Deep Neural Networks Convolutional Networks III

Bhiksha Raj
Spring 2024

Attendance: @728

Outline

- Quick recap
- Back propagation through a CNN
- Modifications: Transposition, scaling, rotation and deformation invariance
- Segmentation and localization
- Some success stories
- Some advanced architectures
- Resnet
- Densenet

Story so far

- Pattern classification tasks such as "does this picture contain a cat", or "does this recording include HELLO" are best performed by scanning for the target pattern
- Scanning an input with a network and combining the outcomes is equivalent to scanning with individual neurons hierarchically
- First level neurons scan the input
- Higher-level neurons scan the "maps" formed by lower-level neurons
- A final "decision" unit or layer makes the final decision
- Deformations in the input can be handled by "pooling"
- For 2-D (or higher-dimensional) scans, the structure is called a convnet
- For 1-D scan along time, it is called a Time-delay neural network

Recap: The general architecture of a convolutional neural network

- A convolutional neural network comprises of "convolutional" and optional "pooling" layers
- Followed by an MLP with one or more layers

Recap: A convolutional layer

- The computation of each output map has two stages
- Computing an affine map, by convolution of a filter (representing a pattern of weights) over maps in the previous layer
- Each affine map has, associated with it, a learnable filter
- An activation that operates point-wise on the output of the convolution

Recap: A convolutional layer

- The computation of each output map has two stages
- Computing an affine map, by convolution of a filter (representing a pattern of weights) over maps in the previous layer
- Each affine map has, associated with it, a learnable filter
- An activation that operates point-wise on the output of the convolution

Recap: Convolution

- Each affine output map is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: Convolution

- Each affine output is computed from multiple input maps simultaneously
- There are as many weights (for each output map) as
size of the filter x no. of maps in previous layer

Recap: A convolutional layer

- The computation of each output map has two stages
- Computing an affine map, by convolution of a filter (representing a pattern of weights) over maps in the previous layer
- Each affine map has, associated with it, a learnable filter
- An activation that operates on the output of the convolution

- Input maps $Y(l-1, *)$ are convolved with several filters to generate the affine maps $Z(l, *)$
- Each filter consists of a set of square patterns of weights, with one set for each map in $Y(l-1, *)$
- We get one affine map per filter
- A point-wise activation function $f(z)$ is applied to each map in $Z(l, *)$ to produce the activation maps $Y(l, *)$

Pseudocode: Vector notation

The weight $W(1, j)$ is a $3 \mathrm{D} \mathrm{D}_{1-1} \times \mathrm{K}_{1} \times \mathrm{K}_{1}$ tensor

$$
\begin{aligned}
& \mathbf{Y}(0)=\text { Image } \\
& \text { for } l=1: L \quad \# \text { layers operate on vector at }(\mathrm{x}, \mathrm{y}) \\
& \text { for } \mathrm{x}=1: \mathrm{W}_{1-1}-\mathrm{K}_{1}+1 \\
& \text { for } \mathrm{y}=1: \mathrm{H}_{1-1}-\mathrm{K}_{1}+1 \\
& \quad \text { for } j=1: \mathrm{D}_{1}
\end{aligned}
$$

$$
\text { segment }=Y\left(1-1,:, x: x+K_{1}-1, y: y+K_{1}-1\right) \text { \#3D tensor }
$$

$$
\mathbf{z}(l, j, x, y)=W(l, j) . \text { segment }+b(l, j) \# t e n s o r ~ p r o d . ~
$$

$$
\mathbf{Y}(1, j, x, y)=\operatorname{activation}(z(l, j, x, y))
$$

Y = softmax (\{Y(L,:,:,:)\})

Poll 1 (@723)

Select all true statements about a convolution layer.

- The number of "channels" in any filter equals the number of input maps (output maps from the previous layer)
- The number of "channels" in any filter equals the number of output maps (affine maps output by the layer)
- The number of filters equals the number of input maps
- The number of filters equals the number of output maps

Poll 1

Select all true statements about a convolution layer.

- The number of "channels" in any filter equals the number of input maps (output maps from the previous layer)
- The number of "channels" in any filter equals the number of output maps (affine maps output by the layer)
- The number of filters equals the number of input maps
- The number of filters equals the number of output maps

Pooling

- Convolutional (and activation) layers are followed intermittently by "pooling" layers
- Often, they alternate with convolution, though this is not necessary

Recall: Max pooling

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input with a "max-pooling filter"

Recap: Pooling and downsampling layer

Image assumes pooling with window of size 2×2

- Input maps $Y(l-1, *)$ are operated on individually by pooling operations to produce the pooled maps $Y(l, *)$

Recap: Max Pooling layer at layer l

a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

```
Max pooling
```

$$
\begin{aligned}
& \text { for } j=1: D_{1} \\
& \text { for } x=1: W_{l-1}-K_{1}+1 \\
& \text { for } y=1: H_{l-1}-K_{1}+1 \\
& \quad \text { pidx }(1, j, x, y)=\operatorname{maxidx}\left(Y\left(1-1, j, x: x+K_{1}-1, y: y+K_{1}-1\right)\right) \\
& \quad u(l, j, x, y)=Y(1-1, j, p i d x(l, j, m, n))
\end{aligned}
$$

Recall: Mean pooling

- Mean pooling computes the mean of the window of values
- As opposed to the max of max pooling

Recap: Mean Pooling layer at layer l

a) Performed separately for every map (j)

```
Mean pooling
for j = 1:D D
    for x = 1:W Wl-1
    for y = 1:H H1-1}-\mp@subsup{K}{1}{}+
    u(l,j,x,y) = mean(Y(l-1,j,x:x+K
```


Recap: Resampling

- We can also proportionately decrease or increase the size of the maps by dropping or inserting zeros
- Downsampling: Drop S-1 rows/columns between rows/columns
- Reduces the size of the maps by S on each side
- Upsampling: Insert S-1 rows/columns of zeros between adjacent entries
- Increases the size of the map by S on each side

The Downsampling Layer

- A downsampling layer simply "drops" $S-1$ of S rows and columns for every map in the layer
- Effectively reducing the size of the map by factor S in every direction

The Upsampling Layer

- A upsampling (or dilation) layer simply introduces $S-1$ rows and columns for every map in the layer
- Effectively increasing the size of the map by factor S in every direction
- Used explicitly to increase the map size by a uniform factor

Downsampling in practice

- In practice, the downsampling is combined with the layers just before it by performing the operations with a stride > 1
- Could be convolutional or pooling layers

Convolution with downsampling

The weight $W(1, j)$ is now a $4 \mathrm{D} \mathrm{D}_{1} \times \mathrm{D}_{1-1} \times \mathrm{K}_{1} \times \mathrm{K}_{1}$ tensor The product in blue is a tensor inner product with a scalar output
$\mathbf{Y}(0)=$ Image
for $l=1: L \quad \#$ layers operate on vector at (x, y)

