
Neural Networks

Variational Autoencoders
(based on slides from Dan Schwarts and Tom Manzini)
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Recap

• Neural networks are universal approximators

• They can model
– Boolean functions
– Classification functions
– Regressions

• They can be
– Feature extractors
– Classifiers
– Predictors
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A new problem

• All of the previous cases considered neural 
networks that are functions
– They can operate on, or process a given input data
– They can learn to perform these tasks from data

• Can networks also generate data?
– And learn to do so from examples
– Topic for next series of lectures
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A new problem

• From a large collection of images of faces, can a 
network learn to generate new portrait
– Generate samples from the distribution of “face” 

images
• How do we even characterize this distribution?
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A new problem

• From a large collection of landscapes, can a network 
learn to generate new landscape pictures
– Generate samples from the distribution of “landscape” 

images
• How do we even characterize this distribution?
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Neural nets as generative models

• We’ve seen how neural nets can perform 
classification or regression
– MLPs, CNNs, RNNs..

• Next step:  NNs as generic generative models
– Model the distribution of any data

– Such that we can draw samples from it
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But first…
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The story of generative models

• What are generative models
• How to estimate them

– Expectation maximization

8



What is a generative model

• A model for the probability distribution of a data 
– E.g. a multinomial, Gaussian etc.

• Computational equivalent: a model that can be used to “generate” 
data with a distribution similar to the given data 
– Typical setting: a box that takes in random seeds and outputs random 

samples like 

– Question: how do we generate the random seeds…

magic box

seed

9



It’s turtles all the way down (kinda)…
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Some “simple” generative models
• The category PMF

𝑃(𝑥 = 𝑣) ≡ 𝑃(𝑣)

– For discrete data
• 𝑣 belongs to a discrete set

– Can be expressed as a table of probabilities if 
the set of possible vs is finite

– Else, requires a parametric form, e.g. Poisson

𝑃 𝑥 = 𝑘 =
𝜆௞𝑒ିఒ

𝑘!
  𝑓𝑜𝑟 𝑘 ≥ 0

• 𝜆 is the Poisson parameter

• The Gaussian PDF
𝑃 𝑥 = 𝑣

=
1

2𝜋 Σ
஽ exp −0.5(𝑥 − 𝜇)்Σିଵ(𝑥 − 𝜇)

– For continuous-valued data
– 𝜇 is the mean of the distribution
– Σ is the Covariance matrix
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Learning a generative model for data

• You are given some set of observed data .

• You choose a model for the distribution of 
– are the parameters of the model

• Estimate the such that best “fits” the 
observations 
– Hoping it will also represent data outside the training set.
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An example: Multinomials

• A dice roller rolls dice and you plot the histogram of outcomes
– Shown to right

• The distribution is a multinomial
– Parameters to be learned:  𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ, 𝑝ହ, 𝑝଺

• Which of the two probability distributions shown to the right is more likely to be 
the distribution for the dice?

– Why?
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Histogram of 
outcomes
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An example

• The left figure shows the histogram of a collection of observations
• We decide to model the distribution as Gaussian

– Parameters:  Mean and variance ଶ

• Which of the three Gaussians shown in the right figure is most likely 
to be the actual PDF of the RV?
– Why?
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Defining “Best Fit”: Maximum likelihood
• The data are generated by draws from the distribution

– I.e. the generating process draws from the distribution

• Assumption: The world is a boring place
– The data you have observed are very typical of the process

• Consequent assumption: The distribution has a high probability of 
generating the observed data
– Not necessarily true

• Select the distribution that has the highest probability of generating 
the data
– Should assign lower probability to less frequent observations and vice 

versa
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Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௫∈௑

– ௜
௡೔

ே
( is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑
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Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௫∈௑

– ௜
௡೔

ே
( is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑

Can be grouped by value (every instance of has the same probability)

This probability is a Gaussian
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Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௜
௡೔

௜

– ௜
௡೔

ே
( is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

ଶ
௫∈௑

–
ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑
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Maximum likelihood
• The maximum likelihood principle:

–
ఏ ఏ

• For the histogram

–
{௣భ,௣మ,௣య,௣ర,௣ఱ,௣ల}

௜௜ ௜

௜
௡೔

ே
( is the total number of observations)

• For the Gaussian

–
ఓ,ఙమ

ଶ ௫ିఓ మ

ଶఙమ௫∈௑

ଵ

ே ௫∈௑
ଶ ଵ

ே
ଶ

௫∈௑
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Poll 1

21

Maximum-likelihood estimation of probability distributions is 
based on the theory that the world is a terribly boring place

 True
 False

Maximum-likelihood estimation estimates the values of the 
parameters of a probability distribution such that they maximize 
the probability of the training data

 True
 False



Poll 1

22

Maximum-likelihood estimation of probability distributions is based on the theory that the world is a 
terribly boring place 

 True 
 False 

 

Maximum-likelihood estimation estimates the values of the parameters of a probability distribution 
such that they maximize the probability of the training data 

 True 
 False 



Maximum Likelihood Estimation
• Sometimes the data provided may be incomplete

– May be insufficient to write out the complete log probability
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have missing 
components
– E.g. Data vectors have some missing components

• Or because of the structure of the model
– Mixture models,  multi-stage Generative models
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– E.g. Data vectors have some missing components
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Examples of incomplete data: 
missing data

• Objective:  Estimate a Gaussian distribution from a collection of 
vectors

• Problem:  Several of the vector components are missing
• Must estimate the mean and covariance of the Gaussian with these 

incomplete data
– What would be a good way of doing this?

