
Neural Networks

Variational Autoencoders
Part 2

(based in part on slides from Dan Schwartz and Tom 
Manzini)
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Recap: Neural nets as generative 
models

• We’ve seen how neural nets can perform 
classification
– Or regression

– MLPs, CNNs, RNNs..

• Next step:  NNs as generic generative models
– Model the distribution of any data

– Such that we can draw samples from it
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Recap: A new problem

• From a large collection of images of faces, can a 
network learn to generate a new portrait
– Generate samples from the distribution of “face” 

images
• How do we even characterize this distribution?
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Recap: Generative models and 
Maximum Likelihood Estimation

What is a generative model
• In statistical estimation, a generative model is a functional or 

computational model for the probability distribution of a given data
– Can be represented generically as , where represents a data 

instance and are the parameters of the model
– But actually encodes a generative story for how the data were 

produced

• Utility of the model
– Can compute the probability of observing a given value 
– Can also be used to generate samples of (or statistically similar to) the 

data
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Recap: Examples of Generative 
Models

• Generative models can be 
simple, one step models of 
generation
– E.g. Gaussians, Category 

distributions

• Or a multi-step generating 
process
– E.g. Gaussian Mixtures
– E.g. Linear Gaussian 

Models
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Recap: ML Estimation of Generative 
Models

• Must estimate the parameters of 
the model from observed data

• Maximum likelihood estimation: 
Choose parameters to maximize the 
(log) likelihood of observed data
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Recap: ML estimation from 
incomplete data

• In many situations, our observed data are 
missing information

– E.g. components of the data
– E.g. “inside” information about how the data are 

drawn by the model

• In these cases, the ML estimate must only 
consider the observed data 

∈

– But the observed data are incomplete

• Observation probability must be 
obtained from the complete data probability, 
by marginalizing out missing components

– This can cause ML estimation to become 
challenging
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Recap: ML estimation from 
incomplete data

• ML estimate from observed data 

∈

• is obtained by marginalizing out 
missing components

• The ML estimate becomes

∈

– ℎ represent the hidden or missing components

• Minimizing the log of a sum of ugly functions 
usually doesn’t have nice solutions 8

Observation 𝑂 consists of only
the unblackened components
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Recap: The ELBO function

• We can define an Empirical Lower Bound (or ELBO) for 
the log probability as:

 

– Holds for any probability distribution 

– The bound is tightest when 

• We get a nice iterative ML estimator if we maximize 
the ELBO instead of directly
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The two-step process
• By the concavity of the log function

• Step 1:  Determine a that maximizes , fixing 
– Makes the bound tight
– The is a function of the current value of 

• Step 2: Fix and maximize the with respect to 
to get the next estimate of 

𝜃
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Recap: The Expectation Maximization 
Algorithm

• Define the auxiliary function:

• Which is the ELBO plus a term that doesn’t depend on 
• For the optimal this is EM

• Iteratively compute

• Expected (or guaranteed) to increase with every iteration
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• Initialize 
• Construct  

– For EM it touches at because 
– More generally, it tries to get as close to as possible
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• Find 

– (since you’re maximizing w.r.t )

• (since is a lower bound on )
• So the iteration increases 
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• Find 

– (since you’re maximizing w.r.t )

•
– since is a lower bound on 

• So the iteration may be expected to increase 
– Guaranteed non-decreasing for EM 14



• Construct 
– It gets close to (or touches) at 

• Because the  is now a function of 
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• Find 

– (since you’re maximizing w.r.t )

• (since is a lower bound on )
• So the iteration increases 
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• Find 

– (since you’re maximizing w.r.t )

• Ideally 
– Since is a lower bound on 

• So the iteration increases 
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• Repeat the steps:
– Compose to “touch” at the current estimate 

– Set 

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing
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19



• Repeat the steps:
– Compose to “touch” at the current estimate 

– Set 

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing

20



• Repeat the steps:
– Compose to “touch” at the current estimate 

– Set 

• Each step is guaranteed to increase (or at least not decrease) 
– Stop when stops increasing
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Recap: ELBO principle

• Problem: Train generative model using incomplete data
– Gaussian from vectors with missing components
– GMMs, where the Gaussian that generated each observation is 

unknown
– Etc…

• ELBO approach:  “Complete” the data by “filling in” the missing 
components
– Estimate models from “completed” data
– Question: How to “complete” data

𝑜

𝑜

𝑃(𝑜)
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Recap: EM principle

• Iteratively:
• Complete the data according to , which approximates the posterior 

probabilities computed by the current model
– By explicitly considering every possible value, with its posterior-based proportionality
– Or by sampling the posterior probability distribution

• Upon completion each incomplete observation implicitly or explicitly becomes many (potentially 
infinite) complete observations

• Reestimate the model from completed data

𝑜

𝑜

𝑃(𝑜)

⋯ ⋯ ⋯
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Questions?