Max Pooling with Downsampling

Max pooling

```
for j = 1:D1
```

 m = 1
 for \(\mathrm{x}=1:\) stride(l): \(\mathrm{W}_{1-1}-\mathrm{K}_{1}+1\)
 \(\mathrm{n}=1\)
 for \(y=1:\) stride (l): \(\mathrm{H}_{1-1}-\mathrm{K}_{1}+1\)
 pidx (l,j,m,n) = maxidx(Y(l-1,j,x:x+K \(\left.\left.-1, y: y+K_{1}-1\right)\right)\)
 \(\mathbf{Y}(1, j, m, n)=Y(l-1, j, p i d x(l, j, m, n))\)
 \(\mathrm{n}=\mathrm{n}+1\)
 \(\mathrm{m}=\mathrm{m}+1\)

Mean Pooling with Downsampling

Mean pooling

```
for j = 1:D
```

$$
\begin{aligned}
& m=1 \\
& \text { for } x=1: \operatorname{stride}(1): W_{1-1}-K_{1}+1 \\
& n=1 \\
& \quad \text { for } y=1: \operatorname{stride}(1): H_{1-1}-K_{1}+1 \\
& \quad Y(l, j, m, n)=\operatorname{mean}\left(Y\left(l-1, j, x: x+K_{1}-1, y: Y+K_{1}-1\right)\right) \\
& n=n+1 \\
& m=m+1
\end{aligned}
$$

The Upsampling Layer

- A upsampling layer is generally followed by a CNN layer
- It is not useful to follow it by a pooling layer
- It is also not useful as the final layer of a CNN

The Upsampling Layer

- Upsampling layers followed by a convolutional layer are also often viewed as convolving with a fractional stride
- Upsampling by factor S is the same as striding by factor $1 / S$
- Also called "transpose convolutions" for reasons we won't get into here

* with resampling

- Although the resampling operation is generally merged with convolutions or pooling (by changing their stride) in the forward pass in practical implementations...
- ...It is more convenient to think of the two as separate operations in the backward pass
- More on this later...

Recap: A CNN, end-to-end

- Typical image classification task
- Assuming maxpooling..
- Input: RBG images
- Will assume color to be generic

Recap: A CNN, end-to-end

$$
\begin{gathered}
W_{m}: 3 \times L \times L \\
m=1 \ldots K_{1} \\
\square
\end{gathered}
$$

$$
\begin{aligned}
& W_{m}: K_{2} \times L_{3} \times L_{3} \\
& m=1 \ldots K_{3}
\end{aligned}
$$

convolve

- Several convolutional and pooling layers.
- The output of the last layer is "flattened" and passed through an MLP

- The weights of the neurons in the final MLP
- The (weights and biases of the) filters for every convolutional layer

Recap: Learning the CNN

- Training is as in the case of the regular MLP
- The only difference is in the structure of the network
- Training examples of (Image, class) are provided
- Define a loss:
- Define a divergence between the desired output and true output of the network in response to any input
- The loss aggregates the divergences of the training set
- Network parameters are trained to minimize the loss
- Through variants of gradient descent
- Gradients are computed through backpropagation

Defining the loss

- The loss for a single instance

Recap: Problem Setup

- Given a training set of input-output pairs $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right), \ldots,\left(X_{T}, d_{T}\right)$
- The divergence on the $\mathrm{i}^{\text {th }}$ instance is $\operatorname{div}\left(Y_{i}, d_{i}\right)$
- The aggregate Loss

$$
\text { Loss }=\frac{1}{T} \sum_{i=1}^{T} \operatorname{div}\left(Y_{i}, d_{i}\right)
$$

- Minimize Loss w.r.t $\left\{W_{m}, b_{m}\right\}$
- Using gradient descent

Recap: The derivative

Total training loss:

$$
\operatorname{Loss}=\frac{1}{T} \sum_{i} \operatorname{Div}\left(Y_{i}, d_{i}\right)
$$

- Computing the derivative

Total derivative:

$$
\frac{d \operatorname{Loss}}{d w}=\frac{1}{T} \sum_{i} \frac{d \operatorname{Div}\left(Y_{i}, d_{i}\right)}{d w}
$$

Recap: The derivative

Total training loss:

$$
\text { Loss }=\frac{1}{T} \sum_{i} \operatorname{Div}\left(Y_{i}, d_{i}\right)
$$

- Computing the derivative

Total derivative:

$$
\frac{d \operatorname{Loss}}{d w}=\frac{1}{T} \frac{d \operatorname{Div}\left(Y_{i}, d_{i}\right)}{d w}
$$

Backpropagation: Final flat layers

- For each training instance: First, a forward pass through the net
- Then the backpropagation of the derivative of the divergence
- Backpropagation continues in the usual manner until the computation of the derivative of the divergence w.r.t the inputs to the first "flat" layer
- Important to recall: the first flat layer is only the "unrolling" of the maps from the final convolutional layer

Backpropagation: Convolutional and

 Pooling layers

- Backpropagation from the flat MLP requires special consideration of
- The shared computation in the convolution layers
- The pooling layers

Backpropagating through the convolution

$$
\begin{array}{|}
\nabla_{Y(l-1)} \operatorname{Div}() & \nabla_{Z(l)} \operatorname{Div}() \quad \nabla_{Y(l)} \operatorname{Div}() \\
\hline
\end{array}
$$

- Convolution layers:
- We already have the derivative w.r.t (all the elements of) activation map $Y(l, *)$
- Having backpropagated it from the divergence
- We must backpropagate it through the activation to compute the derivative w.r.t. $Z(l, *)$ and further back to compute the derivative w.r.t the filters and $Y(l-1, *)$

Backprop: Pooling layer

- Pooling layers:
- We already have the derivative w.r.t $Y(l, *)$
- Having backpropagated it from the divergence
- We must compute the derivative w.r.t $Y(l-1, *)$

Backpropagation: Convolutional and Pooling layers

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
- Obtained as a result of backpropagating through the flat MLP
- Required:
- For convolutional layers:
- How to compute the derivatives w.r.t. the affine combination $Z(l)$ maps from the activation output maps $Y(l)$
- How to compute the derivative w.r.t. $Y(l-1)$ and $w(l)$ given derivatives w.r.t. Z(l)
- For pooling layers:
- How to compute the derivative w.r.t. $Y(l-1)$ given derivatives w.r.t. $Y(l)$

Backpropagation: Convolutional and Pooling layers

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
- Obtained as a result of backpropagating through the flat MLP
- Required:
- For convolutional layers:
- How to compute the derivatives w.r.t. the affine combination $Z(l)$ maps from the activation output maps $Y(l)$
- How to compute the derivative w.r.t. $Y(l-1)$ and $w(l)$ given derivatives w.r.t. $Z(l)$
- For pooling layers:
- How to compute the derivative w.r.t. $Y(l-1)$ given derivatives w.r.t. $Y(l)$