Blacked-out components are missing from data

?
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Maximum likelihood estimation with 
incomplete data

• Original problem:  Estimate the Gaussian given a collection of complete 
vectors

ఓ,ఙమ

ఓ,ఙమ
௫∈௑

• Unfortunately,  many components of each vector are missing in our data

Blacked-out components are missing from data

?

where P() is a Gaussian

where X is the entire data
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Maximum likelihood estimation with 
incomplete data

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Maximum likelihood estimation with 
incomplete data

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing)

?

ଵ ேଶ ଷ ସ
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Maximum likelihood estimation with 
incomplete data

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing) 

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Maximum likelihood estimation with 
incomplete data

• Maximum likelihood estimation: Maximize the likelihood of the observed data
– That is all we really have

ఓ,ఙమ ఓ,ఙమ
௢∈ை

• Unfortunately, the Gaussian is defined on the complete vector :
– 𝑃 𝑥 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥; 𝜇, 𝜎ଶ)

– In order to compute 𝑃 𝑜 we must derive it from 𝑃 𝑥

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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The log likelihood of incomplete data

• The probability of any vector with observed and missing parts 
and 

• Compute the probability of the observed components by 
marginalizing out the missing components

• The log probability of the entire observed training data:
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Maximum likelihood estimation with 
incomplete data

• Maximum likelihood estimation: Maximize the likelihood of the observed data

ఓ,ఙమ ఓ,ఙమ

ஶ

ିஶ௢∈ை

• This requires the maximization of the log of an integral!
– No closed form
– Challenging on a good day,  impossible on a bad one

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Maximum Likelihood Estimation

• Sometimes the data provided may be incomplete
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have 
missing components
– E.g. Data vectors have some missing components

• Or because of the structure of the model
– Mixture models,  multi-stage Generative models

33



The Gaussian Mixture

• Often, when trying to model a complicated distribution, we model it as a mixture 
of Gaussians (GMM)

– A weighted sum of Gaussians

𝑃 𝑜 = ෍ 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞
ଶ) 

௞

– The weights sum to 1.0

• Problem: Given a number of samples from the original (complicated) distribution, 
how to determine the parameters of the  parameters of the GMM to best fit them
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The Gaussian Mixture
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ଶ) 

௞

– The weights sum to 1.0

• Problem: Given a number of samples from the original (complicated) distribution, 
how to determine the parameters of the  parameters of the GMM to best fit them

36



Examples of incomplete data: 
missing information in Gaussian mixtures

• The generative model characterizes the data as the outcome of a two-level process
– In the first step the process chooses a Gaussian from a collection
– In the second, it draws the vector 𝑜 from the chosen Gaussian
– The overall model is a mixture Gaussian

• Objective: Learn the parameters of all the Gaussians from training data
– Learn the means and variances of the individual Gaussians

• And also the probability with which each Gaussian is selected for the draw

ଵ ଵ
ଶ

ଶ ଶ
ଶ

ଷ ଷ
ଶ

ସ ସ
ଶ

௞ ௞
ଶ  

௞
Mixture Gaussian
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The Gaussian Mixture generative 
model

• Note, the process actually draws two variables for each observation, 𝑘 and 𝑜.

• The probability of a particular draw is actually the joint probability of both variables
𝑃 𝑘, 𝑜 = 𝑃 𝑘 𝑃 𝑜 𝑘 = 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞

ଶ)

• To compute the probability of obtaining any observation o, we are marginalizing out the Gaussian 
index variable

𝑃 𝑜 = ෍ 𝑃(𝑘, 𝑜)

௞

= ෍ 𝑃(𝑘)𝑁(𝑜; 𝜇௞, 𝜎௞
ଶ) 

௞

ଵ ଵ
ଶ

ଶ ଶ
ଶ

ଷ ଷ
ଶ

ସ ସ
ଶ

௞ ௞
ଶ  

௞
Mixture Gaussian
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The complete data needed to 
precisely learn the model

• Ideal data:  Each training instance includes both the 
data vector and the Gaussian it was drawn from
– In order to estimate the parameters of any Gaussian, you 

only need to segregate the training instances from that 
Gaussian, and compute the mean and variance from them 
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Learning a GMM with “complete” data

𝜇௕௟௨௘, 𝜎௕௟௨௘
ଶ 𝜇௥௘ௗ, 𝜎௥௘ௗ

ଶ 𝜇௚௥௘௘௡, 𝜎௚௥௘௘௡
ଶ
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The GMM problem of incomplete data: 
missing information

• Problem : We are not given the actual Gaussian for each 
observation
– Our data are incomplete

