Deep Learning
 Recurrent Networks: 1 Spring 2024

Instructor: Bhiksha Raj

Attendance: @938

Modelling Series

- In many situations one must consider a series of inputs to produce an output
- Outputs too may be a series
- Examples: ..

What did I say?

"To be" or not "to be"??

- Speech Recognition
- Analyze a series of spectral vectors, determine what was said
- Note: Inputs are sequences of vectors. Output is a classification result

What is he talking about?

"Football" or "basketball"?

The Steelers, meanwhile, continue to struggle to make stops on defense. They've allowed, on average, 30 points a game, and have shown no signs of improving anytime soon.

- Text analysis
- E.g. analyze document, identify topic
- Input series of words, output classification output
- E.g. read English, output French
- Input series of words, output series of words

Should I invest..

To invest or not to invest?

- Note: Inputs are sequences of vectors. Output may be scalar or vector
- Should I invest, vs. should I not invest in X?
- Decision must be taken considering how things have fared over time

These are classification and prediction problems

- Consider a sequence of inputs
- Input vectors
- Produce one or more outputs
- This can be done with neural networks
- Obviously

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
- Output layer too may have many neurons
- But will represent everything by simple boxes
- Each box actually represents an entire layer with many units

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
- Output layer too may have many neurons
- But will represent everything by simple boxes
- Each box actually represents an entire layer with many units

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
- Output layer too may have many neurons
- But will represent everything as simple boxes
- Each box actually represents an entire layer with many units

The stock prediction problem...

To invest or not to invest?

- Stock market
- Must consider the series of stock values in the past several days to decide if it is wise to invest today

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

The stock predictor network

- The sliding predictor
- Look at the last few days
- This is just a convolutional neural net applied to series data
- Also called a Time-Delay neural network

Finite-response model

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

The stock predictor

- This is a finite response system
- Something that happens today only affects the output of the system for N days into the future
- N is the width of the system

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-N}\right)
$$

Finite-response model

- Something that happens today only affects the output of the system for N days into the future
- Predictions consider N days of history
- To consider more of the past to make predictions, you must increase the "history" considered by the system

Finite-response

- Problem: Increasing the "history" makes the network more complex
- No worries, we have the CPU and memory
- Or do we?

Systems often have long-term dependencies

- Longer-term trends -
- Weekly trends in the market
- Monthly trends in the market
- Annual trends
- Though longer historic tends to affect us less than more recent events..

We want infinite memory

- Required: Infinite response systems
- What happens today can continue to affect the output forever
- Possibly with weaker and weaker influence

$$
Y_{t}=f\left(X_{t}, X_{t-1}, \ldots, X_{t-\infty}\right)
$$

Poll 1 (@939, @940)

Convolutional neural networks are finite response systems, true or false

- True
- False

An input at time T affects the output of the convolutional layers of the network for all time, true or false

- True
- False

Poll 1

Convolutional neural networks are finite response systems, true or false

- True
- False

An input at time T affects the output of the convolutional layers of the network for all time, true or false

- True
- False

Examples of infinite response systems

$$
Y_{t}=f\left(X_{t}, Y_{t-1}\right)
$$

- Required: Define initial state: Y_{-1} for $t=0$
- An input at X_{0} at $t=0$ produces Y_{0}
- Y_{0} produces Y_{1} which produces Y_{2} and so on until Y_{∞} even if $X_{1} \ldots X_{\infty}$ are 0
- i.e. even if there are no further inputs!
- A single input influences the output for the rest of time!
- This is an instance of a NARX network
- "nonlinear autoregressive network with exogenous inputs"
$-Y_{t}=f\left(X_{0: t}, Y_{0: t-1}\right)$
- Output contains information about the entire past

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A one-tap NARX network

- A NARX net with recursion from the output

A more complete representation

- A NARX net with recursion from the output
- Showing all computations
- All columns are identical
- An input at t=0 affects outputs forever

Same figure redrawn

- A NARX net with recursion from the output
- Showing all computations
- All columns are identical
- An input at t=0 affects outputs forever

A more generic NARX network

- The output Y_{t} at time t is computed from the past K outputs Y_{t-1}, \ldots, Y_{t-K} and the current and past L inputs X_{t}, \ldots, X_{t-L}

NARX Networks

- Very popular for time-series prediction
- Weather
- Stock markets
- As alternate system models in tracking systems
- Language
- Any phenomena with distinct "innovations" that "drive" an output
- Note: here the "memory" of the past is in the output itself, and not in the network