Backpropagation: Convolutional and Pooling layers

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
- Obtained as a result of backpropagating through the flat MLP
- Required:
- For convolutional layers:
- How to compute the derivatives w.r.t. the affine combination $Z(l)$ maps from the activation output maps $Y(l)$
- How to compute the derivative w.r.t. $Y(l-1)$ and $w(l)$ given derivatives w.r.t. $Z(l)$
- For pooling layers:
- How to compute the derivative w.r.t. $Y(l-1)$ given derivatives w.r.t. $Y(l)$

Backpropagating through the activation

- Forward computation: The activation maps are obtained by point-wise application of the activation function to the affine maps

$$
y(l, m, x, y)=f(z(l, m, x, y))
$$

- The affine map entries $z(l, m, x, y)$ have already been computed via convolutions over the previous layer

Backpropagating through the activation

$$
\begin{gathered}
y(l, m, x, y)=f(z(l, m, x, y)) \\
\frac{d D i v}{d z(l, m, x, y)}=\frac{d D i v}{d y(l, m, x, y)} f^{\prime}(z(l, m, x, y))
\end{gathered}
$$

- Backward computation: For every map $Y(l, m)$ for every position (x, y), we already have the derivative of the divergence w.r.t. $y(l, m, x, y)$
- Obtained via backpropagation
- We obtain the derivatives of the divergence w.r.t. $z(l, m, x, y)$ using the chain rule:

$$
\frac{d D i v}{d z(l, m, x, y)}=\frac{d D i v}{d y(l, m, x, y)} f^{\prime}(z(l, m, x, y))
$$

- Simple component-wise computation

Backpropagation: Convolutional and Pooling layers

- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
- Obtained as a result of backpropagating through the flat MLP
- Required:
- For convolutional layers:
\checkmark How to compute the derivatives w.r.t. the affine combination $Z(l)$ maps from the activation output maps $Y(l)$
- How to compute the derivative w.r.t. $Y(l-1)$ and $w(l)$ given derivatives w.r.t. $Z(l)$
- For pooling layers:
- How to compute the derivative w.r.t. $Y(l-1)$ given derivatives w.r.t. $Y(l)$

Backpropagating through affine map

- Forward affine computation:
- Compute affine maps $\mathrm{z}(l, n, x, y)$ from previous layer maps $y(l-1, m, x, y)$ and filters $w_{l}(m, n, x, y)$
- Backpropagation: Given $\frac{d D i v}{d z(l, n, x, y)}$
- Compute derivative w.r.t. $y(l-1, m, x, y)$
- Compute derivative w.r.t. $w_{l}(m, n, x, y)$

Backpropagating through affine map

- Forward affine computation:
- Compute affine maps $\mathrm{z}(l, n, x, y)$ from previous layer maps $y(l-1, m, x, y)$ and filters $w_{l}(m, n, x, y)$
- Backpropagation: Given $\frac{d D i v}{d z(l, n, x, y)}$
- Compute derivative w.r.t. $y(l-1, m, x, y)$
- Compute derivative w.r.t. $w_{l}(m, n, x, y)$

Backpropagating through the affine map

- We already have the derivative w.r.t $Z(l, *)$
- Having backpropagated it past $Y(l, *)$

Backpropagating through the affine map

$\nabla_{Y(l-1)} \operatorname{Div}()$
 $\nabla_{Z(l)} \operatorname{Div}() \quad \nabla_{Y(l)} \operatorname{Div}()$

:

- We already have the derivative w.r.t $Z(l, *)$
- Having backpropagated it past $Y(l, *)$
- We must compute the derivative w.r.t $Y(l-1, *)$

Dependency between $Z(I, n)$ and $Y\left(l-1,{ }^{*}\right)$

$\nabla_{Y(l-1)} \operatorname{Div}()$
$\nabla_{Z(l)} \operatorname{Div}()$

- Each $Y(l-1, m)$ map/channel influences $Z(l, n)$ through the m th "plane" (channel) of the nth filter $w_{l}(m, n)$

Dependency between $\mathrm{Z}(\mathrm{I}, \mathrm{n})$ and $\mathrm{Y}\left(\mathrm{l}-1,{ }^{*}\right)$

$\nabla_{Y(l-1)} \operatorname{Div}()$ $\nabla_{Z(l)} \operatorname{Div}()$

- Each $Y(l-1, m)$ map/channel influences $Z(l, n)$ through the m th "plane" (channel) of the nth filter $w_{l}(m, n)$

Dependency between $\mathrm{Z}\left(1,{ }^{*}\right)$ and $\mathrm{Y}\left(\mathrm{I}-1,{ }^{*}\right)$

$\nabla_{Y(l-1)} \operatorname{Div}()$ $\nabla_{Z(l)} \operatorname{Div}()$

- Each $Y(l-1, m)$ map/channel influences $Z(l, n)$ through the m th "plane" (channel) of the nth filter $w_{l}(m, n)$

Dependency between $\mathrm{Z}\left(\mathrm{I},{ }^{*}\right)$ and $\mathrm{Y}\left(\mathrm{I}-1,{ }^{*}\right)$

$\nabla_{Y(l-1)} \operatorname{Div}()$ $\nabla_{Z(l)} \operatorname{Div}()$

- Each $Y(l-1, m)$ map/channel influences $Z(l, n)$ through the m th "plane" (channel) of the nth filter $w_{l}(m, n)$

Dependency diagram for a single map

- Each $Y(l-1, m)$ map/channel influences $Z(l, n)$ through the m th "plane" (channel) of the nth filter $w_{l}(m, n)$
- $\quad Y(l-1, m, *, *)$ influences the divergence through all $Z(l, n, *, *)$ maps

Dependency diagram for a single map

$$
\nabla_{Y(l-1, m)} \operatorname{Div}(.)=\sum_{n} \nabla_{Z(l, n)} \operatorname{Div}(.) \underbrace{\nabla_{Y(l-1, m)} Z(l, n)}
$$

- Need to compute $\nabla_{Y(l-1, m)} Z(l, n)$, the derivative of $Z(l, n)$ w.r.t. $Y(l-1, m)$ to complete the computation of the formula

Dependency diagram for a single map

$\nabla_{Y(l-1)} \operatorname{Div}()$ $\nabla_{Z(l)} \operatorname{Div}()$

$$
\nabla_{Y(l-1, m)} \operatorname{Div}(.)=\sum_{n} \nabla_{Z(l, n)} \operatorname{Div}(.) \underbrace{\nabla_{Y(l-1, m)} Z(l, n)}
$$

- Need to compute $\nabla_{Y(l-1, m)} Z(l, n)$, the derivative of $Z(l, n)$ w.r.t. $Y(l-1, m)$ to complete the computation of the formula

BP: Convolutional layer

1_{x}	1_{n}	1_{x}	0	0
0_{x}	1_{x}	1_{0}	1	0
0_{n}	0_{n}	1_{x}	1	1
0	0	1	1	0
0	1	1	0	0

$$
Y(l-1, m)
$$

Convolved
Feature $Z(l, n)$

- Each $Y(l-1, m, x, y)$ affects several $z\left(l, n, x^{\prime}, y^{\prime}\right)$ terms