• What we want :  
• What we have:  
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ML estimation with only observed data
• The maximum likelihood estimation problem: 

– Given observed data O = {𝑜ଵ, 𝑜ଶ, 𝑜ଷ … }, 

– estimate 𝜇௞, 𝜎௞
ଶ , ∀𝑘 – the parameters of all the Gaussians 

ఓೖ,ఙೖ
మ ,∀௞ ఓೖ,ఙೖ

మ ,∀௞ ௢∈ை

• The probability of an individual vector:

௞ ௞
ଶ  

௞

• The maximum likelihood estimation again

ఓೖ,ఙೖ
మ ,∀௞

௞ ௞
ଶ  

௞௢∈ை

• This includes the log of a sum, which defies direct optimization
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The general form of the problem 
• The “presence” of missing data or variables requires them to be 

marginalized out of your probability
– By summation or integration

• This results in a maximum likelihood estimate of the form

ఏ
௛௢

– The inner summation may also be an integral in some problems
– Explicitly introducing in the RHS to show that the probability is computed by 

a model with parameter which must be estimated

• The log of a sum (or integral) makes estimation challenging
– No closed form solution
– Need efficient iterative algorithms
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The general form of the problem 
• The “presence” of missing data or variables requires them to be 

marginalized out of your probability
– By summation or integration

• This results in a maximum likelihood estimate of the form

ఏ
௛௢

– The inner summation may also be an integral in some problems

• The log of a sum (or integral) makes estimation challenging
– No closed form solution
– Need efficient iterative algorithms

Can we get an approximation to this that is more tractable? 
(i.e without a summation or integral within the log)

48



The variational lower bound

• We can rewrite

– Where is some function such that and ௛

• I.e. a probability distribution 

• The logarithm is a concave function, therefore

௛ ௛
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The logarithm is a concave function

• For any ଵand ଶ, for any , 

ଵ ଶ ଵ ଶ

• More generally for any set of ௜ ,  and any weights ௜ s.t. ௜ and ௜௜

௜ ௜

௜

௜ ௜

௜

𝑓
𝑥

=
lo

g
 (𝑥

)

ଵ ଶ

log (𝑥ଵ)

log (𝑞𝑥ଵ + (1 − 𝑞)𝑥ଶ)

log (𝑥ଶ)

𝑞𝑥ଵ + (1 − 𝑞)𝑥ଶ

𝑞 log (𝑥ଵ) + (1 − 𝑞)log (𝑥ଶ)
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The variational lower bound

• By the concavity of the log function

– For any and 
– Note, the LHS is exactly equal to 

• This is the variational lower bound on 
– Also called the Evidence Lower BOund, or ELBO
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Or more explicitly
• By the concavity of the log function

– Explicitly showing that the probability is computed by 
a model with parameter 

• We must maximize w.r.t 

• This is the variational lower bound or ELBO on 
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The (variational) lower bound

• The lower bound is always at or below the original function

• If it is a tight lower bound, the max of the lower bound can 
be expected to be near the max of the function

ᇱ
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The (variational) lower bound

• The lower bound is always at or below the original function

• If it is a tight lower bound, the max of the lower bound can be 
expected to be near the max of the function
– To make the lower bound tight, we need to choose properly

ᇱ
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The two-step process
• By the concavity of the log function

• Step 1:  Determine a that maximizes the RHS, 
using the current estimate of 
– Makes the bound tight

• Step 2: Fix and maximize the RHS with respect to 
to get the next estimate
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Maximizing w.r.t. Q(h)

௛

• Take the derivative w.r.t. for all and equate to 0 
– With the constraint that ௛

• If is specifically modeled by a neural net or some other restricted 
function, then we cannot simply take the derivative and equate to 0
– We may need gradient descent, with backpropagation

• Note: The optimized depends on and is a function of 
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Choosing a good 
• For any , the optimal :

• At this value of the variational lower bound achieves 
its maximum possible value
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Choosing a good 
• Let ᇱ

ᇱ  
ᇱ  

௛

• Let

ᇱ ᇱ
ᇱ

௛

• We get
ᇱ

• And
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Choosing a good 
• Let ᇱ

ᇱ  
ᇱ  

௛

• Let

ᇱ ᇱ
ᇱ

௛

• We get
ᇱ

• And
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Expectation Maximization
• We have

• where

• And

• This gives us the following iterative algorithm that guarantees non-
decreasing with iterations:
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• Initialize 
• Construct 

– It touches at because 

଴

଴

଴ ଴ ଴
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• Find ଵ

ఏ

଴

– ଵ ଴ ଴ ଴ (since you’re maximizing ଴ w.r.t )

• ଵ ଵ ଴ (since ଴ is a lower bound on )
• So the iteration increases 

଴

଴

଴ ଴ ଴

ଵ

ଵ ଴
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• Find 

– ଵ ଴ ଴ ଴ (since you’re maximizing ଴ w.r.t )

•
– since ଴ is a lower bound on 

• So the iteration increases 

଴

଴

଴ ଴ ଴

ଵ

ଵ ଴

ଵ
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• Construct 
– It touches at because 