Let's make memory more explicit

- Task is to "remember" the past
- Introduce an explicit memory variable whose job it is to remember

$$
\begin{gathered}
m_{t}=r\left(y_{t-1}, h_{t-1}, m_{t-1}\right) \\
h_{t}=f\left(x_{t}, m_{t}\right) \\
y_{t}=g\left(h_{t}\right)
\end{gathered}
$$

- m_{t} is a "memory" variable
- Generally stored in a "memory" unit
- Used to "remember" the past

Jordan Network

Time

- Memory unit simply retains a running average of past outputs
- "Serial order: A parallel distributed processing approach", M.I.Jordan, 1986
- Input is constant (called a "plan")
- Objective is to train net to produce a specific output, given an input plan
- Memory has fixed structure; does not "learn" to remember
- The running average of outputs considers entire past, rather than immediate past ${ }_{43}$

Elman Networks

- Separate memory state from output
- "Context" units that carry historical state
- "Finding structure in time", Jeffrey Elman, Cognitive Science, 1990
- For the purpose of training, this was approximated as a set of T independent 1-step history nets
- Only the weight from the memory unit to the hidden unit is learned
- But during training no gradient is backpropagated over the " 1 " link

Story so far

- In time series analysis, models must look at past inputs along with current input
- Looking at a finite horizon of past inputs gives us a convolutional network
- Looking into the infinite past requires recursion
- NARX networks recurse by feeding back the output to the input
- May feed back a finite horizon of outputs
- "Simple" recurrent networks:
- Jordon networks maintain a running average of outputs in a "memory" unit
- Elman networks store hidden unit values for one time instant in a "context" unit
- "Simple" (or partially recurrent) because during learning current error does not actually propagate to the past
- "Blocked" at the memory units in Jordan networks
- "Blocked" at the "context" unit in Elman networks

Poll 2 (@941, @942)

Memory neuron models have true recurrence, true or false

- True
- False

Memory neuron networks dedicate neurons specifically to store past history, true or false

- True
- False

Poll 2

Memory neuron models have true recurrence, true or false

- True
- False

Memory neuron networks dedicate neurons specifically to store past history, true or false

- True
- False

An alternate model for infinite response systems: the state-space model

$$
\begin{gathered}
h_{t}=f\left(x_{t}, h_{t-1}\right) \\
y_{t}=g\left(h_{t}\right)
\end{gathered}
$$

- h_{t} is the state of the network
- State summarizes information about the entire past
- Model directly embeds the memory in the state
- Need to define initial state h_{-1}
- This is a fully recurrent neural network
- Or simply a recurrent neural network

The simple state-space model

- The state (green) at any time is determined by the input at that time, and the state at the previous time
- An input at $t=0$ affects outputs forever
- Also known as a recurrent neural net

An alternate model for infinite response systems: the state-space model

$$
\begin{gathered}
h_{t}=f\left(x_{t}, h_{t-1}\right) \\
y_{t}=g\left(h_{t}\right)
\end{gathered}
$$

- h_{t} is the state of the network
- Need to define initial state h_{-1}
- The state an be arbitrarily complex

Single hidden layer RNN

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

Multiple recurrent layer RNN

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

Multiple recurrent layer RNN

- We can also have skips..

A more complex state

- All columns are identical
- An input at t=0 affects outputs forever

Or the network may be even more complicated

- Shades of NARX
- All columns are identical
- An input at $t=0$ affects outputs forever

Generalization with other recurrences

- All columns (including incoming edges) are identical

The simplest structures are most popular

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

A Recurrent Neural Network

- Simplified models often drawn
- The loops imply recurrence

The detailed version of the simplified representation

Multiple recurrent layer RNN

Multiple recurrent layer RNN

$$
\mathrm{t}=0 \quad \text { Time }
$$

Equations

Recurrent weights

$$
\begin{gathered}
h_{i}^{(1)}(-1)=\text { part of network parameters } \\
h_{i}^{(1)}(t)=f_{1}\left(\sum_{j} w_{j i}^{(1)} X_{j}(t)+\sum_{j} w_{j i}^{(11)} h_{j}^{(1)}(t-1)+b_{i}^{(1)}\right) \\
Y(t)=f_{2}\left(\sum_{j} w_{j k}^{(2)} h_{j}^{(1)}(t)+b_{k}^{(2)}, k=1 . . M\right)
\end{gathered}
$$