BP: Convolutional layer

Convolved

$$
Y(l-1, m)
$$

Feature $Z(l, n)$

- Each $Y(l-1, m, x, y)$ affects several $z\left(l, n, x^{\prime}, y^{\prime}\right)$ terms

BP: Convolutional layer

- Each $Y(l-1, m, x, y)$ affects several $z\left(l, n, x^{\prime}, y^{\prime}\right)$ terms
- Affects terms in all l th layer Z maps

BP: Convolutional layer

$N=$ No. of filters
$Z(l, N)$
Summing over all Z maps

$$
\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} \frac{d z\left(l, n, x^{\prime}, y^{\prime}\right)}{d Y(l-1, m, x, y)}
$$

BP: Convolutional layer

$$
Z(l, 1)
$$

$Z(l, 2)$
$\mathrm{N}=$ No. of filters
$Z(l, N)$
Summing over all Z maps

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

Assuming indexing begins at 0

- Compute how each x, y in Y influences various locations of z

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
z(l, n, 2,1)+=Y(l-1, m, 2,2) w_{l}(m, n, 0,1)
$$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, 2,2) w_{l}\left(m, n, 2-x^{\prime}, 2-y^{\prime}\right)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, x, y) w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

- Note: The coordinates of $z(l, n)$ and $w_{l}(m, n)$ sum to the coordinates of $Y(l-1, m)$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, x, y) w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

$$
\frac{d z\left(l, n, x^{\prime}, y^{\prime}\right)}{d Y(l-1, m, x, y)}=w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

BP: Convolutional layer

$$
Z(l, 1)
$$

$Z(l, 2)$
$Z(l, N)$

Summing over all Z maps

$$
\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} \frac{d z\left(l, n, x^{\prime}, y^{\prime}\right)}{d Y(l-1, m, x, y)}
$$

BP: Convolutional layer

$$
\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

Poll 2 (@724, @725)

In order to compute the derivative at a single affine element $Y(1, m, x, y)$, we must consider the contributions of every position of every affine map at the next layer: True or false

- True
- False

The derivative for a single affine element $\mathrm{Y}(\mathrm{I}, \mathrm{m}, \mathrm{x}, \mathrm{y})$ will require summing over every position of every Z map in the next layer: True of false

- True
- False

Poll 2

In order to compute the derivative at a single affine element $\mathrm{Y}(\mathrm{I}, \mathrm{m}, \mathrm{x}, \mathrm{y})$, we must consider the contributions of every position of every affine map at the next layer: True or false

- True
- False

The derivative for an single affine element $\mathrm{Y}(1, \mathrm{~m}, \mathrm{x}, \mathrm{y})$ will require summing over every position of every Z map in the next layer: True of false

- True
- False

Computing derivative for $Y(l-1, m, *, *)$

- The derivatives for every element of every map in $Y(l-1)$ by direct implementation of the formula:

$$
\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

- But this is actually a convolution!
- Let's see how

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
\begin{gathered}
z(l, n, 0,0)+=Y(l-1, m, 2,2) w_{l}(m, n, 2,2) \\
\frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 0,0)} w_{l}(m, n, 2,2)
\end{gathered}
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
z(l, n, 1,0)+=Y(l-1, m, 2,2) w_{l}(m, n, 1,2)
$$

$$
\frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 1,0)} w_{l}(m, n, 1,2)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& z(l, n, 2,0)+=Y(l-1, m, 2,2) w_{l}(m, n, 0,2) \\
& \frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 2,0)} w_{l}(m, n, 0,2)
\end{aligned}
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
Y(l-1, m, \mathrm{x}, \mathrm{y})
$$

0,0	1,0	2,0
0,1	1,1	2,1
0,2	1,2	2,2
$w_{l}(m, n, *, *)$		

\otimes	$Y(l-1, m, \mathrm{x}, \mathrm{y})$			
	0,1			
		(2,2)		

$z\left(l, n, x^{\prime}, y^{\prime}\right)$		
0,0	1,0	2,0
0,1		

$$
\begin{aligned}
& z(l, n, 0,1)+=Y(l-1, m, 2,2) w_{l}(m, n, 2,1) \\
& \frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 0,1)} w_{l}(m, n, 2,1)
\end{aligned}
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& z(l, n, 1,1)+=Y(l-1, m, 2,2) w_{l}(m, n, 1,1) \\
& \frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 1,1)} w_{l}(m, n, 1,1)
\end{aligned}
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& z(l, n, 2,1)+=Y(l-1, m, 2,2) w_{l}(m, n, 0,1) \\
& \frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 2,1)} w_{l}(m, n, 0,1)
\end{aligned}
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
Y(l-1, m, \mathrm{x}, \mathrm{y})
$$

$$
z(l, n, 0,2)+=Y(l-1, m, 2,2) w_{l}(m, n, 2,0)
$$

$$
\frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 0,2)} w_{l}(m, n, 2,0)
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& z(l, n, 1,2)+=Y(l-1, m, 2,2) w_{l}(m, n, 2,1) \\
& \frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 1,2)} w_{l}(m, n, 1,0)
\end{aligned}
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& z(l, n, 2,2)+=Y(l-1, m, 2,2) w_{l}(m, n, 0,0) \\
& \frac{d D i v}{d Y(l-1, m, 2,2)}+=\frac{d D i v}{d z(l, n, 2,2)} w_{l}(m, n, 0,0)
\end{aligned}
$$

How a single $Y(l-1, m, x, y)$ influences $z\left(l, n, x^{\prime}, y^{\prime}\right)$

$d D i v / d Y(l-1, m, x, y)$

0,0	1,0	2,0
0,1	1,1	2,1
0,2	1,2	2,2
	$w_{l}(m, n, *, *)$	

$d \operatorname{Div} / d z\left(l, n, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$

0,0	1,0	2,0
0,1	1,1	2,1
0,2	1,2	2,2

$$
\frac{d D i v}{d Y(l-1, m, 2,2)}=\sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, 2-\mathrm{x}^{\prime}, 2-\mathrm{y}^{\prime}\right)
$$

- The derivative at $Y(l-1, m, 2,2)$ is the sum of component-wise product of the filter elements (shown by color) and the elements of the derivative at $z(l, m, . .$.

