians from training data
– Learn the means and variances of the individual Gaussians

• And also the probability with which each Gaussian is selected for the draw

ଵ ଵ
ଶ

ଶ ଶ
ଶ

ଷ ଷ
ଶ

ସ ସ
ଶ

௞ ௞
ଶ

௞
Mixture Gaussian

37

The Gaussian Mixture generative
model

• Note, the process actually draws two variables for each observation, 𝑘 and 𝑜.

• The probability of a particular draw is actually the joint probability of both variables
𝑃 𝑘, 𝑜 = 𝑃 𝑘 𝑃 𝑜 𝑘 = 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞

ଶ)

• To compute the probability of obtaining any observation o, we are marginalizing out the Gaussian
index variable

𝑃 𝑜 = ෍ 𝑃(𝑘, 𝑜)

௞

= ෍ 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞
ଶ)

௞

ଵ ଵ
ଶ

ଶ ଶ
ଶ

ଷ ଷ
ଶ

ସ ସ
ଶ

௞ ௞
ଶ

௞
Mixture Gaussian

38

The complete data needed to
precisely learn the model

• Ideal data: Each training instance includes both the
data vector and the Gaussian it was drawn from
– In order to estimate the parameters of any Gaussian, you

only need to segregate the training instances from that
Gaussian, and compute the mean and variance from them

39

Learning a GMM with “complete” data

𝜇௕௟௨௘, 𝜎௕௟௨௘
ଶ 𝜇௥௘ௗ, 𝜎௥௘ௗ

ଶ 𝜇௚௥௘௘௡, 𝜎௚௥௘௘௡
ଶ

40

The GMM problem of incomplete data:
missing information

• Problem : We are not given the actual Gaussian for each
observation
– Our data are incomplete

• What we want :
• What we have:

41

ML estimation with only observed data
• The maximum likelihood estimation problem:

– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … },

– estimate 𝜇௞, 𝜎௞
ଶ , ∀𝑘 – the parameters of all the Gaussians

ఓೖ,ఙೖ
మ ,∀௞ ఓೖ,ఙೖ

మ ,∀௞ ௢∈ை

• The probability of an individual vector:

௞ ௞
ଶ

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ

௞௢∈ை

• This includes the log of a sum, which defies direct optimization
42

• The maximum likelihood estimation problem:
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … },

– estimate 𝜇௞, 𝜎௞
ଶ , ∀𝑘 – the parameters of all the Gaussians

ఓೖ,ఙೖ
మ ,∀௞ ఓೖ,ఙೖ

మ ,∀௞ ௢∈ை

• The probability of an individual vector:

௞

௞ ௞
ଶ

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ

௞௢∈ை

• This includes the log of a sum, which defies direct optimization

ML estimation with only observed data

43

• The maximum likelihood estimation problem:
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … },

– estimate 𝜇௞, 𝜎௞
ଶ , ∀𝑘 – the parameters of all the Gaussians

ఓೖ,ఙೖ
మ ,∀௞ ఓೖ,ఙೖ

మ ,∀௞ ௢∈ை

• The probability of an individual vector:

௞

௞ ௞
ଶ

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ

௞௢∈ை

• This includes the log of a sum, which defies direct optimization

ML estimation with only observed data

44

• The maximum likelihood estimation problem:
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … },

– estimate 𝜇௞, 𝜎௞
ଶ , ∀𝑘 – the parameters of all the Gaussians

ఓೖ,ఙೖ
మ ,∀௞ ఓೖ,ఙೖ

మ ,∀௞ ௢∈ை

• The probability of an individual vector:

௞ ௞
ଶ

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ

௞௢∈ை

• This includes the log of a sum, which defies direct optimization

ML estimation with only observed data

45

• The maximum likelihood estimation problem:
– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … },

– estimate 𝜇௞, 𝜎௞
ଶ , ∀𝑘 – the parameters of all the Gaussians

ఓೖ,ఙೖ
మ ,∀௞ ఓೖ,ఙೖ

మ ,∀௞ ௢∈ை

• The probability of an individual vector:

௞ ௞
ଶ

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ

௞௢∈ை

• This includes the log of a sum, which defies direct optimization

ML estimation with only observed data

46

The general form of the problem
• The “presence” of missing data or variables requires them to be

marginalized out of your probability
– By summation or integration

• This results in a maximum likelihood estimate of the form

ఏ
௛௢

– The inner summation may also be an integral in some problems
– Explicitly introducing in the RHS to show that the probability is computed by

a model with parameter which must be estimated

• The log of a sum (or integral) makes estimation challenging
– No closed form solution
– Need efficient iterative algorithms

47

The general form of the problem
• The “presence” of missing data or variables requires them to be

marginalized out of your probability
– By summation or integration

• This results in a maximum likelihood estimate of the form

ఏ
௛௢

– The inner summation may also be an integral in some problems

• The log of a sum (or integral) makes estimation challenging
– No closed form solution
– Need efficient iterative algorithms

Can we get an approximation to this that is more tractable?
(i.e without a summation or integral within the log)

48

The variational lower bound

• We can rewrite

– Where is some function such that and ௛

• I.e. a probability distribution

• The logarithm is a concave function, therefore

௛ ௛

49

The logarithm is a concave function

• For any ଵand ଶ, for any ,

ଵ ଶ ଵ ଶ

• More generally for any set of ௜ , and any weights ௜ s.t. ௜ and ௜௜

௜ ௜

௜

௜ ௜

௜

𝑓
𝑥

=
lo

g
 (𝑥

)

ଵ ଶ

log (𝑥ଵ)

log (𝑞𝑥ଵ + (1 − 𝑞)𝑥ଶ)

log (𝑥ଶ)

𝑞𝑥ଵ + (1 − 𝑞)𝑥ଶ

𝑞 log (𝑥ଵ) + (1 − 𝑞)log (𝑥ଶ)

50

The variational lower bound

• By the concavity of the log function

– For any and
– Note, the LHS is exactly equal to

• This is the variational lower bound on
– Also called the Evidence Lower BOund, or ELBO

51

Or more explicitly
• By the concavity of the log function

– Explicitly showing that the probability is computed by
a model with parameter

• We must maximize w.r.t

• This is the variational lower bound or ELBO on

52

The (variational) lower bound

• The lower bound is always at or below the original function

• If it is a tight lower bound, the max of the lower bound can
be expected to be near the max of the function

ᇱ

53

The (variational) lower bound

• The lower bound is always at or below the original function

• If it is a tight lower bound, the max of the lower bound can be
expected to be near the max of the function
– To make the lower bound tight, we need to choose properly

ᇱ

54

The two-step process
• By the concavity of the log function

• Step 1: Determine a that maximizes the RHS,
using the current estimate of
– Makes the bound tight

• Step 2: Fix and maximize the RHS with respect to
to get the next estimate

55

The two-step process
• By the concavity of the log function

• Step 1: Determine a that maximizes the RHS,
using the current estimate of
– Makes the bound tight

• Step 2: Fix and maximize the RHS with respect to
to get the next estimate

56

Maximizing w.r.t. Q(h)

௛

• Take the derivative w.r.t. for all and equate to 0
– With the constraint that ௛

• If is specifically modeled by a neural net or some other restricted
function, then we cannot simply take the derivative and equate to 0
– We may need gradient descent, with backpropagation

• Note: The optimized depends on and is a function of

57

Choosing a good
• For any , the optimal :

• At this value of the variational lower bound achieves
its maximum possible value

58

Choosing a good
• Let ᇱ

ᇱ
ᇱ

௛

• Let

ᇱ ᇱ
ᇱ

௛

• We get
ᇱ

• And

59

Choosing a good
• Let ᇱ

ᇱ
ᇱ

௛

• Let

ᇱ ᇱ
ᇱ

௛

• We get
ᇱ

• And

60

61

Expectation Maximization
• We have

• where

• And

• This gives us the following iterative algorithm that guarantees non-
decreasing with iterations:

62

• Initialize
• Construct

– It touches at because

଴

଴

଴ ଴ ଴

63

• Find ଵ

ఏ

଴

– ଵ ଴ ଴ ଴ (since you’re maximizing ଴ w.r.t)

• ଵ ଵ ଴ (since ଴ is a lower bound on)
• So the iteration increases

଴

଴

଴ ଴ ଴

ଵ

ଵ ଴

64

• Find

– ଵ ଴ ଴ ଴ (since you’re maximizing ଴ w.r.t)