- Note superscript in indexing, which indicates layer of network from which inputs are obtained
- Assuming vector function at output, e.g. softmax
- The state node activation, $f_{1}()$ is typically $\tanh ()$
- Every neuron also has a bias input

Equations

$\boldsymbol{h}^{(1)}(-1)=$ part of network parameters

- Computation:

$$
\begin{aligned}
& \boldsymbol{h}^{(1)}(t)=f_{1}\left(\boldsymbol{W}^{(1)} \boldsymbol{X}(t)+\boldsymbol{W}^{(11)} \boldsymbol{h}^{(1)}(t-1)+\boldsymbol{b}^{(1)}\right) \\
& \boldsymbol{Y}(t)=f_{2}\left(\boldsymbol{W}^{(2)} \boldsymbol{h}^{(1)}(t)+\boldsymbol{b}^{(2)}\right)
\end{aligned}
$$

- The recurrent state activation $f_{1}()$ is typically $\tanh ()$

Equations

- Computation:

$$
\begin{aligned}
& \boldsymbol{h}^{(1)}(t)=f_{1}\left(\boldsymbol{W}^{(1)} \boldsymbol{X}(t)+\boldsymbol{W}^{(11)} \boldsymbol{h}^{(1)}(t-1)+\boldsymbol{b}^{(1)}\right) \\
& \boldsymbol{Y}(t)=f_{2}\left(\boldsymbol{W}^{(2)} \boldsymbol{h}^{(1)}(t)+\boldsymbol{b}^{(2)}\right)
\end{aligned}
$$

- The recurrent state activation $f_{1}()$ is typically $\tanh ()$

Equations

$$
\begin{gathered}
h_{i}^{(1)}(-1)=\text { part of network parameters } \\
h_{i}^{(2)}(-1)=\text { part of network parameters } \\
h_{i}^{(1)}(t)=f_{1}\left(\sum_{j} w_{j i}^{(1)} X_{j}(t)+\sum_{j} w_{j i}^{(11)} h_{j}^{(1)}(t-1)+b_{i}^{(1)}\right) \\
h_{i}^{(2)}(t)=f_{2}\left(\sum_{j} w_{j i}^{(2)} h_{j}^{(1)}(t)+\sum_{j} w_{j i}^{(22)} h_{j}^{(2)}(t-1)+b_{i}^{(2)}\right) \\
Y(t)=f_{3}\left(\sum_{j} w_{j k}^{(3)} h_{j}^{(2)}(t)+b_{k}^{(3)}, k=1 . . M\right)
\end{gathered}
$$

- Assuming vector function at output, e.g. softmax $f_{3}()$
- The state node activations, $f_{k}()$ are typically $\tanh ()$
- Every neuron also has a bias input

Equations

$\boldsymbol{h}^{(1)}(-1)$ and $\boldsymbol{h}^{(2)}(-1)=$ part of network parameters

- Computation:

$$
\begin{aligned}
& \boldsymbol{h}^{(1)}(t)=f_{1}\left(\boldsymbol{W}^{(1)} \boldsymbol{X}(t)+\boldsymbol{W}^{(11)} \boldsymbol{h}^{(1)}(t-1)+\boldsymbol{b}^{(1)}\right) \\
& \boldsymbol{h}^{(2)}(t)=f_{2}\left(\boldsymbol{W}^{(2)} \boldsymbol{h}^{(1)}(t)+\boldsymbol{W}^{(22)} \boldsymbol{h}^{(2)}(t-1)+\boldsymbol{b}^{(2)}\right) \\
& \boldsymbol{Y}(t)=f_{3}\left(\boldsymbol{W}^{(3)} \boldsymbol{h}^{(2)}(t)+\boldsymbol{b}^{(3)}\right)
\end{aligned}
$$

- The recurrent state activation is typically tanh()

Equations

$$
\begin{aligned}
& \boldsymbol{h}^{(1)}(-1)=\text { part of network parameters } \\
& \boldsymbol{h}^{(2)}(-1)=\text { part of network parameters }
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{h}^{(1)}(t)=f_{1}\left(\boldsymbol{W}^{(01)} \boldsymbol{X}(t)+\boldsymbol{W}^{(11)} \boldsymbol{h}^{(1)}(t-1)+\boldsymbol{b}^{(1)}\right) \\
& \boldsymbol{h}^{(2)}(t)=f_{2}\left(\boldsymbol{W}^{(12)} \boldsymbol{h}^{(1)}(t)+\boldsymbol{W}^{(02)} \boldsymbol{X}(t)+\boldsymbol{W}^{(22)} \boldsymbol{h}^{(2)}(t-1)+\boldsymbol{b}^{(2)}\right) \\
& \boldsymbol{Y}(t)=f_{3}\left(\boldsymbol{W}^{(23)} \boldsymbol{h}^{(2)}(t)+\boldsymbol{W}^{(13)} \boldsymbol{h}^{(1)}(t)+\boldsymbol{b}^{(3)}\right)
\end{aligned}
$$