Derivative at $Y(l-1, m, x, y)$ from a single $Z(l, n)$ map

$d D i v / d z\left(l, n, x^{\prime}, y^{\prime}\right)$

$$
\begin{array}{|l|l|l|}
\hline x-2 & x-1 & x \\
y-2 & y-2 & y-2 \\
\hline x-2 & x-1 & x \\
y-1 & y-1 & y-1 \\
\hline \begin{array}{l}
x-2 \\
y
\end{array} & x-1 & x, y \\
\hline
\end{array}
$$

$$
z\left(l, n, x^{\prime}, y^{\prime}\right)+=Y(l-1, m, x, y) w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

$$
\frac{d D i v}{d Y(l-1, m, x, y)}+=\sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, x-y^{\prime}\right)
$$

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

$w_{l}(m, n, *, *)$	

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

$w_{l}(m, n, *, *)$	

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

$w_{l}(m, n, *, *)$	

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

$\frac{\partial D i v}{\partial y(l-1, m, x, y)}$

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

$w_{l}(m, n, *, *)$	

Derivative at $Y(l-1, m)$ from a single $Z(l, n)$ map

$w_{l}(m, n, *, *)$	

BP: Convolutional layer

$$
\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

The actual convolutions

- The D_{l} affine maps are produced by convolving with D_{l} filters

The actual convolutions

- The D_{l} affine maps are produced by convolving with D_{l} filters
- The $m^{\text {th }} Y$ map always convolves the $m^{\text {th }}$ plane of the filters
- The derivative for the $m^{\text {th }} Y$ map will invoke the $m^{\text {th }}$ plane of $a l l$ the filters

$$
\frac{\partial D i v}{\partial z\left(l, n, x^{\prime}, y^{\prime}\right)}
$$

In reality, the derivative at each (x, y) location is obtained from all z maps

$$
n=D_{l}
$$


```
\[
w_{l}(m, n, x, y)
\]
\[
n=1
\]
```



```
\(\bullet\)
```

$$
n=D_{l}
$$


```
\[
w_{l}(m, n, x, y)
\]
\[
n=1
\]
```



```
\(\bullet\)
```



```
\(=\)
```


$\frac{\partial D i v}{\partial z\left(l, n, x^{\prime}, y^{\prime}\right)}$


```
wl}(m,n,x,y
n=1
```



```
\[
w_{l}(m, n, x, y)
\]
\[
n=1
\]
```


$\frac{\partial D i v}{\partial z\left(l, n, x^{\prime}, y^{\prime}\right)}$

\bullet
-


```
\[
w_{l}(m, n, x, y)
\]
\[
n=1
\]
```



```
\[
n=D_{l}
\]
```



```
\[
\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
\]
```


$$
n=D_{l}
$$

$$
n=1
$$

$\boldsymbol{n}=2$
flip
i

$\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x \prime, y \prime} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)$
$w_{l}(m, n, K+1-x, K+1-y)$
$\frac{\partial \text { Div }}{\partial z\left(l, n, x^{\prime}, y^{\prime}\right)}$

$\frac{\partial D i v}{\partial z\left(l, n, x^{\prime}, y^{\prime}\right)}$

$$
\begin{aligned}
& w_{l}(m, n, x, y) \\
& n=1 \\
& \boldsymbol{n}=\boldsymbol{D}_{\boldsymbol{l}} \\
& \frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x, y,} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
\end{aligned}
$$

$\frac{\partial D i v}{\partial z\left(l, n, x^{\prime}, y^{\prime}\right)}$

Computing the derivative for $Y(l-1, m)$

- This is just a convolution of the zero-padded $\frac{\partial D i v}{\partial z(l, n, x, y)}$ maps by the transposed and flipped filter
- After zero padding it first with $K-1$ zeros on every side

The size of the Y-derivative map

- We continue to compute elements for the derivative Y map as long as the (flipped) filter has at least one element in the (unpadded) derivative Zmap
- I.e. so long as the Y derivative is non-zero
- The size of the Y derivative map will be $(H+K-1) \times(W+K-1)$
- H and W are heidght and width of the Zmap
- This will be the size of the actual Y map that was originally convolved

The size of the Y-derivative map

- If the Y map was zero-padded in the forward pass, the derivative map will be the size of the zero-padded map
- The zero padding regions must be deleted before further backprop

Poll 3 (@726)

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer activation maps by backpropagation

- To compute the derivative w.r.t. the mth activation map of the Ith convolutional layer, we must select the mth "planes" of all the (l+1)th layer filters
- The selected filter planes must be flipped left-right and up-down
- They must convolve the derivative (maps) for the (l+1)th layer affine values
- The output of the convolution must be flipped back left-right and up-down

Poll 3

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer activation maps by backpropagation

- To compute the derivative w.r.t. the mth activation map of the Ith convolutional layer, we must select the mth "planes" of all the (l+1)th layer filters
- The selected filter planes must be flipped left-right and up-down
- They must convolve the derivative (maps) for the (l+1)th layer affine values
- The output of the convolution must be flipped back left-right and up-down

Overall algorithm for computing derivatives w.r.t. $Y(l-1)$

- Given the derivatives $\frac{d D i v}{d z(l, n, x, y)}$
- Compute derivatives using:

$$
\frac{d D i v}{d Y(l-1, m, x, y)}=\sum_{n} \sum_{x^{\prime}, y, y^{\prime}} \frac{d D i v}{d z\left(l, n, x^{\prime}, y^{\prime}\right)} w_{l}\left(m, n, x-x^{\prime}, y-y^{\prime}\right)
$$

Can be computed by convolution with flipped filter

Derivatives for a single layer l : Vector notation

\# The weight $W(1, m)$ is a $3 D D_{1-1} \times K_{1} \times K_{1}$
\# Assuming dz has already been obtained via backprop

```
dzpad = zeros (D D x ( }\mp@subsup{H}{1}{}+2(\mp@subsup{K}{1}{}-1))\times(\mp@subsup{W}{1}{}+2(\mp@subsup{K}{1}{}-1))) # zeropa
for j = 1:D D
    for i = 1:D D-1 # Transpose and flip
        Wflip(i,j,:,:) = flipLeftRight(flipUpDown(W(l,i,j,:,:)))
    dzpad(j, K
```

end

```
for j = 1:D D-1
    for x = 1:W W-1
    for y = 1:H H-1
        segment = dzpad(:, x:x+K_1, y: y + K K - 1) #3D tensor
        dy(l-1,j,x,y) = Wflip.segment #tensor inner prod.
```


Backpropagating through affine map

- Forward affine computation:
- Compute affine maps $\mathrm{z}(l, n, x, y)$ from previous layer maps $y(l-1, m, x, y)$ and filters $w_{l}(m, n, x, y)$
- Backpropagation: Given $\frac{d D i v}{d z(l, n, x, y)}$

Compute derivative w.r.t. $y(l-1, m, x, y)$
-Compute derivative w.r.t. $w_{l}(m, n, x, y)$

The derivatives for the weights

$$
\begin{equation*}
Y(l-1, m) \otimes w_{l}(m, n) \tag{l,n}
\end{equation*}
$$

$$
z(l, n, x, y)=\sum_{m} \sum_{x^{\prime}, y^{\prime}} w_{l}\left(m, n, x^{\prime}, y^{\prime}\right) y\left(l-1, m, x+x^{\prime}, y+y^{\prime}\right)+b_{l}(n)
$$

- Each weight $w_{l}\left(m, n, x^{\prime}, y^{\prime}\right)$ affects several $z(l, n, x, y)$ but only within a single affine ($z(l, n, *, *)$) map/channel
- And is also linked to several $y(l-1, m, x, y)$ but only within a single previous-layer output map/channel $y(l-1, m, *, *)$
- $w_{l}(m, n, *, *)$ connects $y(l-1, m, *, *)$ to $z(l, n, *, *)$
- Consider the contribution of one filter components: $w_{l}(m, n, i, j)\left(\right.$ e.g. $\left.w_{l}(m, n, 1,2)\right)$ in the above animation for illustration