•
– since ଴ is a lower bound on

• So the iteration increases

଴

଴

଴ ଴ ଴

ଵ

ଵ ଴

ଵ

65

• Construct
– It touches at because

– s

଴ ଵ

଴

ଵ

ଵ ଵ ଵ

66

• Find ଶ

ఏ

ଵ

– ଶ ଵ ଵ ଵ (since you’re maximizing ଵ w.r.t)

• ଵ ଵ ଴ (since ଴ is a lower bound on)
• So the iteration increases

଴ ଵ

଴

ଵ

ଵ ଵ ଵ

ଶ

ଶ ଵ

67

• Find ଶ

ఏ

ଵ

– ଶ ଵ ଵ ଵ (since you’re maximizing ଵ w.r.t)

• ଶ ଶ ଵ

– Since ଵ is a lower bound on

• So the iteration increases

଴ ଵ

଴

ଵ

ଵ ଵ ଵ

ଶ

ଶ ଵ

ଶ

68

• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease)
– Stop when stops increasing

଴ ଵ

଴ ଵ

ଶ

ଶ

69

• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease)
– Stop when stops increasing

଴ ଵ

଴ ଵ

ଶ

ଶ

ଷ

70

• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease)
– Stop when stops increasing

଴ ଵ ଶ ଷ

71

• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease)
– Stop when stops increasing

଴ ଵ

଴ ଵ

ଶ

ଶ

ଷ ସ

ଷ

72

Expectation Maximization

• Initialize
•
• Iterate (over) until converges:

– Construct ELBO function

– Maximization step

• Let’s simplify a bit

73

Expectation Maximization

• Initialize

•

• Iterate (over) until converges:
– Construct ELBO function

௞ ௞

௛௢∈ை

௞ ௞

௛௢∈ை

– Maximization step
௞ାଵ

ఏ

௞

74

Expectation Maximization

• Initialize

•

• Iterate (over) until converges:
– Construct ELBO function

௞ ௞

௛௢∈ை

௞ ௞

௛௢∈ை

– Maximization step
௞ାଵ

ఏ

௞

Not a function of

Can be ignored for maximization

75

Expectation Maximization

• Initialize
•
• Iterate (over) until converges:

– Expectation Step:
Compute for all for all

– Maximization step

76

The two-step process
• By the concavity of the log function

• Step 1: Determine a that maximizes the RHS, using
the current estimate of
– The best case value is using the current

estimate of

• Step 2: Fix and maximize the RHS with respect to to
get the next estimate

77

The two-step process
• By the concavity of the log function

• Step 1: Determine a that maximizes the RHS, using
the current estimate of
– The best case value is using the current

estimate of

• Step 2: Fix and maximize the RHS with respect to to
get the next estimate

78

The two-step process
• By the concavity of the log function

• Step 1: Determine a that maximizes the RHS, using
the current estimate of
– The best case value is using the current

estimate of

• Step 2: Fix and maximize the RHS with respect to to
get the next estimate

79

The two-step process
• By the concavity of the log function

• Step 1: Determine a that maximizes the RHS, using
the current estimate of
– The best case value is using the current

estimate of

• Step 2: Fix and maximize the RHS with respect to to
get the next estimate

80

Training by maximizing a variational lower bound

Special case: Expectation Maximization

• Initialize
•
• Iterate (over) until converges:

– Expectation Step:
Compute for all for all

– Maximization step

81

Poll 2

82

Mark all that are correct about the EM algorithm

 It is an iterative algorithm that can be used to estimate probability distributions
when the data are incomplete and have missing components or variables

 It iteratively maximizes an “ELBO” function with respect to model parameters
 It provides a closed form formula to estimate the parameters of the distribution

Mark all that are true of the ELBO (Empirical Lower Bound) function

 It is a lower bound on the actual log probability of the training data as computed by
the model

 It is a function of the model parameters
 There are some settings of the model parameters where the ELBO can be greater

than the log probability of the training data

Poll 2

83

Mark all that are correct about the EM algorithm

 It is an iterative algorithm that can be used to estimate probability distributions when the
data are incomplete and have missing components or variables

 It iteratively maximizes an “ELBO” function with respect to model parameters
 It provides a closed form formula to estimate the parameters of the distribution

Mark all that are true of the ELBO (Empirical Lower Bound) function

 It is a lower bound on the actual log probability of the training data as computed by the model
 It is a function of the model parameters
 There are some settings of the model parameters where the ELBO can be greater than the log

probability of the training data

That’s so much math, but what does
it really do?