24



Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Given a (centered) set of data
find subspace such that
the projection of the data onto the subspace
results in the lowest total (squared) error

Minimize the sum of the 
squared lengths of these lines
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data

Principal axis we’re 
searching for
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Principal Component Analysis

• Find the principal subspace such that when all vectors are approximated 
as lying on that subspace, the approximation error is minimal
– Assuming “centered” (zero-mean) data

Animation: 
Original centered data

Principal axis we’re 
searching for

Search through all
subspaces to find the
one with minimum
projection error
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

Computing projection error for
a single instance 

Assume w.l.o.g that
is a unit vector
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

Computing projection error for
a single instance 

Assume w.l.o.g that
is a unit vector
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

𝑇

(Pythagoras’ theorem)
Computing projection error for
a single instance 
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we 
can find a closed form solution

𝑇

𝑇

(Pythogoras’ theorem)
𝑇 𝑇 𝑇

Computing projection error for
a single instance 
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Can be done in closed form

• Since we’re minimizing quadratic L2 error, we can find a closed form solution
• Total projection error for all data:

𝐿 = 𝑥𝑇𝑥 − 𝑤𝑇𝑥𝑥𝑇𝑤 

• Minimizing this w.r.t 𝑤 (subject to 𝑤 = unit vector) gives you the Eigenvalue equation

𝑥𝑇𝑥 𝑤 = 𝜆𝑤

• This can be solved to find the principal subspace
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There’s also an iterative solution

• Objective:  find a vector (subspace) 𝑤 and a position 𝑧 on 𝑤 such that 𝑧𝑤 ≈ 𝑥 most closely (in an L2
sense) for the entire (training) data

• Let 𝑋 = [𝑥 𝑥 … 𝑥 ] be the entire training set (arranged as a matrix)
– Objective:   find vector bases (for the subspace) 𝑊 and the set of position vectors 𝑍 = [𝑧 𝑧 … 𝑧 ] for all 

vectors in 𝑋 such that 𝑊𝑍 ≈ 𝑋

• Initialize 𝑊
• Iterate until convergence:

– Given 𝑊,  find the best position vectors 𝑍:    𝑍 ← 𝑊 𝑋

– Given position vectors 𝑍, find the best subspace: 𝑊 ← 𝑋𝑍  

– Guaranteed to find the principal subspace 37



The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Given find the best position vectors on the W subspace for each training 
instance

• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance
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The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of Y locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance

This individually minimizes the length
of lines from the points to the plane
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The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance

This jointly minimizes the total
squared length of lines from the points 
to their “attachments” on the plane
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The iterative algorithm

• Initialize a subspace (the basis )
• Iterate until convergence:

– Find the best position vectors on the subspace for each training instance
• Find the location on W that is closest to each instance, i.e. the perpendicular projection

– Let rotate and stretch/shrink, keeping the arrangement of locations fixed
• Minimize the total square length of the lines attaching the projection on the place to the 

instance
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A cartoon view of Iterative PCA

• Note that the real problem in estimating is 
computing 
– If you know , is obtained by a direct matrix 

multiply 

Estimate 

Estimate 
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Drawing this differently

• Look familiar?
• An autoencoder with linear activations
• Backprop actually works by simultaneously 

updating (implicitly) and in tiny 
increments
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A minor issue: Scaling invariance

• The estimation is scale invariant
• We can increase the length of , and compensate for it by 

reducing 
• The solution is not unique!

𝑥

𝑧𝑤
𝑤

𝑥

𝑧′𝑤′

𝑤′
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Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA

– Constraining the variance of to be unity

• While the s estimated with the two solutions will be different, 
the resulting discovered principal subspace will be the same

𝑥

𝑧𝑤

𝑤
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Resolving this issue

• A unique solution can be found by either
– Requiring the vectors in to be unit length and orthogonal

• Standard “closed” form PCA
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𝑥

𝑧𝑤

𝑤

48



Constraining the linear AE

• The linear AE can be constrained to give you a 
unique(ish) solution

• Impose a unity constraint on the variance of 
– How?

Unit variance constraint
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So what are we doing in the iterative 
solution?

• For every training vector ,  we are missing the information about 
where the vector lies on the principal subspace hyperplane

• If we had , we could uniquely identify the plane

?
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane
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Iterative solution

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for 
the plane
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Iterative solution

• This looks like EM
– In fact it is

• But what is the generative model?
• And what distribution is this encoding?
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Constraining the linear AE

• Imposing the constraint that must have unit variance is the same 
as assuming that is drawn from a standard Gaussian
– 0 mean, unit variance!

• The decoder of the AE with the unit-variance constraint on is in 
fact a Generative model

Unit variance 
constraint

Standard Gaussian Prior

Decoder
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The generative story behind PCA
(linear AEs)

• Linear AEs actually have a generative story
• In order to generate any point

– We first take a Gaussian step on the principal plane
– Then we take an orthogonal Gaussian step from where we land to generate a 

point
– PCA / Linear AEs find the plane and the characteristics of the Gaussian steps 

from the data

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane
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• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix for the subspace
– is a 0-mean Gaussian noise that is orthogonal to the principal subspace

• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace! 

The generative story behind PCA
(linear AEs)
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• Generative story for PCA:
– is drawn from a -dim isotropic Gaussian

• 𝐾 is the dimensionality of the principal subspace

– is “basis” matrix for the subspace
– is a 0-mean Gaussian noise that is orthogonal to the principal subspace

• The covariance of the Gaussian is low-rank and orthogonal to the principal subspace! 