Convolution: the contribution of a single weight

- Each affine output is computed from multiple input maps simultaneously
- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ within the nth output affine map

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

- Each weight $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$ in the nth output affine map
- Consider the contribution of one filter components: e.g. $w_{l}(m, n, 1,2)$

Convolution: the contribution of

 a single weight

The derivative for a single weight

- Each filter component $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$
- The derivative of each $z(l, n, x, y)$ w.r.t. $w_{l}(m, n, i, j)$ is given by

$$
\frac{d z(l, n, x, y)}{d w_{l}(m, n, i, j)}=y(l-1, m, x+i, y+j)
$$

- The final divergence is influenced by every $z(l, n, x, y)$
- The derivative of the divergence w.r.t $w_{l}(m, n, i, j)$ must sum over all $z(l, n, x, y)$ terms it influences

$$
\frac{d D i v}{d w_{l}(m, n, i, j)}=\sum_{x, y} \frac{d D i v}{d z(l, n, x, y)} \frac{d z(l, n, x, y)}{d w_{l}(m, n, i, j)}
$$

The derivative for a single weight

- Each filter component $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$
- The derivative of each $z(l, n, x, y)$ w.r.t. $w_{l}(m, n, i, j)$ is given by

$$
\frac{d z(l, n, x, y)}{d w_{l}(m, n, i, j)}=y(l-1, m, x+i, y+j)
$$

- The final divergence is influenced by every $z(l, n, x, y)$
- The derivati Already computed \approx r.t $w_{l}(m, n, i, j)$ must sum over all $z(l, n, x, y)$ terms it influences

$$
\frac{d D i v}{d w_{l}(m, n, i, j)}=\sum_{x, y} \frac{d D i v}{d z(l, n, x, y)} \frac{d z(l, n, x, y)}{d w_{l}(m, n, i, j)}
$$

The derivative for a single weight

$$
Y(l-1, m)
$$

- Each filter component $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$
- The derivative of each $z(l, n, x, y)$ w.r.t. $w_{l}(m, n, i, j)$ is given by

$$
\frac{d z(l, n, x, y)}{d w_{l}(m, n, i, j)}=y(l-1, m, x+i, y+j)
$$

- The final divergence is influend ad hy, oury_ $\left(\frac{1}{2} n, x, y\right)$
- The derivati Already computed $_$vor.t $w_{l}(m, n i, j)$ must sum over all $z(l, n, x, y)$ terms it influences

$$
\frac{d D i v}{d w_{l}(m, n, i, j)}=\sum_{x, y} \frac{d D i v}{d z(l, n, x, y)} \frac{d z(l, n, x, y)}{d w_{l}(m, n, i, j)}
$$

The derivative for a single weight

- Each filter component $w_{l}(m, n, i, j)$ affects several $z(l, n, x, y)$
- The derivative of each $z(l, n, x, y)$ w.r.t. $w_{l}(m, n, i, j)$ is given by

$$
\frac{d z(l, n, x, y)}{d w_{l}(m, n, i, j)}=y(l-1, m, x+i, y+j)
$$

- The final divergence is influenced by every $z(l, n, x, y)$
- The derivative of the divergence w.r.t $w_{l}(m, n, i, j)$ must sum over all $z(l, n, x, y)$ terms it influences

$$
\frac{d D i v}{d w_{l}(m, n, i, j)}=\sum_{x, v} \frac{d D i v}{d z(l, n, x, y)} y(l-1, m, x+i, y+j)
$$

The derivative for a single weight

But this too is a convolution

$$
\frac{d D i v}{d w_{l}(m, n, i, j)}=\sum_{x, y} \frac{d D i v}{d z(l, n, x, y)} y(l-1, m, x+i, y+j)
$$

- The derivatives for all components of all filters can be computed directly from the above formula
- To compute the derivative for $w_{l}(m, n, i, j)$, "place" the $d D i v / d z(l, n)$ map on $y(l-1, m)$ map positioned at (i, j) and compute the inner product
- In fact, it is just a convolution

$$
\frac{d D i v}{d w_{l}(m, n, i, j)}=\frac{d D i v}{d z(l, n)} \otimes y(l-1, m)
$$

- How?

Recap: Convolution

$z(l, n, x, y)=\sum_{m} \sum_{i=0}^{2} \sum_{j=0}^{2} w_{l}(m, n, i, j) y(l-1, m, x+i, y+j)+b_{l}(n)$

- Forward computation: Each filter produces an affine map

Recap: Convolution

$$
z(l, n, x, y)=\sum_{m} \sum_{i=0}^{2} \sum_{j=0}^{2} w_{l}(m, n, i, j) y(l-1, m, x+i, y+j)+b_{l}(n)
$$

- $Y(l-1, m)$ influences $Z(l, n)$ through $w_{l}(m, n)$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{88}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{89}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{90}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{91}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{92}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{93}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{94}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{95}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{96}$

The filter derivative

- The derivatives of the divergence w.r.t. every element of $Z(l, n)$ is known
- Must use them to compute the derivative for $w_{l}(m, n, *, *)^{97}$

The filter derivative

- The derivative of the $n^{\text {th }}$ affine map $Z(l, n)$ convolves with every output map $Y(l-1, m)$ of the $(l-1)^{\text {th }}$ layer, to get the derivative for $w_{l}(m, n)$, the $m^{\text {th }}$ "channel" of the $n^{\text {th }}$ filter

The filter derivative

If $Y(l-1, m)$ was zero padded in the forward pass, it must be zero padded for backprop

Poll 4 (@727)

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer filters using backpropagation

- The derivative for the mth plane of the nth filter is computed by convolving the mth input (l-1th) layer map with the nth output (lth) layer affine derivative map
- The output map must be flipped left-right/up-down before convolution

Poll 4

Select all statements that are true about how to compute the derivative of the divergence w.r.t lth layer filters using backpropagation

- The derivative for the mth plane of the nth filter is computed by convolving the mth input (l-1th) layer map with the nth output (lth) layer affine derivative map
- The output map must be flipped left-right/up-down before convolution

Derivatives for the filters at layer l : Vector notation

```
# The weight W(l,j)is a 3D D D 1-1 }\times\mp@subsup{K}{1}{}\times\mp@subsup{K}{1}{
```

\# Assuming that derivative maps have been upsampled
\# if stride > 1
\# Also assuming y map has been zero-padded if this was
\# also done in the forward pass
\# The width and height of the dz map are W and H

```
for n = 1:D D
    for x = 1:K
    for y = 1:K
    for m = 1:D D l-1
        dw (l,m,n,x,y) = dz(l,n,:,:). #dot product
        y(1-1,m,x:x+H-1,y:y+W-1)
```