• What does EM practically do when we have
missing data?
– What is the intuition behind how it resolves the

problem?

84

Recap: Maximum Likelihood
Estimation

• Sometimes the data provided may be incomplete
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have
missing components
– E.g. Data vectors have some missing components

• Or because of the structure of the network
– Mixture models, multi-stage Generative models

85

Recall this: Gaussian estimation with
incomplete vectors

• These are the actual data we have: A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ

86

Let’s look at a single vector

• These are the actual data we have: A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ

87

Lets look at a single vector

• We will try to complete the vector by filling in the missing
value with plausible values that match the observed
components

• Plausible: Values that “go with” the observed values,
according to the distribution of the data

88

Fill this value somehow

Lets look at a single vector

• Question: If we have a very large number of vectors from
the Gaussian, all with the same observed components ,
what would their missing components be?

• We would see every possible value, but in proportion to
their probability: (conditioned on the observations)

89

Let’s look at a single vector

• Question: If we have a very large number of vectors from
the Gaussian, all with the same observed components ,
what would their missing components be?

• We would see every possible value, but in proportion to
their probability: (conditioned on the observations)

90

Completing incomplete vectors

• Complete vector by filling up the missing components with every
possible value
– I.e. make many complete “clones” of the incomplete vector

• But assign a proportion to each value
– Proportion is

• Which can be computed if we know
91

Gaussian estimation with incomplete vectors

• “Expand” every incomplete vector out into all possibilities
– In appropriate proportions
– For already complete observations, there is no expansion

• Estimate the statistics from the expanded data

?

92

Gaussian estimation with incomplete vectors

• “Expand” every incomplete vector out into all possibilities
– In appropriate proportions
– For already complete observations, there is no expansion

• Estimate the statistics from the expanded data

?

From a previous estimate of the model

93

Estimating the Gaussian Parameters

• Compute the statistics from the (proportionately) expanded set
• Let 𝑥௜(𝑚) be the “completed” version of the observation 𝑜௜, when the missing components are filled with value 𝑚

𝑥௜ 𝑚 = (𝑚, 𝑜௜)

– There will be one such vector for every value of 𝑚

𝜇௞ାଵ =
1

𝑁
෍ 𝑥௜ 𝑚

௫೔(௠)

• We have several 𝑥௜ 𝑚 for each 𝑜௜. Group the sum by 𝑜௜.
• Recall that for each 𝑜௜, the number of 𝑥௜ 𝑚 for each 𝑚 is proportion to 𝑃(𝑚|𝑜; 𝜃௞).

𝜇௞ାଵ =
1

𝑁௢𝑁௠|௢
෍ ෍ 𝑃(𝑚|𝑜; 𝜃௞)𝑥௜ 𝑚

௠௢∈ை

=
1

𝑁௢
෍

1

𝑁௠|௢
෍ 𝑃(𝑚|𝑜; 𝜃௞)𝑥௜ 𝑚

௠௢∈ை

• In the limit, if we consider every value of m

𝜇௞ାଵ =
1

𝑁௢
෍ න 𝑃 𝑚 𝑜; 𝜃௞ 𝑥௜ 𝑚 𝑑𝑚

ஶ

ିஶ௢∈ை

94

Estimating the Gaussian Parameters

• Compute the statistics from the (proportionately) expanded set
• Let 𝑥௜(𝑚) be the “completed” version of the observation 𝑜௜, when the missing components are

filled with value 𝑚
𝑥௜ 𝑚 = (𝑚, 𝑜௜)

– There will be one such vector for every value of 𝑚

• Estimate the statistics from the expanded data

𝜇௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ 𝑥௜ 𝑚 𝑑𝑚

ஶ

ିஶ௢∈ை

Σ௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ (𝑥௜ 𝑚 − 𝜇௞ାଵ)(𝑥௜ 𝑚 − 𝜇௞ାଵ)்𝑑𝑚

ஶ

ିஶ௢∈ை

95

EM for computing the Gaussian Parameters

• Initial 𝜃଴ = (𝜇଴, Σ଴)

• Until 𝑃(𝑂; 𝜃) converges:

𝜇௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ 𝑥௜ 𝑚 𝑑𝑚

ஶ

ିஶ௢∈ை

Σ௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ (𝑥௜ 𝑚 − 𝜇௞ାଵ)(𝑥௜ 𝑚 − 𝜇௞ାଵ)்𝑑𝑚

ஶ

ିஶ௢∈ை

Where 𝑥௜ 𝑚 = (𝑚, 𝑜௜) and the parameters of 𝑃 𝑚 𝑜; 𝜃௞ are derived from the 𝑃 𝑥; 𝜃௞ =

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥; 𝜇௞, Σ௞)

96

Recap: Maximum Likelihood
Estimation

• Sometimes the data provided may be incomplete
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have
missing components
– E.g. Data vectors have some missing components

• Or because of the structure of the network
– Mixture models, multi-stage Generative models

97

The GMM problem of incomplete data:
missing information

• Problem : We are not given the actual Gaussian for each
observation
– Our data are incomplete

• What we want :
• What we have:

98

Consider a single vector

• Every Gaussian is capable of generating this vector
– With different probabilities

• If we saw a large number of these vectors, how many
of these would have come from each Gaussian?

• All of them, but in proportion to
99

Consider a single vector

• Every Gaussian is capable of generating this vector
– With different probabilities

• If we saw a large number of these vectors, how many
of these would have come from each Gaussian?

• All of them, but in proportion to
100

Consider a single vector

• Every Gaussian is capable of generating this vector
– With different probabilities

• If we saw a large number of these vectors, how many of
these would have come from each Gaussian

• x

• All of them, but in proportion to
101

Completing incomplete vectors

• Complete the data by attributing to every Gaussian
– I.e. make many complete “clones” of the data

• But assign a proportion to each completed vector
– Proportion is

• Which can be computed if we know 𝑃(𝑘) and 𝑃(𝑜|𝑘)

• Then estimate the parameters using the complete data
102

Completing incomplete vectors

• Complete the data by attributing to every Gaussian
– I.e. make many complete “clones” of the data

• But assign a proportion to each completed vector
– Proportion is

• Which can be computed if we know 𝑃(𝑘) and 𝑃(𝑜|𝑘)

• Then estimate the parameters using the complete data

From previous estimate
of model

103

EM for GMMs

• “Complete” each vector in every possible way:
– assign each vector to every Gaussian
– In proportion 𝑃(𝑘|𝑜; 𝜃௟) (computed from current model estimate)

• Compute statistics from “completed” data 104

EM for GMMs

• Now you can segregate the vectors by Gaussian
– The number of segregated complete vectors from each observation will be in proportion to 𝑃(𝑘|𝑜; 𝜃௟)

ଵ
௟

ଶ
௟

ଷ
௟

ସ
௞

ହ
௟In proportion to

105

EM for GMMs

• Now you can segregate the vectors by Gaussian
– The number of segregated complete vectors from each observation will be in proportion to 𝑃(𝑘|𝑜; 𝜃௟)

௞
௟ାଵ

௟
௢

௟

௢

ଵ
௟

ଶ
௟

ଷ
௟

ସ
௞

ହ
௟In proportion to

௞
௟ାଵ

௟
௢

௟
௞
௟ାଵ

௞
௟ାଵ ்

௢

106

EM for GMMs

• Initialize ௞
଴ and ௞

଴ for all
• Iterate (over):

– Compute ௟ for all
• Compute the proportions by which 𝑜 is assigned to all Gaussians

– Update:

– ௞
௟ାଵ ଵ

∑ ௉
௟

೚

௟
௢

– ௞
௟ାଵ ଵ

∑ ௉
௟

೚

௟
௞
௟ାଵ

௞
௟ାଵ ்

௢

ଵ
௟

ଶ
௟

ଷ
௟

ସ
௞

ହ
௟In proportion to

107

General EM principle

• “Complete” the data by considering every possible value for
missing data/variables
– In proportion to their posterior probability, given the

observation, (or)

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯

108

General EM principle

• “Complete” the data by considering every possible value for
missing data/variables
– In proportion to their posterior probability, given the

observation, (or)

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯

109

General EM principle

• “Complete” the data by considering every possible value for
missing data/variables
– In proportion to their posterior probability, given the

observation, (or)

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯

Sufficient to “complete” the data by sampling missing values from the posterior
(or) instead