The generative story behind PCA
(linear AEs)

PCA implicitly obtains maximum likelihood estimate of and , from training data 
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• Alternate view:  stretches and rotates the -dimensional planar space of z into 
a K-dimensional planar subspace (manifold) of the data space

• The circular distribution of in the -dimensional space transforms into an 
ellipsoidal distribution on a -dimensional hyperplane the data space

• Samples are drawn from the ellipsoidal distribution on the hyperplane, and noise 
is added to them

The generative story behind PCA
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• PCA models a Gaussian distribution:

• The probability density of is Gaussian lying mostly close to a 
hyperplane
– With correlated structure on the plane
– And uncorrelated components orthogonal to the plane

The probability modelled by PCA
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Poll 1

63

Choose all that are true about PCA

 It actually performs Maximum Likelihood estimation of a generative model 
for the data

 The generative model for PCA is that in order to generate any point, the 
process first takes a Gaussian step on the principal hyperplane, followed by a 
Gaussian step perpendicular to the hyperplane

 It can also be iteratively estimated using Expectation Maximization
 It assumes the distribution of the data is a Gaussian that is centered on the 

principal hyperplane



Poll 1
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Choose all that are true about PCA 

 It actually performs Maximum Likelihood estimation of a generative model for the data 
 The generative model for PCA is that in order to generate any point, the process first takes a 

Gaussian step on the principal hyperplane, followed by a Gaussian step perpendicular to the 
hyperplane 

 It can also be iteratively estimated using Expectation Maximization 
 It assumes the distribution of the data is a Gaussian that is centered on the principal hyperplane 



• There is missing information about the observation 
– Information about intermediate values drawn in generating 
– We don’t know 

• If we knew for each , estimating (and ) would be 
simple

Missing information for PCA
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PCA with complete information

• Given complete information 
– Representing ,   

• Differentiating w.r.t and equating to 0, we get the easy solution

– (Some sloppy math ( is not invertible), but the solution is right)

66
But we don’t have z.  It is missing



EM for PCA

• Initialize the plane
– Or rather, the bases for the plane

• “Complete” the data by computing the appropriate s for the plane
– is a delta, because is orthogonal to 

• Reestimate the plane using the s
• Iterate
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Improving on PCA

• PCA assumes the noise is always orthogonal to the data
– Not always true
– Noise in images can look like images, random noise can sound 

like speech, etc.

• Let us generalize the model to permit non-orthogonal noise

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane
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The Linear Gaussian Model

• The noise added to the output of the encoder can lie in any direction
– Uncorrelated, but not just orthogonal to the principal subspace

• Generative model: to generate any point
– Take a Gaussian step on the hyperplane
– Add full-rank Gaussian uncorrelated noise that is independent of the position on the 

hyperplane
• Uncorrelated: diagonal covariance matrix
• Direction of noise is unconstrained

– Need not be orthogonal to the plane

is full rank diagonal
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The probability distribution modelled 
by the LGM

• The noise added to the output of the encoder can lie in any direction

• The probability density of is Gaussian lying mostly close to a hyperplane
– With uncorrelated Gaussian 

• Also
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The linear Gaussian model

• Is a generative model for Gaussians
• Data distribution are Gaussian lying largely on a hyperplane with 

some Gaussian “fuzz”
– Only components on the plane are correlated with one another

• No correlations off the plane

– Which allows us to model some correlations between components
• Halfway between a Gaussian with a diagonal covariance, and one with a full 

covariance
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𝑃 𝑥 = 𝑁(0, 𝐴𝐴 + 𝐷)

• The parameters of the LGM generative model are A and D 
• The ML estimator is

argmax
,

log
1

(2𝜋) 𝐴𝐴 + 𝐷
exp −0.5𝑥 (𝐴𝐴 + 𝐷) 𝑥

– Where 𝑑 is the dimensionality of the space

• As it turns out, this does not have a nice closed form solution
– Because 𝐷 is full rank

• Will require EM

ML estimation of LGM parameters
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is full rank diagonal



• There is missing information about the observation 
– Information about intermediate values drawn in 

generating 
– We don’t know 

• If we knew the for each , estimating (and ) 
would be very simple

Missing information for LGMs
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is full rank diagonal



LGM with complete information

• Given complete information ,   

• Differentiating w.r.t and equating to 0, we get an easy solution
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LGM with complete information

,
( , )

• Differentiating w.r.t and and equating to 0, we get an easy solution
• Solution for 

( , )

( , ) ( , )

• Solution for 

( , )

( , )
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LGM with complete information

,
( , )

• Differentiating w.r.t and and equating to 0, we get an easy solution
• Solution for 

( , )

( , ) ( , )

• Solution for 

( , )

( , )
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Unfortunately we do not
observe 𝑧.
It is missing; the observations
are incomplete



Expectation Maximization for LGM

• Complete the data
• Option 1: 

– In every possible way proportional to 
– Compute the solution from the completed data
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The posterior 

• is Gaussian 
– We saw this

• The joint distribution of and is also Gaussian
– Trust me

• The conditional distribution of given is also Gaussian

– Trust me
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Expectation Maximization for LGM

• Complete the data
• Option 1: 

– In every possible way proportional to 
– Compute the solution from the completed data
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Expectation Maximization for LGM

• Complete the data in every possible way proportional to 
– Compute the solution from the completed data

–
,

( , )

• The values for each are distributed according to . 
Segregating the summation by 

,
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LGM with incomplete information
argmax

,
𝑝(𝑧|𝑥) −

1

2
log 𝐷 −0.5 𝑥 − 𝐴𝑧 𝐷 𝑥 − 𝐴𝑧 𝑑𝑧

• Differentiating w.r.t 𝐴 and 𝐷and equating to 0, we get an easy solution
• Solution for 𝐴