– s

଴ ଵ

଴

ଵ

ଵ ଵ ଵ
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• Find ଶ

ఏ

ଵ

– ଶ ଵ ଵ ଵ (since you’re maximizing ଵ w.r.t )

• ଵ ଵ ଴ (since ଴ is a lower bound on )
• So the iteration increases 

଴ ଵ

଴

ଵ

ଵ ଵ ଵ

ଶ

ଶ ଵ
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• Find ଶ

ఏ

ଵ

– ଶ ଵ ଵ ଵ (since you’re maximizing ଵ w.r.t )

• ଶ ଶ ଵ

– Since ଵ is a lower bound on 

• So the iteration increases 

଴ ଵ

଴

ଵ

ଵ ଵ ଵ

ଶ

ଶ ଵ

ଶ
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• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing

଴ ଵ

଴ ଵ

ଶ

ଶ
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ଶ
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ఏ
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– Stop when stops increasing

଴ ଵ ଶ ଷ
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• Repeat the steps:
– Compose ௞ to “touch” at the current estimate ௞

– Set ௞ାଵ

ఏ

௞

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing

଴ ଵ

଴ ଵ

ଶ

ଶ

ଷ ସ

ଷ
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Expectation Maximization

• Initialize 
•
• Iterate (over ) until converges:

– Construct ELBO function

– Maximization step

• Let’s simplify a bit

73



Expectation Maximization

• Initialize 

•

• Iterate (over ) until converges:
– Construct ELBO function

௞ ௞

௛௢∈ை

௞ ௞

௛௢∈ை

– Maximization step
௞ାଵ

ఏ

௞
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Expectation Maximization

• Initialize 

•

• Iterate (over ) until converges:
– Construct ELBO function

௞ ௞

௛௢∈ை

௞ ௞

௛௢∈ை

– Maximization step
௞ାଵ

ఏ

௞

Not a function of 

Can be ignored for maximization
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Expectation Maximization

• Initialize 
•
• Iterate (over ) until converges:

– Expectation Step:  
Compute for all for all 

– Maximization step
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The two-step process
• By the concavity of the log function

• Step 1:  Determine a that maximizes the RHS, using 
the current estimate of 
– The best case value is using the current 

estimate of 

• Step 2: Fix and maximize the RHS with respect to to 
get the next estimate
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estimate of 

• Step 2: Fix and maximize the RHS with respect to to 
get the next estimate
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The two-step process
• By the concavity of the log function

• Step 1:  Determine a that maximizes the RHS, using 
the current estimate of 
– The best case value is using the current 

estimate of 

• Step 2: Fix and maximize the RHS with respect to to 
get the next estimate

79



The two-step process
• By the concavity of the log function

• Step 1:  Determine a that maximizes the RHS, using 
the current estimate of 
– The best case value is using the current 

estimate of 

• Step 2: Fix and maximize the RHS with respect to to 
get the next estimate

80

Training by maximizing a variational lower bound



Special case: Expectation Maximization

• Initialize 
•
• Iterate (over ) until converges:

– Expectation Step: 
Compute for all for all 

– Maximization step
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Poll 2

82

Mark all that are correct about the EM algorithm

 It is an iterative algorithm that can be used to estimate probability distributions 
when the data are incomplete and have missing components or variables

 It iteratively maximizes an “ELBO” function with respect to model parameters
 It provides a closed form formula to estimate the parameters of the distribution

Mark all that are true of the ELBO (Empirical Lower Bound) function

 It is a lower bound on the actual log probability of the training data as computed by 
the model

 It is a function of the model parameters
 There are some settings of the model parameters where the ELBO can be greater 

than the log probability of the training data



Poll 2
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Mark all that are correct about the EM algorithm 

 It is an iterative algorithm that can be used to estimate probability distributions when the 
data are incomplete and have missing components or variables 

 It iteratively maximizes an “ELBO” function with respect to model parameters 
 It provides a closed form formula to estimate the parameters of the distribution 

 

 

Mark all that are true of the ELBO (Empirical Lower Bound) function 

 It is a lower bound on the actual log probability of the training data as computed by the model 
 It is a function of the model parameters 
 There are some settings of the model parameters where the ELBO can be greater than the log 

probability of the training data 



That’s so much math, but what does 
it really do?

• What does EM practically do when we have 
missing data?
– What is the intuition behind how it resolves the 

problem?
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Recap: Maximum Likelihood 
Estimation

• Sometimes the data provided may be incomplete
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have 
missing components
– E.g. Data vectors have some missing components

• Or because of the structure of the network
– Mixture models,  multi-stage Generative models
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Recall this: Gaussian estimation with 
incomplete vectors

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing) 

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Let’s look at a single vector

• These are the actual data we have:  A set ଵ ே of incomplete vectors
– Comprising only the observed components of the data

• We are missing the data ଵ ே

– Comprising the missing components of the data

• The complete data includes both the observed and missing components

ଵ ே ௜ ௜ ௜

– Keep in mind that at the complete data are not available (the missing components are missing) 

?

