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Sequential Data

● Data from which various inputs are dependent
● Examples:

○ Text: “Hi. How are you doing today?”
○ Audio/speech
○ Video
○ Any other time series data like stock price, daily temperature, etc.

Reference: Audio, Stock, Text, Video

https://towardsdatascience.com/beginners-guide-to-speech-analysis-4690ca7a7c05
https://news.yahoo.com/irrational-price-dogecoin-says-crypto-155601082.html
https://www.amazon.com/William-Shakespeare-Boyfriend-Girlfriend-Parchment/dp/B07WQQCTC6?th=1
https://knoow.net/ciencinformtelec/informatica/frame/


Data Modeling

(https://i.stack.imgur.com/b4sus.jpg)

Image Classification (ref) Image Captioning (ref)

https://media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs40537-021-00444-8/MediaObjects/40537_2021_444_Fig7_HTML.png
https://media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs40537-021-00444-8/MediaObjects/40537_2021_444_Fig7_HTML.png


Data Modeling

Sentiment Analysis (Movie Review)
The Batman (2022) is everything a 
superhero movie should be. (Positive)

Machine Translation
“How  are  you?” -> “எப்படி  
இருக்கிறரீ்கள்?"

Object Tracking in videos
Video

https://www.youtube.com/watch?v=zB_2q-UUZ4s&t=17s


Recurrent Neural Networks

- Looping network
- Parameter sharing across 

timesteps
- Derivatives aggregated across all 

time steps
- “Backpropagation through time 

(BPTT)”

(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



RNN Unrolled

(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

h-1



Slight Detour - Text Vectors

● One hot encoding
○ “Never gonna give you up” {N=5}

One Hot Encoding: Never = [1, 0, 0, 0, 0]

● Input/Post-processing: Word embedding
○ Efficient use of space (denser)
○ Can represent relationships

● Output: Probability Distribution
○ “Never gonna give you up” {N=5}

[Never, gonna, give, you up]
P(w)=[0.01, 0.03, 0.04, 0.05, 0.87]

“Never gonna give you up. Never gonna let you down” {N=8}
[Never, gonna, give, you, up, let, down]

P(w)=[0.01, 0.01, 0.01, 0.03, 0.44, 0.03, 0.03, 0.44]

https://nlp.stanford.edu/projects/glove/
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RNN example: prediction
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RNN Problems → Architectural Solutions

x1

L2
● After many iterations

○ Short Term Memory 
○ Vanishing Gradients
○ LSTMs and GRUs combat 

these issues

● Early training for tasks like 
generation

○ Lack of exploration - noise
○ Cold start - teacher forcing

● Long-term dependencies may be 
reduced or lost

○ Attention (later lectures)
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Dropout in sequence models

1. Different mask on each timestep (naive, available in PyTorch LSTM)
2. Same mask on each timestep for input/output connections (locked dropout)
3. Variational dropout - same mask on each time step for input/output and recurrent connections

Gal, Yarin, and Zoubin Ghahramani. "A theoretically grounded application of dropout in recurrent neural networks." Advances in neural information 
processing systems 29 (2016).