𝛻 𝑝 𝑧 𝑥 𝑥 − 𝐴𝑧 𝐷 𝑥 − 𝐴𝑧 𝑑𝑧 = 0    ⇒

𝑝 𝑧 𝑥 𝑥 − 𝐴𝑧 𝑧 𝑑𝑧

 

= 0     ⇒       𝐴 = 𝑝 𝑧 𝑥 𝑥𝑧 𝑑𝑧 𝑝 𝑧 𝑥 𝑧𝑧 𝑑𝑧

• Solution for 𝐷

𝛻 𝑁log 𝐷 + 𝑝 𝑧 𝑥 𝑥 − 𝐴𝑧 𝐷 𝑥 − 𝐴𝑧 𝑑𝑧 = 0      ⇒

𝐷 = 𝑑𝑖𝑎𝑔
1

𝑁
𝑥𝑥 − 𝐴 𝑝 𝑧 𝑥 𝑥𝑧 𝑑𝑧
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These are closed form solutions, the details of which are not relevant to us. 

Key: All terms integrate over all possible completion of incomplete observations, where the
proportionality attached to any completion of x is P(z|x)



LGM with incomplete information
• It is actually an iterative algorithm (EM):

• Solution for 

• Solution for 
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These are closed form solutions, the details of which are not relevant to us. 

Key: All terms integrate over all possible completion of incomplete observations, where the
proportionality attached to any completion of x is P(z|x)



Expectation Maximization for LGM

• Complete the data
• Option 2: 

– By drawing samples from
– Compute the solution from the completed data
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LGM from drawn samples
• Since we now have a collection of complete vectors, we can use the usual 

complete-data formulae
• Solution for 

( , )

• Solution for 

( , )
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These are closed form solutions

Draw missing components from P(z|x; 𝐴 , 𝐷 ) to complete the data

Estimate parameters from completed data



LGMs: The intuition

• The linear transform stretches and rotates the K-dimensional input space onto a K-
dimensional hyperplane in the data space

• The isotropic Gaussian in the input space becomes a stretched and rotated 
Gaussian on the hyperplane
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LGMs: The intuition

• Drawing samples: The first step places the somewhere on 
the plane described by 
– The distribution of points on the plane is also Gaussian
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LGMs: The intuition

• LGM model:  The first step places the somewhere on the plane described by 
– The distribution of points on the plane is also Gaussian

• Second step:  Add Gaussian noise to produce points that aren’t necessarily on the 
plane

– Noise added is not revealed
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EM for LGMs: The intuition

• In an LGM the way to produce any data instance is not unique
• Conversely, given only the data point, the “shadow” on the principal 

plane cannot be uniquely known
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EM Solution

• The posterior probability gives you the location 
of all the points on the plane that could have generated 

and their probabilities



EM Solution

• Attach the point to every location on the plane, according to 
– Or to a sample of points on the plane drawn from 𝑃(𝑧|𝑥)

• There will be more attachments where is higher, and fewer where it is 
lower



EM Solution

• Attach every training point in this manner
• Let the plane rotate and stretch until the total tension (sum squared 

length) of all the attachments is minimize
• Repeat attachment and rotation until convergence…

Red points below the plane
Blue points above the plane
Grey points: “shadows” of data on plane



Summarizing LGMs
• LGMs are models for Gaussian distributions
• Specifically, they model the distribution of data 

as Gaussian, where most of the variation is 
along a linear manifold

– They do this by transforming a Gaussian RV z 
through a linear transform 𝑓(𝑧)  =  𝐴𝑧 that 
transforms the K-dim input space of z into a 𝐾-
dimensional hyperplane (linear manifold) in the data 
space

• They are excellent models for data that actually 
fit these assumptions

– Often, we can simply assume that data lie near 
linear manifolds and model them with LGMs

– PCA, an instance of LGMs, is very popular
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Poll 2
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Choose all that are true about Factor Analysis (Linear Gaussian Models)

 It models the distribution of the data as a Gaussian centered on a principal 
(hyper)plane

 The generative model is that in order to generate any point, the process first takes a 
Gaussian step on the principal hyperplane,  followed by addition of Gaussian noise.

 The parameters of the distribution are the bases of the hyperplane and the 
covariance of the noise.

 The parameters can be easily estimated if the location of the first step on the 
principal hyperplane is known for every data point

 The actual estimation is performed using EM, which iteratively “completes” each 
data instance with the location of this first step, and then estimates the parameters



Poll 2
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Choose all that are true about Factor Analysis (Linear Gaussian Models) 

 It models the distribution of the data as a Gaussian centered on a principal (hyper)plane 
 The generative model is that in order to generate any point, the process first takes a Gaussian 

step on the principal hyperplane,  followed by addition of Gaussian noise. 
 The parameters of the distribution are the bases of the hyperplane and the covariance of the 

noise. 
 The parameters can be easily estimated if the location of the first step on the principal 

hyperplane is known for every data point 
 The actual estimation is performed using EM, which iteratively “completes” each data 

instance with the location of this first step, and then estimates the parameters 



Where LGMs fail

• What about data that are not 
Gaussian distributed close to a 
plane
– The distributions lie close to a 

curved or otherwise non-linear 
manifold?