110

Alternate EM principle

• “Complete” the data by sampling possible value for
missing data/variables from (or)

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯

111

Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities computed by the current model
• By explicitly considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution

– Reestimate the model

𝑜

112

Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities computed by the current model
• By explicitly considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)

113

Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate:

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By explicitly considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)

114

Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By implicitly considering every possible value, with its posterior-based proportionality
• Or by explicit completion through sampling the posterior probability distribution 𝑃(𝑚|𝑜)

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)

⋯ ⋯ ⋯

115

Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution 𝑃(𝑚|𝑜)

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)

⋯ ⋯ ⋯

116

Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By implicitly considering every possible value, with its posterior-based proportionality
• Or by explicit completion through sampling the posterior probability distribution 𝑃(𝑚|𝑜)

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)

⋯ ⋯ ⋯

117

Poll 3

118

Select all that are true of EM estimation

 In each iteration we “complete” the data, by filling in the missing
components/variables, and estimate parameters from the entire
completed data

 A data instance can be completed by filling in the missing terms with
every possible value, in proportion to their a-posteriori probability, given
the observed components of the data

 A data instance can be completed by randomly drawing samples of the
missing components from their a-posteriori probability distribution,
given the observed components of the data

 “Data completion” must be performed only once during the entire
training (with EM)

Poll 3 (@1207)

119

Select all that are true of EM estimation

 In each iteration we “complete” the data, by filling in the missing components/variables, and
estimate parameters from the entire completed data

 A data instance can be completed by filling in the missing terms with every possible value, in
proportion to their a-posteriori probability, given the observed components of the data

 A data instance can be completed by randomly drawing samples of the missing components
from their a-posteriori probability distribution, given the observed components of the data

 “Data completion” must be performed only once during the entire training (with EM)

Principal Component Analysis
120

Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data

121

Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that

122

Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace

123

Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace
results in the lowest total (squared) error

Minimize the sum of the
squared lengths of these lines

124

Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation:
Original centered data

125

Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation:
Original centered data

Principal axis we’re
searching for

126

Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation:
Original centered data

Principal axis we’re
searching for

Search through all
subspaces to find the
one with minimum
projection error

127

Can be done in closed form

• Since we’re minimizing quadratic L2 error, we
can find a closed form solution

Computing projection error for
a single instance

Assume w.l.o.g that
is a unit vector

128

Can be done in closed form

• Since we’re minimizing quadratic L2 error, we
can find a closed form solution

𝑇

Computing projection error for
a single instance

Assume w.l.o.g that
is a unit vector

129

Can be done in closed form

• Since we’re minimizing quadratic L2 error, we
can find a closed form solution

𝑇

ଶ 𝑇 ଶ

(Pythagoras’ theorem)
Computing projection error for
a single instance

130

Can be done in closed form

• Since we’re minimizing quadratic L2 error, we
can find a closed form solution

𝑇

ଶ 𝑇 ଶ

(Pythogoras’ theorem)
𝑇 𝑇 𝑇

Computing projection error for
a single instance

131

Can be done in closed form

• Since we’re minimizing quadratic L2 error, we can find a closed form solution
• Total projection error for all data:

𝐿 = ෍ 𝑥𝑇𝑥 − 𝑤𝑇𝑥𝑥𝑇𝑤
௫

• Minimizing this w.r.t 𝑤 (subject to 𝑤 = unit vector) gives you the Eigenvalue equation

෍ 𝑥𝑇𝑥
௫

𝑤 = 𝜆𝑤

• This can be solved to find the principal subspace
132

There’s also an iterative solution

• Objective: find a vector (subspace) 𝑤 and a position 𝑧 on 𝑤 such that 𝑧𝑤 ≈ 𝑥 most closely (in an L2
sense) for the entire (training) data

• Let 𝑋 = [𝑥ଵ𝑥ଶ … 𝑥ே] be the entire training set (arranged as a matrix)
– Objective: find vector bases (for the subspace) 𝑊 and the set of position vectors 𝑍 = [𝑧ଵ𝑧ଶ … 𝑧ே] for all

vectors in 𝑋 such that 𝑊𝑍 ≈ 𝑋

• Initialize 𝑊
• Iterate until convergence:

– Given 𝑊, find the best position vectors 𝑍: 𝑍 ← 𝑊ା𝑋

– Given position vectors 𝑍, find the best subspace: 𝑊 ← 𝑋𝑍ା

– Guaranteed to find the principal subspace 133

The iterative algorithm

• Initialize a subspace (the basis)
• Iterate until convergence:

– Given find the best position vectors on the W subspace for each training
instance

• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the

instance
134

The iterative algorithm

• Initialize a subspace (the basis)
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the

instance

This individually minimizes the length
of lines from the points to the plane

135

The iterative algorithm

• Initialize a subspace (the basis)
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the

instance

This jointly minimizes the total
squared length of lines from the points
to their “attachments” on the plane

136

The iterative algorithm

• Initialize a subspace (the basis)
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the

instance

This individually minimizes the length
of lines from the points to the plane

137

The iterative algorithm

• Initialize a subspace (the basis)
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the

instance

This jointly minimizes the total
squared length of lines from the points
to their “attachments” on the plane

138

The iterative algorithm

• Initialize a subspace (the basis)
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the

instance
139

A failed attempt at animation

• Someone with animated-gif generation skills,
help me…

140

A cartoon view of Iterative PCA

• Note that the real problem in estimating is
computing
– If you know , is obtained by a direct matrix

multiply

ା

Estimate

Estimate

141

Iterate :
ା

ା

Drawing this differently

• Look familiar?
• An autoencoder with linear activations
• Backprop actually works by simultaneously

updating (implicitly) and in tiny
increments

ା

142

A minor issue: Scaling invariance

• The estimation is scale invariant
• We can increase the length of , and compensate for it by

reducing
• The solution is not unique!

𝑥

𝑧𝑤
𝑤

𝑥

𝑧′𝑤′

𝑤′

ା

143

Rotation/scaling invariance

• We can rotate and scale the vectors in W without changing the
actual subspace they compose

• The representation of any point in the hyperspace in terms of these
vectors will also change
– The s in the two cases will be related through a linear transform

• The subspace is invariant to transformations of z

ଵ
ᇱ

ଵ
ଶ

ଶ
ᇱ

ଵ
"

ଶ
"

ଵ ଶ
ᇱ

ଵ
ᇱ ᇱ

ଶ
ᇱ

ᇱ

ᇱ

"
ଵ
" "

ଶ
"

"

"

144

Transformation invariance

• We can modify to , and to ିଵ such that

– A different set of bases for the same subspace

• We can modify to , and to ିଵ such that

– A different set of bases for the same subpace

• The representation is invariant to invertible transforms of either or
– Although we will always find the same subspace, the bases and the

representations in terms of these bases are not unique
– I.e. there is no guarantee of which of the infinite possible solutions we will

actually find
145

ା

ିଵ

ିଵ

Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA

– Constraining the variance of to be unity

• While the s estimated with the two solutions will be different,
the resulting discovered principal subspace will be the same

𝑥

𝑧𝑤

𝑤

146

Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA

– Constraining the variance of to be unity

• While the s estimated with the two solutions will be different,
the resulting discovered principal subspace will be the same

𝑥

𝑧𝑤

𝑤

147

Constraining the linear AE

• The linear AE can be constrained to give you a
unique(ish) solution

• Impose a unity constraint on the variance of
– How?

ା

Unit variance constraint

148

So what are we doing in the iterative
solution?

• For every training vector , we are missing the information about
where the vector lies on the principal subspace hyperplane

• If we had , we could uniquely identify the plane

?

149

Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

150

Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for
the plane

151

Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
• Reestimate the plane using the s

152

Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
• Reestimate the plane using the s
• Iterate

153

Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
• Reestimate the plane using the s
• Iterate

154

Iterative solution

• This looks like EM
– In fact it is

• But what is the generative model?
• And what distribution is this encoding?

155

Constraining the linear AE

• Imposing the constraint that must have unit variance is the same
as assuming that is drawn from a standard Gaussian
– 0 mean, unit variance!

• The decoder of the AE with the unit-variance constraint on is in
fact a Generative model

ା

Unit variance
constraint

ା

Standard Gaussian Prior

Decoder

156

The generative story behind PCA
(linear AEs)

• Linear AEs actually have a generative story
• In order to generate any point

– We first take a Gaussian step on the principal plane
– Then we take an orthogonal Gaussian step from where we land to generate a

point
– PCA / Linear AEs find the plane and the characteristics of the Gaussian steps

from the data

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane

157

• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix
• Matrix of principal Eigen vectors scaled by Eigen values

– is a 0-mean Gaussian noise that is orthogonal to the principal subspace
• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace!