ଵ ேଶ ଷ ସ ହ ଺ ଻ ଼ ଽ ଵ଴ ଵଵ ଵଶ
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Lets look at a single vector

• We will try to complete the vector by filling in the missing 
value with plausible values that match the observed 
components

• Plausible:  Values that “go with” the observed values, 
according to the distribution of the data

88

Fill this value somehow



Lets look at a single vector

• Question: If we have a very large number of vectors from 
the Gaussian, all with the same observed components , 
what would their missing components be?

• We would see every possible value, but in proportion to 
their probability: (conditioned on the observations)
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Let’s look at a single vector

• Question: If we have a very large number of vectors from 
the Gaussian, all with the same observed components , 
what would their missing components be?

• We would see every possible value, but in proportion to 
their probability: (conditioned on the observations)
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Completing incomplete vectors

• Complete vector by filling up the missing components with every 
possible value
– I.e. make many complete “clones” of the incomplete vector

• But assign a proportion to each value
– Proportion is 

• Which can be computed if we know 
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Gaussian estimation with incomplete vectors

• “Expand” every incomplete vector out into all possibilities
– In appropriate proportions 
– For already complete observations, there is no expansion

• Estimate the statistics from the expanded data

?

92



Gaussian estimation with incomplete vectors

• “Expand” every incomplete vector out into all possibilities
– In appropriate proportions 
– For already complete observations, there is no expansion

• Estimate the statistics from the expanded data

?

From a previous estimate of the model
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Estimating the Gaussian Parameters

• Compute the statistics from the (proportionately) expanded set
• Let 𝑥௜(𝑚) be the “completed” version of the observation 𝑜௜, when the missing components are filled with value 𝑚

𝑥௜ 𝑚 = (𝑚, 𝑜௜)

– There will be one such vector for every value of 𝑚

𝜇௞ାଵ =
1

𝑁
෍ 𝑥௜ 𝑚

௫೔(௠)

• We have several 𝑥௜ 𝑚 for each 𝑜௜. Group the sum by 𝑜௜.
• Recall that for each 𝑜௜, the number of 𝑥௜ 𝑚  for each 𝑚 is proportion to 𝑃(𝑚|𝑜; 𝜃௞). 

𝜇௞ାଵ =
1

𝑁௢𝑁௠|௢
෍ ෍ 𝑃(𝑚|𝑜; 𝜃௞)𝑥௜ 𝑚

௠௢∈ை

=
1

𝑁௢
෍

1

𝑁௠|௢
෍ 𝑃(𝑚|𝑜; 𝜃௞)𝑥௜ 𝑚

௠௢∈ை

• In the limit, if we consider every value of m

𝜇௞ାଵ =
1

𝑁௢
෍ න 𝑃 𝑚 𝑜; 𝜃௞ 𝑥௜ 𝑚 𝑑𝑚

ஶ

ିஶ௢∈ை
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Estimating the Gaussian Parameters

• Compute the statistics from the (proportionately) expanded set
• Let 𝑥௜(𝑚) be the “completed” version of the observation 𝑜௜, when the missing components are 

filled with value 𝑚
𝑥௜ 𝑚 = (𝑚, 𝑜௜)

– There will be one such vector for every value of 𝑚

• Estimate the statistics from the expanded data

𝜇௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ 𝑥௜ 𝑚 𝑑𝑚

ஶ

ିஶ௢∈ை

Σ௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ (𝑥௜ 𝑚 − 𝜇௞ାଵ)(𝑥௜ 𝑚 − 𝜇௞ାଵ)்𝑑𝑚

ஶ

ିஶ௢∈ை
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EM for computing the Gaussian Parameters

• Initial 𝜃଴ = (𝜇଴, Σ଴)

• Until 𝑃(𝑂; 𝜃) converges: 

𝜇௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ 𝑥௜ 𝑚 𝑑𝑚

ஶ

ିஶ௢∈ை

Σ௞ାଵ =
1

𝑁
෍ න 𝑃 𝑚 𝑜; 𝜃௞ (𝑥௜ 𝑚 − 𝜇௞ାଵ)(𝑥௜ 𝑚 − 𝜇௞ାଵ)்𝑑𝑚

ஶ

ିஶ௢∈ை

Where 𝑥௜ 𝑚 = (𝑚, 𝑜௜) and the parameters of 𝑃 𝑚 𝑜; 𝜃௞ are derived from the 𝑃 𝑥; 𝜃௞ =

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥; 𝜇௞, Σ௞)
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Recap: Maximum Likelihood 
Estimation

• Sometimes the data provided may be incomplete
– Insufficient to estimate your model parameters directly

• This could be because the data themselves have 
missing components
– E.g. Data vectors have some missing components

• Or because of the structure of the network
– Mixture models,  multi-stage Generative models
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The GMM problem of incomplete data: 
missing information

• Problem : We are not given the actual Gaussian for each 
observation
– Our data are incomplete

• What we want :  
• What we have:  
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Consider a single vector

• Every Gaussian is capable of generating this vector
– With different probabilities

• If we saw a large number of these vectors, how many 
of these would have come from each Gaussian? 