• You can model these as 
Gaussian data centered on a 
plane that has been warped 
into the observed shape
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NLGMs

• The non-linear Gaussian model
• is a non-linear function that produces a curved manifold

– Like the decoder of a non-linear AE

• The samples of are placed on this curved manifold
• The actual data are produced by adding noise to samples on the 

manifold
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NLGMs
• Step1: Find a function that warps a 

lower-dimensional input plane to the 
target manifold in the data space
– The non-linear version of the linear 

transform in the LGM

• Step2: Transform a Gaussian 
distribution on the input plane to a 
distribution on the curved manifold

• Step3: Add some uncorrelated 
Gaussian “fuzz” to account for off-
manifold variations
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NLGMs
• Step1: Find a function that warps a 

lower-dimensional input plane to the 
target manifold in the data space
– The non-linear version of the linear 

transform in the LGM

• Step2: Transform a Gaussian 
distribution on the input plane to a 
distribution on the curved manifold

• Step3: Add some uncorrelated 
Gaussian “fuzz” to account for off-
manifold variations

99



NLGMs

• The non-linear function warps the input space into a 
curved manifold in the data space
– Samples drawn from are placed on this manifold
– The distribution of on the manifold will follow the 

distribution of 
• High-density regions of correspond to high-density regions of 
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NLGMs

• The non-linear function warps the input space into a curved 
manifold in the data space
– The variable at the input is transformed to the variable on this 

manifold
– The distribution of on the manifold will follow the distribution of 

• High-density regions of correspond to high-density regions of 
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NLGMs

• The non-linear function warps the input space into a curved 
manifold in the data space
– The variable at the input is transformed to the variable on this 

manifold
– The distribution of on the manifold will follow the distribution of 

• High-density regions of correspond to high-density regions of 

• The final observations are obtained by adding uncorrelated full-
dimensional Gaussian noise to 

102



NLGM Generating Process

• Generating process:
– Draw a sample from a Standard Gaussian
– Transform by 

• This places on the curved manifold

• The actual data are produced by adding noise to the 
samples on the manifold
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NLGMs Generating Process

• Generating process:
– Draw a sample z from a Standard Gaussian
– Transform by 

• This places on the curved manifold

– Add uncorrelated Gaussian noise to get the final observation
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NLGMs

105

• The NLGM can model very complicated distributions
– Distributions that may be viewed as lying close to a curved -dimensional 

surface in the data space
• Or even a linear surface:   𝑓(𝑧)  =  𝐴𝑧 is a special case
• 𝐾 is the dimensionality of 𝑧

• Key requirement:
– Identifying the dimensionality K of the curved manifold
– Having a function that can transform the (linear) -dimensional input 

space (space of ) to the desired -dimensional manifold in the data space



NLGMs

• The NLGM can model very complicated distributions
– Distributions that may be viewed as lying close to a curved -dimensional 

surface in the data space
• Or even a linear surface:   𝑓(𝑧)  =  𝐴𝑧 is a special case
• 𝐾 is the dimensionality of 𝑧

• Key requirement:
– Identifying the dimensionality of the curved manifold
– Having a function that can transform the (linear) -dimensional input 

space (space of ) to the desired -dimensional manifold in the data space
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Designing NLGMs

• Key design issues:
– Select (or guess) the dimensionality of the manifold

• This is the dimensionality of 

– Choosing the right function that is capable of 
learning the shape of the manifold

• We will choose a Neural Network 
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Learning the NLGM

• Given a collection of training data 
– Estimate the parameters of 
– Estimate 

• The NLGM is a generative model that actually models a 
distribution
– The distribution obtained when is transformed by 

• We will use ML estimation to learn its parameters to best match 
the training data
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Probabilities modelled by the NLGM

• The conditional probability of given 

• The marginal probability of 

 

– For most nonlinear functions 𝑓(𝑧; 𝜃) this math is not tractable, and we cannot get a closed 
form for 𝑃(𝑥)

– That won’t prevent us from being able to estimate 𝜽 and 𝑫 109
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Poll 3

110

Choose all that are true of Nonlinear Gaussian Models

 They are generative models
 They model the distribution of the data as Gaussian distributed about a curved 

manifold
 The generative model is that in order to generate any point, the process first 

takes a Gaussian step on along the curved manifold, followed by the addition 
of Gaussian noise

 The parameters of the distribution are the parameters of the function that 
transform a K-dimensional plane into a K-dimensional manifold, and the 
covariance of the noise

 The NLGM is the decoder component of a variational autoencoder
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Choose all that are true of Nonlinear Gaussian Models 

 They are generative models 
 They model the distribution of the data as Gaussian distributed about a curved manifold 
 The generative model is that in order to generate any point, the process first takes a Gaussian 

step on along the curved manifold, followed by the addition of Gaussian noise 
 The parameters of the distribution are the parameters of the function that transform a K-

dimensional plane into a K-dimensional manifold, and the covariance of the noise 
 The NLGM is the decoder component of a variational autoencoder 



Learning the NLGM with complete data

• Drawing a sample from the NLGM is a two-step process
– First a is drawn

• And transformed

– Then an is drawn
• And added

• The complete data to describe any draw are the outcomes of every stage 
of the drawing process, i.e. 
– Actually , but let’s work without 
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NLGM with complete data

• Let us first consider a glass-box process that gives us complete data
– The output and the intermediate steps of the generation process
– I.e. both the and the for every draw

• We will derive estimation rules for the model parameters using the 
complete data
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ML estimation with complete information

• Given complete information ,   

∗ ∗

,
( , )

,
( , )

,
( , )

,
( , )
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NLGM with complete information

∗ ∗

,
( , )