The generative story behind PCA
(linear AEs)

்

158

• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix
• Matrix of principal Eigen vectors scaled by Eigen values

– is a 0-mean Gaussian noise that is orthogonal to the principal subspace
• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace!

The generative story behind PCA
(linear AEs)

PCA implicitly obtains maximum likelihood estimate of and , from training data

159

The generative (PCA) story of linear AEs

• The decoder weights are just the PCA basis matrix

Note: the generative model
is the decoder

Changed notation
்

்

160

Encoder

Decoder

• The decoder weights are just the PCA basis matrix
• The encoder only projects the data into latent Gaussian position variable
• Encoder: transforms input into Gaussian
• Decoder: transforms Gaussian into principal subspace reconstruction

Note: the generative model
is the decoder

The encoder finds the specific
z for any input x

்

Changed notation
்

The generative (PCA) story of linear AEs

161

The distribution modelled by PCA

• If is Gaussian, is Gaussian
• and are Gaussian => is Gaussian
• PCA model: The observed data are Gaussian

– Gaussian data lying very close to a principal subspace
– Comprising “clean” Gaussian data on the subspace plus orthogonal noise

162

Poll 4

163

Select all that are true about PCA

 PCA finds the principal subspace, such that approximating all training data
by their projections onto this subspace results in the lowest error

 An optimal autoencoder with linear activations reconstructs all data as
their projections on the principal subspace

 The bases of this subspace can be uniquely estimated without constraints
 One way to uniquely estimate the subspace is to require the bases of the

subspace (the decoder weights of the AE) to be orthonormal
 Another way to estimate the subspace uniquely is to require the

distribution of the latent variable Z to be standard Gaussian

 The decoder weights estimated using both above solutions will be the same

Poll 4

164

Select all that are true about PCA

 PCA finds the principal subspace, such that approximating all training data by their projections
onto this subspace results in the lowest error

 An optimal autoencoder with linear activations reconstructs all data as their projections on
the principal subspace

 The bases of this subspace can be uniquely estimated without constraints
 One way to uniquely estimate the subspace is to require the bases of the subspace (the

decoder weights of the AE) to be orthonormal
 Another way to estimate the subspace uniquely is to require the distribution of the latent

variable Z to be standard Gaussian
 The decoder weights estimated using both above solutions will be the same

Can we do better?

• PCA assumes the noise is always orthogonal to the data
– Not always true
– Noise in images can look like images, random noise can sound

like speech, etc.

• Let us generalize the model to permit non-orthogonal noise

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane

165

The Linear Gaussian Model

• Update the model: The noise added to the output of the encoder can lie in any
direction

– Uncorrelated, but not just orthogonal to the principal subspace

• Generative model: to generate any point
– Take a Gaussian step on the hyperplane
– Add full-rank Gaussian uncorrelated noise that is independent of the position on the

hyperplane
• Uncorrelated: diagonal covariance matrix
• Direction of noise is unconstrained

– Need not be orthogonal to the plane

is full rank

166

The linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities

167

The linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities

• This is still a parametric model for a Gaussian distribution
– Parameters are and (assuming 0 mean)

்

168

The linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities

• This is in fact a parametric model for a Gaussian distribution
– Parameters are and (assuming 0 mean)

்

Also known as Factor Analysis:
A is the loading matrix
z are the factors
D is diagonal

169

The probability distribution modelled
by the LGM

• The noise added to the output of the encoder can
lie in any direction

• The probability density of is Gaussian lying
mostly close to a hyperplane
– With uncorrelated Gaussian noise

170

is full rank diagonal

Story for the day
• EM: An iterative technique to estimate probability models for data

with missing components or information
– By iteratively “completing” the data and reestimating parameters

• PCA: Is actually a generative model for Gaussian data
– Data lie close to a linear manifold, with orthogonal noise

• Factor Analysis: Also a generative model for Gaussian data
– Data lie close to a linear manifold
– Like PCA, but without directional constraints on the noise

• Will continue with FA and Variational AutoEncoders in the next class

171