• All of them, but in proportion to 
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Consider a single vector

• Every Gaussian is capable of generating this vector
– With different probabilities
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Consider a single vector

• Every Gaussian is capable of generating this vector
– With different probabilities

• If we saw a large number of these vectors, how many of 
these would have come from each Gaussian

• x

• All of them, but in proportion to 
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Completing incomplete vectors

• Complete the data by attributing to every Gaussian
– I.e. make many complete “clones” of the data

• But assign a proportion to each completed vector
– Proportion is 

• Which can be computed if we know 𝑃(𝑘) and 𝑃(𝑜|𝑘)

• Then estimate the parameters using the complete data
102



Completing incomplete vectors

• Complete the data by attributing to every Gaussian
– I.e. make many complete “clones” of the data

• But assign a proportion to each completed vector
– Proportion is 

• Which can be computed if we know 𝑃(𝑘) and 𝑃(𝑜|𝑘)

• Then estimate the parameters using the complete data

From previous estimate
of model
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EM for GMMs

• “Complete” each vector in every possible way: 
– assign each vector to every Gaussian
– In proportion 𝑃(𝑘|𝑜; 𝜃௟) (computed from current model estimate)

• Compute statistics from “completed” data 104



EM for GMMs

• Now you can segregate the vectors by Gaussian
– The number of segregated complete vectors from each observation will be in proportion to 𝑃(𝑘|𝑜; 𝜃௟)

ଵ
௟

ଶ
௟

ଷ
௟

ସ
௞

ହ
௟In proportion to
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EM for GMMs

• Now you can segregate the vectors by Gaussian
– The number of segregated complete vectors from each observation will be in proportion to 𝑃(𝑘|𝑜; 𝜃௟)

௞
௟ାଵ

௟
௢

௟

௢

ଵ
௟

ଶ
௟

ଷ
௟

ସ
௞

ହ
௟In proportion to

௞
௟ାଵ

௟
௢

௟
௞
௟ାଵ

௞
௟ାଵ ்

௢
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EM for GMMs

• Initialize ௞
଴ and ௞

଴ for all 
• Iterate (over ):

– Compute ௟ for all 
• Compute the proportions by which 𝑜 is assigned to all Gaussians

– Update:

– ௞
௟ାଵ ଵ

∑ ௉
௟

೚

௟
௢

– ௞
௟ାଵ ଵ

∑ ௉
௟

೚

௟
௞
௟ାଵ

௞
௟ାଵ ்

௢

ଵ
௟

ଶ
௟

ଷ
௟

ସ
௞

ହ
௟In proportion to
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General EM principle

• “Complete” the data by considering every possible value for 
missing data/variables
– In proportion to their posterior probability, given the 

observation, (or )

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯
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General EM principle

• “Complete” the data by considering every possible value for 
missing data/variables
– In proportion to their posterior probability, given the 

observation, (or )

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯
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General EM principle

• “Complete” the data by considering every possible value for 
missing data/variables
– In proportion to their posterior probability, given the 

observation, (or )

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯

Sufficient to “complete” the data by sampling missing values from the posterior
(or ) instead
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Alternate EM principle

• “Complete” the data by sampling possible value for 
missing data/variables from (or )

• Reestimate parameters from the “completed” data

𝑜
⋯

𝑜

𝑃(𝑜)

⋯

?⋯

⋯ ⋯

⋯

⋯

111



Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities computed by the current model
• By explicitly considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution

– Reestimate the model

𝑜
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Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities computed by the current model
• By explicitly considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)
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Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate:

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By explicitly considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)
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Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By implicitly considering every possible value, with its posterior-based proportionality
• Or by explicit completion through sampling the posterior probability distribution 𝑃(𝑚|𝑜)

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)

⋯ ⋯ ⋯

115



Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By considering every possible value, with its posterior-based proportionality
• Or by sampling the posterior probability distribution 𝑃(𝑚|𝑜)

– Reestimate the model
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𝑜

𝑃(𝑜)

⋯ ⋯ ⋯

116



Overall EM principle: Remember this

• Initially, some data/information are missing
• Initialize model parameters
• Iterate

– Complete the data according to the posterior probabilities 𝑃(𝑚|𝑜) computed by the current model
• By implicitly considering every possible value, with its posterior-based proportionality
• Or by explicit completion through sampling the posterior probability distribution 𝑃(𝑚|𝑜)

– Reestimate the model

𝑜

𝑜

𝑃(𝑜)

⋯ ⋯ ⋯

117



Poll 3

118

Select all that are true of EM estimation

 In each iteration we “complete” the data, by filling in the missing 
components/variables, and estimate parameters from the entire 
completed data

 A data instance can be completed by filling in the missing terms with 
every possible value, in proportion to their a-posteriori probability, given 
the observed components of the data

 A data instance can be completed by randomly drawing samples of the 
missing components from their a-posteriori probability distribution,  
given the observed components of the data

 “Data completion” must be performed only once during the entire 
training (with EM)



Poll 3 (@1207)
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Select all that are true of EM estimation 

 In each iteration we “complete” the data, by filling in the missing components/variables, and 
estimate parameters from the entire completed data 