Derivatives through a convolutional layer

- The entire process is simpler if we simply look at it through code
- Through the reapplication of two simple rules:
- For any computation of the form

$$
y=\sigma(z)
$$

- The loss derivative for z given the loss derivative of y is

$$
\frac{d L}{d z}=\frac{d L}{d y} \sigma^{\prime}(z)
$$

- For any computation in the forward pass

$$
z=w y
$$

- The backward computation to compute loss derivatives for the terms on the right, given loss derivatives to the left is

$$
d L / d y+=w d L / d z ; d L / d w+=y d L / d z
$$

- Since this is "backpropgation", all computations are reversed

CNN: Forward

$$
\begin{aligned}
& \mathrm{Y}(0,:, \text {, : })=\text { Image } \\
& \text { for } 1=1: L \quad \# \text { layers operate on vector at }(x, y) \\
& \text { for } x=1: W_{1-1}-K_{1}+1 \\
& \text { for } y=1: H_{1-1}-K_{1}+1 \\
& \text { for } j=1: D_{1} \\
& \text { Switching to 1-based } \\
& \text { indexing with appropriate } \\
& \text { adjustments } \\
& z(l, j, x, y)=0 \\
& \text { for } i=1: D_{1-1} \\
& \text { for } x^{\prime}=1: K_{1} \\
& \text { for } Y^{\prime}=1: K_{1} \\
& z(l, j, x, y)+=w\left(l, j, i, x^{\prime}, Y^{\prime}\right) \\
& Y\left(1-1, i, x+x^{\prime}-1, y+y^{\prime}-1\right) \\
& Y(l, j, x, y)=\operatorname{activation(z(l,j,x,y))} \\
& Y=\operatorname{softmax}(Y(L,:, 1,1) \ldots Y(L,:, W-K+1, H-K+1))
\end{aligned}
$$

Backward layer l

```
dw(l) = zeros(D ( }\mp@subsup{\textrm{I}}{1}{}\times\mp@subsup{D}{1-1}{}x\mp@subsup{K}{1}{}x\mp@subsup{K}{1}{}
dY(l-1) = zeros(D (D-1 xW l-1 xH l-1 )
for x = W W l-1 - K 
    for y = H H1-1}-\mp@subsup{K}{1}{}+1:downto:
    for j = D D :downto:1
        dz(l,j,x,y) = dY(l,j,x,y).f'(z(l,j,x,y))
        for i = D Dl-1}:downto:1
        for }\mp@subsup{\textrm{x}}{}{\prime}=\mp@subsup{K}{1}{}\mathrm{ :downto:1
        for }\mp@subsup{y}{}{\prime}=\mp@subsup{K}{1}{}:downto:
            dY(1-1,i,x+x' -1, y+y' -1) +=
                w(l,j,i, x', Y' ) dz (l,j,x,y)
            dw(l,j,i, (' , Y') +=
        dz(1,j,x,y)Y(l-1,i,x+x' -1, y+ y' -1)
```


Complete Backward (no pooling)

```
\(d Y(L)=d D i v / d Y(L)\)
for \(1=L: d o w n t o: 1\) \# Backward through layers
\(d w(1)=\operatorname{zeros}\left(D_{1} x D_{1-1} x K_{1} x K_{1}\right)\)
\(d Y(1-1)=z e r o s\left(D_{1-1} \times W_{1-1} \times H_{1-1}\right)\)
for \(x=W_{1-1}-K_{1}+1\) : downto: 1
    for \(y=H_{1-1}-\mathrm{K}_{1}+1\) :downto:1
        for \(j=D_{1}\) :downto:1
        \(d z(l, j, x, y)=d Y(l, j, x, y) . f^{\prime}(z(l, j, x, y))\)
        for \(i=D_{1-1}\) :downto:1
        for \(\mathrm{x}^{\prime}=\mathrm{K}_{1}\) :downto: 1
                for \(y^{\prime}=K_{1}\) :downto:1
                \(d Y\left(1-1, i, x+x^{\prime}-1, y+y^{\prime}-1\right)+=\)
                        w (l,j,i, \(\left.x^{\prime}, y^{\prime}\right) d z(l, j, x, y)\)
                dw (l,j,i, \(\left.x^{\prime}, y^{\prime}\right) ~+=\)
                \(d z(1, j, x, y) y\left(1-1, i, x+x^{\prime}-1, y+y^{\prime}-1\right)\)

\section*{Complete Backward (no pooling)}
```