• There isn’t a nice closed form solution, but we could learn the parameters 
using backpropagation, which minimizes the following loss

( , )

∗ ∗

,
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Unfortunately we do not observe .
It is missing; the observations are incomplete



NLGM with incomplete data

• We could estimate the model parameters if were 
known for every data observation
– I.e. if the data were complete

• Unfortunately we don’t know 
– The data are incomplete

• Solution:  EM!
– Complete the data
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Expectation Maximization for NLGM

• Complete the data
• Option 1: 

– In every possible way proportional to 
– Compute the solution from the completed data
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Expectation Maximization for LGM

• Complete the data
• Option 2: 

– By drawing samples from
– Compute the solution from the completed data
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Expectation Maximization for LGM

• Complete the data
• Option 2: 

– By drawing samples from
– Compute the solution from the completed data

119

Using every possible value (option 1) is to be preferred 
over sampling (option 2) if the former produces tractable
closed form solutions. Otherwise we must use option 2.



Problem with completing the data
• The posterior probability is given by

• The denominator 

 

– This is intractable to compute in closed form for most 

• is intractable as a closed form solution
– Makes it challenging to integrate over it or draw samples from it
– But we could try to approximate it with a 

120



Approximating 

• We will approximate as 

– where and are estimated such that approximates 
as closely as possible

– For convenience, we will assume is a diagonal matrix, represented 
entirely by its diagonal elements

• We will use as our proxy for 
121

and are parametric functions of ,
with parameters that we jointly represent as 



Overall Solution

• Initialize 
• Iterate:

– Estimate and to give you the best 
– “Complete” the data using 
– Reestimate
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The complete pipeline
• Initialize and 

• Iterate:
– Sample z from 

for each training instance
• “Completing” the data

– Reestimate from the entire 
“complete” data

– Estimate using the entire 
“complete” data

123
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The complete pipeline
• Initialize and 

• Iterate:
– Sample z from 

for each training instance
• “Completing” the data

– Reestimate from the entire 
“complete” data

– Estimate using the entire 
“complete” data
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Sampling 

• Sample z from for each training instance
– “Completing” the data

• We use a standard “reparametrization” step to sample 
– Sample from a standard Gaussian, and scale and shift it such that it 

appears as a sample from 

• For each training instance 
– Compute and 
– Draw one or more samples from the Gaussian 

• Draw -dimensional vector from 
• Compute .
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Remember this one

Sampling 

• Sample z from for each training instance
– “Completing” the data

• We use a standard “reparametrization” step to sample 
– Sample from a standard Gaussian, and scale and shift it such that it 

appears as a sample from 

• For each training instance 
– Compute and 
– Draw one or more samples from the Gaussian 

• Draw -dimensional vector from 
• Compute .
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This will be specific to and to the specific sample of for that (via )



The complete pipeline
• Initialize and 

• Iterate:
– Sample z from 

for each training instance
• “Completing” the data

– Reestimate from the entire 
“complete” data

– Estimate using the entire 
“complete” data
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Sample z
We know how to do this



NLGM with complete information
∗ ∗

,
( , )

• We can learn the parameters using backpropagation, which minimizes the following 
loss

( , )

∗ ∗

,

• It is common to assume that all the (diagonal) entries of are identical, with value 

( , )

• The derivative of this w.r.t and is trivially computed for backprop
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The complete pipeline
• Initialize and 

• Iterate:
– Sample z from 

for each training instance
• “Completing” the data

– Reestimate from the entire 
“complete” data

– Estimate using the entire 
“complete” data
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Approximating by 

• Recall must 
approximate as closely as possible

• Estimate to minimize the error between 
and 

– Define a divergence between and and 
minimize it w.r.t.

– Following the literature, we will use the KL divergence
• Then I will give you a simpler explanation
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Approximating by 

~

~ ~

~ ~

~ ~ ~ ~

~ ~

• is a function of .  Minimizing the loss w.r.t. we get
∗

~
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Find to minimize the (empirical estimate of the) KL divergence between 
Q(z,x) and P(z) while simultaneously maximizing the (empirical estimate of) the 
expectation of log P(x|z)



Let’s try that again…
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NLGM with complete data

• Assume we have completed the data using 
– We have a collection of pairs

• More precisely denoted as , since the value , used to 
complete the observation is specific to (subscript )

– Also, a single x may be completed in multiple ways (subscript )

• We will use as our shorthand notation, though

– We can work with complete data!
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NLGM with complete data

• Representing the completed data as [𝑋, 𝑍] = { 𝑥, 𝑧 }, the actual posterior probability for Z given X as 
computed by the model is

𝑃 𝑍 𝑋; 𝜃 = 𝑃(𝑧|𝑥; 𝜃)

, ∈[ , ]

,                     log 𝑃 𝑍 𝑋; 𝜃 = log 𝑃(𝑧|𝑥; 𝜃)

, ∈[ , ]

– Because the observations are independent

• The approximation using 𝑄(𝑍, 𝑋) is

𝑄 𝑍, 𝑋; 𝜑 = 𝑄 𝑧, 𝑥; 𝜑

, ∈ ,

,                 log 𝑄 𝑍, 𝑋; 𝜑 = log 𝑄 𝑧, 𝑥; 𝜑

, ∈[ , ]
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NLGM with complete data

• Representing the completed data as [𝑋, 𝑍] = { 𝑥, 𝑧 }, the actual posterior probability for Z given X as 
computed by the model is