 A data instance can be completed by filling in the missing terms with every possible value, in 
proportion to their a-posteriori probability, given the observed components of the data 

 A data instance can be completed by randomly drawing samples of the missing components 
from their a-posteriori probability distribution,  given the observed components of the data 

 “Data completion” must be performed only once during the entire training (with EM) 



Principal Component Analysis
120



Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace
results in the lowest total (squared) error

Minimize the sum of the 
squared lengths of these lines
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data

Principal axis we’re 
searching for
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data

Principal axis we’re 
searching for

Search through all
subspaces to find the
one with minimum
projection error
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

Computing projection error for
a single instance 

Assume w.l.o.g that
is a unit vector
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

Computing projection error for
a single instance 

Assume w.l.o.g that
is a unit vector
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

ଶ 𝑇 ଶ

(Pythagoras’ theorem)
Computing projection error for
a single instance 
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

ଶ 𝑇 ଶ

(Pythogoras’ theorem)
𝑇 𝑇 𝑇

Computing projection error for
a single instance 
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we can find a closed form solution
• Total projection error for all data:

𝐿 = ෍ 𝑥𝑇𝑥 − 𝑤𝑇𝑥𝑥𝑇𝑤 
௫

• Minimizing this w.r.t 𝑤 (subject to 𝑤 = unit vector) gives you the Eigenvalue equation

෍ 𝑥𝑇𝑥 
௫

𝑤 = 𝜆𝑤

• This can be solved to find the principal subspace
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There’s also an iterative solution

• Objective:  find a vector (subspace) 𝑤 and a position 𝑧 on 𝑤 such that 𝑧𝑤 ≈ 𝑥 most closely (in an L2
sense) for the entire (training) data

• Let 𝑋 = [𝑥ଵ𝑥ଶ … 𝑥ே] be the entire training set (arranged as a matrix)
– Objective:   find vector bases (for the subspace) 𝑊 and the set of position vectors 𝑍 = [𝑧ଵ𝑧ଶ … 𝑧ே] for all 

vectors in 𝑋 such that 𝑊𝑍 ≈ 𝑋

• Initialize 𝑊
• Iterate until convergence:

– Given 𝑊,  find the best position vectors 𝑍:    𝑍 ← 𝑊ା𝑋

– Given position vectors 𝑍, find the best subspace: 𝑊 ← 𝑋𝑍ା 

– Guaranteed to find the principal subspace 133



The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Given find the best position vectors on the W subspace for each training 
instance

• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance
134



The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance

This individually minimizes the length
of lines from the points to the plane
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The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance

This jointly minimizes the total
squared length of lines from the points 
to their “attachments” on the plane

136



The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance

This individually minimizes the length
of lines from the points to the plane
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The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance

This jointly minimizes the total
squared length of lines from the points 
to their “attachments” on the plane
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The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance
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A failed attempt at animation

• Someone with animated-gif generation skills, 
help me…
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A cartoon view of Iterative PCA

• Note that the real problem in estimating is 
computing 
– If you know , is obtained by a direct matrix 

multiply 

ା

Estimate 

Estimate 
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Drawing this differently

• Look familiar?
• An autoencoder with linear activations
• Backprop actually works by simultaneously 

updating (implicitly) and in tiny 
increments

ା
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A minor issue: Scaling invariance

• The estimation is scale invariant
• We can increase the length of , and compensate for it by 

reducing 
• The solution is not unique!

𝑥

𝑧𝑤
𝑤

𝑥

𝑧′𝑤′

𝑤′

ା
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Rotation/scaling invariance

• We can rotate and scale the vectors in W without changing the 
actual subspace they compose

• The representation of any point in the hyperspace in terms of these 
vectors will also change
– The s in the two cases will be related through a linear transform 

• The subspace is invariant to transformations of z
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Transformation invariance

• We can modify to , and to ିଵ such that 

– A different set of bases for the same subspace

• We can modify to , and to ିଵ such that 

– A different set of bases for the same subpace

• The representation is invariant to invertible transforms of either or 
– Although we will always find the same subspace, the bases and the 

representations in terms of these bases are not unique
– I.e. there is no guarantee of which of the infinite possible solutions we will 

actually find
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Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA

– Constraining the variance of to be unity

• While the s estimated with the two solutions will be different, 
the resulting discovered principal subspace will be the same

𝑥

𝑧𝑤

𝑤
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Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA

– Constraining the variance of to be unity

• While the s estimated with the two solutions will be different, 
the resulting discovered principal subspace will be the same

𝑥

𝑧𝑤

𝑤
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Constraining the linear AE

• The linear AE can be constrained to give you a 
unique(ish) solution

• Impose a unity constraint on the variance of 
– How?

ା

Unit variance constraint
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So what are we doing in the iterative 
solution?

• For every training vector ,  we are missing the information about 
where the vector lies on the principal subspace hyperplane

• If we had , we could uniquely identify the plane

?
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for 
the plane
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
• Reestimate the plane using the s

152



Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
• Reestimate the plane using the s
• Iterate
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
• Reestimate the plane using the s
• Iterate
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Iterative solution

• This looks like EM
– In fact it is

• But what is the generative model?
• And what distribution is this encoding?
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Constraining the linear AE

• Imposing the constraint that must have unit variance is the same 
as assuming that is drawn from a standard Gaussian
– 0 mean, unit variance!