dY(L) = dDiv/dY(L)
for l = L:downto:1 \# Backward through layers

```
\[
\begin{aligned}
& d w(l)=\operatorname{zeros}\left(D_{1} x D_{1-1} x K_{1} x K_{1}\right) \\
& d Y(1-1)=z \operatorname{eros}\left(D_{1-1} x W_{1-1} \times H_{1-1}\right) \\
& \text { for } \mathrm{x}=\mathrm{W}_{1-1}-\mathrm{K}_{1}+1 \text { : downto: } 1 \\
& \text { for } y=H_{1-1}-\mathrm{K}_{1}+1 \text { :downto:1 } \\
& \text { Multiple ways of recasting this } \\
& \text { as tensor/ vector operations. } \\
& \text { Will not discuss here } \\
& \text { for } j=D_{1} \text { :downto:1 } \\
& d z(l, j, x, y)=d Y(l, j, x, y) . f^{\prime}(z(l, j, x, y)) \\
& \text { for } i=D_{1-1} \text { :downto:1 } \\
& \text { for } x^{\prime}=K_{1} \text { :downto:1 } \\
& \text { for } y^{\prime}=K_{1} \text { :downto:1 } \\
& d Y\left(1-1, i, x+x^{\prime}-1, y^{\prime} y^{\prime}-1\right)+= \\
& w\left(l, j, i, x^{\prime}, y^{\prime}\right) d z(l, j, x, y) \\
& d w\left(l, j, i, x^{\prime}, y^{\prime}\right) \quad+= \\
& d z(1, j, x, y) y\left(1-1, i, x+x^{\prime}-1, y+y^{\prime}-z_{0}\right)
\end{aligned}
\]

\section*{Backpropagation: Convolutional layers}


\section*{- For convolutional layers:}

How to compute the derivatives w.r.t. the affine combination \(Z(l)\) maps from the activation output maps \(Y(l)\)
How to compute the derivative w.r.t. \(Y(l-1)\) and \(w(l)\) given derivatives w.r.t. \(Z(l)\)

\section*{Backpropagation: Convolutional and Pooling layers}
- Assumption: We already have the derivatives w.r.t. the elements of the maps output by the final convolutional (or pooling) layer
- Obtained as a result of backpropagating through the flat MLP
- Required:
- For convolutional layers:
- How to compute the derivatives w.r.t. the affine combination \(Z(l)\) maps from the activation output maps \(Y(l)\)
- How to compute the derivative w.r.t. \(Y(l-1)\) and \(w(l)\) given derivatives w.r.t. \(Z(l)\)
- For pooling layers:
- How to compute the derivative w.r.t. \(Y(l-1)\) given derivatives w.r.t. \(Y(l)\)

\section*{Pooling}

- Pooling "pools" groups of values to reduce jitter-sensitivity
- Scanning with a "pooling" filter
- The most common pooling is "Max" pooling

\section*{Max Pooling}

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input
\[
\begin{gathered}
P(l, m, i, j)=\underset{\substack{k \in\left\{i, i+K_{\text {loool }}-1\right\}, n \in\left\{j, j+K_{\text {loool }}-1\right\}}}{\operatorname{argmax}} Y(l-1, m, k, n) \\
Y(l, m, i, j)=Y(l-1, m, P(l, m, i, j))
\end{gathered}
\]

\section*{Max pooling}

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input
\[
\begin{gathered}
P(l, m, i, j)=\underset{\substack{k \in\left\{i, i+K_{\text {lpool }}-1\right\}, n \in\left\{j, j+K_{\text {lpool }}-1\right\}}}{\operatorname{argmax}} Y(l-1, m, k, n) \\
Y(l, m, i, j)=Y(l-1, m, P(l, m, i, j))
\end{gathered}
\]

\section*{Max pooling}

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input
\[
\begin{gathered}
P(l, m, i, j)=\underset{\substack{k \in\left\{i, i+K_{\text {lpool }}-1\right\}, n \in\left\{j, j+K_{\text {lpool }}-1\right\}}}{\operatorname{argmax}} Y(l-1, m, k, n) \\
Y(l, m, i, j)=Y(l-1, m, P(l, m, i, j))
\end{gathered}
\]

\section*{Max pooling}

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input
\[
\begin{gathered}
P(l, m, i, j)=\underset{\substack{k \in\left\{i, i+K_{\text {lpool }}-1\right\}, n \in\left\{j, j+K_{\text {lpool }}-1\right\}}}{\operatorname{argmax}} Y(l-1, m, k, n) \\
Y(l, m, i, j)=Y(l-1, m, P(l, m, i, j))
\end{gathered}
\]

\section*{Max pooling}

- Max pooling selects the largest from a pool of elements
- Pooling is performed by "scanning" the input
\[
\begin{gathered}
P(l, m, i, j)=\underset{\substack{k \in\left\{i, i+K_{\text {lpool }}-1\right\}, n \in\left\{j, j+K_{\text {lpool }}-1\right\}}}{\operatorname{argmax}} Y(l-1, m, k, n) \\
Y(l, m, i, j)=Y(l-1, m, P(l, m, i, j))
\end{gathered}
\]

\section*{Derivative of Max pooling}

\[
\frac{d D i v}{d y(l-1, m, k, l)}=\left\{\begin{array}{c}
\frac{d D i v}{d y(l, m, i, j)} \text { if }(k, l)=P(l, m, i, j) \\
0 \text { otherwise }
\end{array}\right.
\]
- Max pooling selects the largest from a pool of elements
\[
\begin{gathered}
P(l, m, i, j)=\underset{\substack{k \in\left\{i, i+K_{\text {lpool }}-1\right\}, n \in\left\{j, j+K_{\text {lpool }}-1\right\}}}{\operatorname{argmax}} Y(l-1, m, k, n) \\
y(l, m, i, j)=y(l-1, m, P(l, m, i, j))
\end{gathered}
\]

\section*{Max Pooling layer at layer \(l\)}
a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max
```

Max pooling
for j = 1:D D
for x = 1:W W l-1 }-\mp@subsup{K}{1}{}+
for y = 1:H H-1 - K ll
pidx(l,j,x,y) = maxidx(y(l-1,j,x:x+K
y(l,j,x,y) = y(l-1,j,pidx(l,j,x,y))

```

\section*{Derivative of max pooling layer at layer \(l\)}
a) Performed separately for every map (j).
*) Not combining multiple maps within a single max operation.
b) Keeping track of location of max

Max pooling

\[
\begin{aligned}
& d y(:,:,:)=\operatorname{zeros}\left(D_{1} \times W_{1} \times H_{1}\right) \\
& \text { for } j=1: D_{1} \\
& \text { for } \mathrm{x}=1: \mathrm{W}_{1} \\
& \text { for } y=1: H_{1} \\
& d y(l-1, j, p i d x(1, j, x, y)) \quad+=d y(1, j, x, y)
\end{aligned}
\]
"+=" because this entry may be selected in multiple adjacent overlapping windows

\section*{Mean pooling}

- Mean pooling compute the mean of a pool of elements
- Pooling is performed by "scanning" the input
\[
y(l, m, i, j)=\frac{1}{K_{\text {lpool }}^{2}} \sum_{\substack{k \in\left\{i, i+K_{\text {lpool }}-1\right\}, n \in\left\{j, j+K_{\text {lpool }}-1\right\}}} y(l-1, m, k, n)
\]

\section*{Derivative of mean pooling}

- The derivative of mean pooling is distributed over the pool
\(\begin{aligned} & k \in\left\{i, i+K_{\text {lpool }}-1\right\}, \\ & n \in\left\{j, j+K_{\text {lpool }}-1\right\}\end{aligned} d y(l-1, m, k, n)+=\frac{1}{K_{\text {lpool }}^{2}} d y(l, m, k, n)\)

\section*{Mean Pooling layer at layer \(l\)}

Mean pooling
```

for j = 1:D D \#Over the maps
for x = 1:W W l-1 }-\mp@subsup{K}{1}{}+1 \#\mp@subsup{K}{1}{}= pooling kernel siz
for y = 1:H H-1 - K +1
y(l,j,x,y) = mean(y(l-1,j,x:x+K

```

\section*{Derivative of mean pooling layer at layer \(l\)}

\section*{Mean pooling}
\[
\begin{aligned}
& \text { dy }(:,:,:)=\text { zeros }\left(D_{1} \times W_{1} \times H_{1}\right) \\
& \text { for } k=1: D_{1} \\
& \text { for } x=1: W_{l} \\
& \text { for } y=1: H_{l} \\
& \quad \text { for } i=1: K_{l p o o l} \\
& \quad \text { for } j=1: K_{l p o o l} \\
& \quad d y(1-1, k, p, x+i, y+j) \quad+=\left(1 / K_{l p o o l}^{2}\right) d y(l, k, x, y)
\end{aligned}
\]
"+=" because adjacent windows may overlap

\section*{Learning the network}

- Have shown the derivative of divergence w.r.t every intermediate output, and every free parameter (filter weights)
- Can now be embedded in gradient descent framework to learn the network
- Still missing one component... resampling

\section*{Story so far}
- The convolutional neural network is a supervised version of a computational model of mammalian vision
- It includes
- Convolutional layers comprising learned filters that scan the outputs of the previous layer
- Pooling layers that operate over groups of outputs from the convolutional layer to reduce network size
- The parameters of the network can be learned through regular back propagation
- Maxpooling layers must propagate derivatives only over the maximum element in each pool
- Other pooling operators can use regular gradients or subgradients
- Derivatives must sum over appropriate sets of elements to account for the fact that the network is, in fact, a shared parameter network```