𝑃 𝑍 𝑋; 𝜃 = 𝑃(𝑧|𝑥; 𝜃)

, ∈[ , ]

,                     log 𝑃 𝑍 𝑋; 𝜃 = log 𝑃(𝑧|𝑥; 𝜃)

, ∈[ , ]

– Because the observations are independent

• The approximation using 𝑄(𝑍, 𝑋) is

𝑄 𝑍, 𝑋; 𝜑 = 𝑄 𝑧, 𝑥; 𝜑

, ∈ ,

,                 log 𝑄 𝑍, 𝑋; 𝜑 = log 𝑄 𝑧, 𝑥; 𝜑

, ∈[ , ]
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We will estimate to 
minimize the discrepancy
between these two 
probabilities



Estimating 
• We will minimize the following error

, ∈[ , ]

• By Bayes rule 
• The error becomes

, ∈[ , ]

• influences directly and , because it is sampled from . 
is not related to either or and can be ignored.

• This gives us the loss function

, ∈[ , ]

• This must be minimized w.r.t.
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, ∈[ , ]
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Estimating 
• We will minimize the following error

, ∈[ , ]

• By Bayes rule 
• The error becomes

, ∈[ , ]

• influences directly and , because it is sampled from . 
is not related to either or and can be ignored.

• This gives us the loss function

, ∈[ , ]

• This must be minimized w.r.t.
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Estimating 
• We will minimize the following error

, ∈[ , ]

• By Bayes rule 
• The error becomes

, ∈[ , ]

• influences directly and , because it is sampled from . 
• is not related to either or and can be ignored.
• This gives us the loss function

, ∈[ , ]

• This must be minimized w.r.t.
139



Estimating 
• We will minimize the following error

, ∈[ , ]

• By Bayes rule 
• The error becomes

, ∈[ , ]

• influences directly and , because it is sampled from . 
• is not related to either or and can be ignored.
• This gives us the loss function

, ∈[ , ]

• This must be minimized w.r.t.
140
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The complete training pipeline
• For : Must sample from 

– These are used to learn 

• For : But to learn given , find
how the sampled must be perturbed 
to make the corresponding more
plausible
– While keeping the PDF of the adjusted 

s as standard Gaussian

• Or more precisely, how to adjust to 
make the adjusted more likely
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Estimating 
• The loss function

• Multiple choices for data completion

• Simple option: Simply use samples drawn from 
– You can skip the next couple of slides if you do
–
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Estimating 
• The loss function

• Multiple choices for data completion
• Simple option: Simply use samples drawn from 

– You can skip the next couple of slides if you do

• Orrrr try to be more precise….
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Expectation Maximization for LGM

• Complete the data
– Option 1 : Consider every possible value for z
– Option 2: By drawing samples from

• Compute the solution from the completed data
144

Using every possible value (option 1) is to be preferred 
over sampling (option 2) if the former produces tractable
closed form solutions. Otherwise we must use option 2.



Estimating 
• The loss function

, ∈[ , ]

• It turns out that the portion underlined in blue can be computed in closed form if 
you consider every possible value of 

• The portion underlined in red cannot

• So sum the first portion over all possible values of from and the second one over 
only the drawn samples

∈[ ] , ∈[ , ]
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Estimating 
• The loss function

, ∈[ , ]

• It turns out that the portion underlined in blue can be computed in closed form if 
you consider every possible value of 

• The portion underlined in red cannot

• So sum the first portion over all possible values of from and the second one over 
only the drawn samples

∈[ ] , ∈[ , ]

146



Estimating 
• The loss function

𝐿 𝜑 = 𝐾𝐿(𝑄 𝑧, 𝑥; 𝜑 , 𝑃(𝑧))

∈

− log 𝑃 𝑥 𝑧; 𝜃

, ∈[ , ]

• We have:
𝑄 𝑧, 𝑥 = 𝑁 𝑧; 𝜇 𝑥; 𝜑 , Σ 𝑥; 𝜑 ,           𝑃 𝑧 = 𝑁(0, 𝐼)

• The KL between the two Gaussians works out to

𝐾𝐿 𝑄 𝑧, 𝑥; 𝜑 , 𝑃 𝑧 =
1

2
𝑡𝑟 Σ 𝑥; 𝜑 + 𝜇 𝑥; 𝜑 𝜇 𝑥; 𝜑 − 𝑑 − log Σ 𝑥; 𝜑

• We have 

log 𝑃 𝑥 𝑧; 𝜃 = −
1

2
log 𝐷 −0.5 𝑥 − 𝑓(𝑧; 𝜃) 𝐷 (𝑥 − 𝑓(𝑧; 𝜃))

( , )

 

• Plugging it all in:
𝐿 𝜑

=
1

2
𝑡𝑟 Σ 𝑥; 𝜑 + 𝜇 𝑥; 𝜑 𝜇 𝑥; 𝜑 − 𝑑 − log Σ 𝑥; 𝜑

∈

+
1

2
log 𝐷 +0.5 𝑥 − 𝑓(𝑧; 𝜃) 𝐷 (𝑥 − 𝑓(𝑧; 𝜃))

, ∈[ , ]
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Estimating 
• So we finally have the loss function (ignoring unnecessary terms and factors)

𝐿 𝜑

= 𝑡𝑟 Σ 𝑥; 𝜑 + 𝜇 𝑥; 𝜑 𝜇 𝑥; 𝜑 − 𝑑 − log Σ 𝑥; 𝜑

∈

+ 𝑥 − 𝑓(𝑧; 𝜃) 𝐷 (𝑥 − 𝑓(𝑧; 𝜃))