• The decoder of the AE with the unit-variance constraint on is in 
fact a Generative model

ା

Unit variance 
constraint

ା

Standard Gaussian Prior

Decoder
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The generative story behind PCA
(linear AEs)

• Linear AEs actually have a generative story
• In order to generate any point

– We first take a Gaussian step on the principal plane
– Then we take an orthogonal Gaussian step from where we land to generate a 

point
– PCA / Linear AEs find the plane and the characteristics of the Gaussian steps 

from the data

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane
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• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix 
• Matrix of principal Eigen vectors scaled by Eigen values

– is a 0-mean Gaussian noise that is orthogonal to the principal subspace
• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace! 

The generative story behind PCA
(linear AEs)

்
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• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix 
• Matrix of principal Eigen vectors scaled by Eigen values

– is a 0-mean Gaussian noise that is orthogonal to the principal subspace
• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace! 

The generative story behind PCA
(linear AEs)

PCA implicitly obtains maximum likelihood estimate of and , from training data 
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The generative (PCA) story of linear AEs

• The decoder weights are just the PCA basis matrix

Note: the generative model
is the decoder

Changed notation
்

்
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Encoder

Decoder

• The decoder weights are just the PCA basis matrix
• The encoder only projects the data into latent Gaussian position variable 
• Encoder: transforms input into Gaussian 
• Decoder: transforms Gaussian into principal subspace reconstruction 

Note: the generative model
is the decoder

The encoder finds the specific
z for any input x

்

Changed notation
்

The generative (PCA) story of linear AEs
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The distribution modelled by PCA

• If is Gaussian, is Gaussian
• and are Gaussian => is Gaussian
• PCA model:  The observed data are Gaussian

– Gaussian data lying very close to a principal subspace
– Comprising “clean” Gaussian data on the subspace plus orthogonal noise
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Poll 4

163

Select all that are true about PCA

 PCA finds the principal subspace, such that approximating all training data 
by their projections onto this subspace results in the lowest error

 An optimal autoencoder with linear activations reconstructs all data as 
their projections on the principal subspace

 The bases of this subspace can be uniquely estimated without constraints
 One way to uniquely estimate the subspace is to require the bases of the 

subspace (the decoder weights of the AE) to be orthonormal
 Another way to estimate the subspace uniquely is to require the 

distribution of the latent variable Z to be standard Gaussian

 The decoder weights estimated using both above solutions will be the same



Poll 4
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Select all that are true about PCA 

 

 PCA finds the principal subspace, such that approximating all training data by their projections 
onto this subspace results in the lowest error 

 An optimal autoencoder with linear activations reconstructs all data as their projections on 
the principal subspace 

 The bases of this subspace can be uniquely estimated without constraints 
 One way to uniquely estimate the subspace is to require the bases of the subspace (the 

decoder weights of the AE) to be orthonormal 
 Another way to estimate the subspace uniquely is to require the distribution of the latent 

variable Z to be standard Gaussian 
 The decoder weights estimated using both above solutions will be the same 



Can we do better?

• PCA assumes the noise is always orthogonal to the data
– Not always true
– Noise in images can look like images, random noise can sound 

like speech, etc.

• Let us generalize the model to permit non-orthogonal noise

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane
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The Linear Gaussian Model

• Update the model:  The noise added to the output of the encoder can lie in any 
direction

– Uncorrelated, but not just orthogonal to the principal subspace

• Generative model: to generate any point
– Take a Gaussian step on the hyperplane
– Add full-rank Gaussian uncorrelated noise that is independent of the position on the 

hyperplane
• Uncorrelated: diagonal covariance matrix
• Direction of noise is unconstrained

– Need not be orthogonal to the plane

is full rank
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The linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities
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The linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities

• This is still a parametric model for a Gaussian distribution
– Parameters are and (assuming 0 mean)

்
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The linear Gaussian model

• The way to produce any data instance is no longer unique
– though different corrections may have different probabilities

• This is in fact a parametric model for a Gaussian distribution
– Parameters are and (assuming 0 mean)

்

Also known as Factor Analysis:
A is the loading matrix
z are the factors
D is diagonal
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The probability distribution modelled 
by the LGM

• The noise added to the output of the encoder can 
lie in any direction

• The probability density of is Gaussian lying 
mostly close to a hyperplane
– With uncorrelated Gaussian noise

170
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Story for the day
• EM: An iterative technique to estimate probability models for data 

with missing components or information
– By iteratively “completing” the data and reestimating parameters

• PCA:  Is actually a generative model for Gaussian data
– Data lie close to a linear manifold, with orthogonal noise

• Factor Analysis: Also a generative model for Gaussian data
– Data lie close to a linear manifold
– Like PCA, but without directional constraints on the noise

• Will continue with FA and Variational AutoEncoders in the next class
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