, ∈[ , ]

• Assuming that 𝐷is diagonal with identical values 𝜎 for the diagonal elements gives us the 
simplification

𝐿 𝜑 = 𝑡𝑟 Σ 𝑥; 𝜑 + 𝜇 𝑥; 𝜑 𝜇 𝑥; 𝜑 − 𝑑 − log Σ 𝑥; 𝜑

∈

+
1

 𝜎
(𝑥 − 𝑓(𝑧; 𝜃))

, ∈[ , ]

• To estimate 𝜑 we will compute

𝜑∗ = argmin 𝐿 𝜑

• To perform the minimization we will use gradient descent
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Estimating 

• To perform the minimization we will use gradient descent
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This will be specific to and to the specific sample of for that (via )

Recap from earlier



The complete training pipeline
• Initialize 𝜃 and 𝜑

• Iterate:
– Sample 𝑧 , from 𝑁(𝑧; 𝜇 𝑥; 𝜑 , Σ 𝑥; 𝜑 ) for each training instance

• “Completing” the data

– Reestimate 𝜃 from the entire “complete” data

𝐿 𝜃, 𝜎 = 𝑑 log 𝜎 +
1

 𝜎
𝑥 − 𝑓(𝑧; 𝜃)

( , )

– Estimate 𝜑 using the entire “complete” data
𝐿 𝜑

= 𝑡𝑟 Σ 𝑥; 𝜑 + 𝜇 𝑥; 𝜑 𝜇 𝑥; 𝜑 − 𝑑 − log Σ 𝑥; 𝜑

∈

+
1

 𝜎
(𝑥 − 𝑓(𝑧; 𝜃))

, ∈[ , ]
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The complete training pipeline: 
Single step update

• Initialize and 

• Iterate:
– Sample 𝑧 , from 𝑁(𝑧; 𝜇 𝑥; 𝜑 , Σ 𝑥; 𝜑 ) for each training 

instance
• “Completing” the data

– Reestimate 𝜃 and 𝜑 from the entire “complete” data
𝐿 𝜃, 𝜎 , 𝜑

= 𝑡𝑟 Σ 𝑥; 𝜑 + 𝜇 𝑥; 𝜑 𝜇 𝑥; 𝜑 − 𝑑 − log Σ 𝑥; 𝜑

∈

+
1

 𝜎
(𝑥 − 𝑓(𝑧; 𝜃))

, ∈[ , ]

+ 𝑑 log 𝜎

• (Merged the updates of and into a single step)
– Gradient computation doesn’t change
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The complete training pipeline
• Once trained the approximation 

function can be discarded

• The rest of the function gives us a 
generative model for 

• Generating data using this part of 
the model should (ideally) give us 
data similar to the training data
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But where are the neural nets?
• is generally modelled by a neural 

network

• and are generally modelled by 
a common network with two outputs
– The combined parameters of the network are 
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The Variational AutoEncoder
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Sample z

Neural Net

Net Net
Encoder

Decoder

The decoder is the actual
generative model

The encoder is primarily needed
for training 
It can also be used to generate the 
(approximate) distribution of latent
space representations conditioned 
on specific inputs input
(much like a regular autoencoder)

is a latent-space representation 
of the data

can also be used as a expected 
latent representation of 



Poll 4
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Mark all that are true

 The decoder in a Variational Auto Encoder is a non-linear Gaussian model
 The NLGM in the VAE is estimated using EM
 The encoder in a VAE is a module that generates the samples of z needed to 

complete the data, in order to estimate the parameters of the NLGM 
(decoder)

 The encoder approximates P(z|x) to enable sampling of z, to complete the 
data



Poll 4
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Mark all that are true 

 The decoder in a Variational Auto Encoder is a non-linear Gaussian model 
 The NLGM in the VAE is estimated using EM 
 The encoder in a VAE is a module that generates the samples of z needed to complete the 

data, in order to estimate the parameters of the NLGM (decoder) 
 The encoder approximates P(z|x) to enable sampling of z, to complete the data 



VAEs
• VAEs are, unfortunately,

strictly generative models

• They can be used to generate
samples of the data

• But they cannot be used to
compute the likelihood of data
– At least not directly
– Because is generally intractable

• Nevertheless, they are highly effective as generators
– They can learn highly complex distributions

157



VAE examples

• Top: VAE trained on 
MNIST and used to 
generate new data

• Below: VAE trained 
on faces, and used 
to generate new 
data
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VAE and latent spaces
• The latent space often captures 

underlying structure in the data in a 
smooth manner

• Varying continuously in different 
directions can result in plausible variations 
in the drawn output
– Typically manipulations are performed by 

wiggling around its expected value 

• Typically, in these draws, you do not add 
the noise 
– The output is the expected generation for a 

given latent value 
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VAE conclusions
• Simple non-linear extensions of linear Gaussian models

• Excellent generative models for the distribution of data 
– Various extensions such as Conditional VAEs, which model conditional 

distributions, such as 
• Straight-forward extension where the conditioning variable 𝑦 is an additional input to the 

encoder and decoder

• Have also been successfully embedded into dynamical system models
– now becomes a mixture, or a Markov model instead of 

• In all cases, the arithmetic for learning is similar to that presented here
• Read the literature on the topic, it is vast
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