Variants on recurrent nets

one to one

Images from Karpathy

- 1: Conventional MLP
- 2: Sequence generation, e.g. image to caption
- 3: Sequence based prediction or classification, e.g. Speech recognition, text classification

Variants

many to many

many to many

Images from Karpathy

- 1: Delayed sequence to sequence, e.g. machine translation
- 2: Sequence to sequence, e.g. stock problem, label prediction
- Etc...

Story so far

- Time series analysis must consider past inputs along with current input
- Looking into the infinite past requires recursion
- NARX networks achieve this by feeding back the output to the input
- "Simple" recurrent networks maintain separate "memory" or "context" units to retain some information about the past
- But during learning the current error does not influence the past
- State-space models retain information about the past through recurrent hidden states
- These are "fully recurrent" networks
- The initial values of the hidden states are generally learnable parameters as well
- State-space models enable current error to update parameters in the past

How do we train the network

- Back propagation through time (BPTT)
- Given a collection of sequence inputs
- $\left(\mathbf{X}_{i}, \mathbf{D}_{i}\right)$, where
- $\mathbf{X}_{i}=X_{i, 0}, \ldots, X_{i, T}$
$-\mathbf{D}_{i}=D_{i, 0}, \ldots, D_{i, T}$
- Train network parameters to minimize the error between the output of the network $\mathbf{Y}_{i}=Y_{i, 0}, \ldots, Y_{i, T}$ and the desired outputs
- This is the most generic setting. In other settings we just "remove" some of the input or output entries

Training the RNN

- The "unrolled" computation is just a giant shared-parameter neural network
- All columns are identical and share parameters
- Network parameters can be trained via gradient-descent (or its variants) using shared-parameter gradient descent rules
- Gradient computation requires a forward pass, back propagation, and pooling of gradients (for parameter sharing)

Training: Forward pass

- For each training input:
- Forward pass: pass the entire data sequence through the network, generate outputs

Recurrent Neural Net

Assuming time-synchronous output

\# Assuming $h(-1, *)$ is known
\# Assuming L hidden-state layers and an output layer \# $\mathrm{W}_{\mathrm{c}}(*)$ and $\mathrm{W}_{\mathrm{r}}\left({ }^{*}\right)$ are matrics, $\mathrm{b}(*)$ are vectors \# W_{c} are weights for inputs from current time \# W_{r} is recurrent weight applied to the previous time \# W. are output layre weights
for $t=0: T-1$ \# Including both ends of the index $h(t, 0)=x(t)$ \# Vectors. Initialize $h(0)$ to input for 1 = 1:L \# hidden layers operate at time t $z(t, l)=W_{c}(1) h(t, l-1)+W_{r}(1) h(t-1, l)+b(1)$ $h(t, l)=\tanh (z(t, l))$ \# Assuming tanh activ. $z_{o}(t)=W_{o} h(t, L)+b_{o}$ $\mathbf{Y}(\mathrm{t})=\operatorname{softmax}\left(\mathbf{z}_{\mathrm{o}}(\mathrm{t})\right.$)

Subscript "c" - current Subscript "r" - recurrent

Training: Computing gradients

- Backward pass: Compute gradients via backpropagation
- Back Propagation Through Time

Back Propagation Through Time

Will only focus on one training instance
All subscripts represent components and not training instance index

Back Propagation Through Time

- The divergence computed is between the sequence of outputs by the network and the desired sequence of outputs
- DIV is a scalar function of a series of vectors!
- This is not just the sum of the divergences at individual times
- Unless we explicitly define it that way

Notation

- $Y(t)$ is the output at time t
- $Y_{i}(t)$ is the ith output
- $Z^{(2)}(t)$ is the pre-activation value of the neurons at the output layer at time t
- $h(t)$ is the output of the hidden layer at time t
- Assuming only one hidden layer in this example
- $Z^{(1)}(t)$ is the pre-activation value of the hidden layer at time t

Notation

- $W^{(1)}=\left[w_{i j}^{(1)}\right]$ is the matrix of current weights from the input to the hidden layer.
- $W^{(2)}=\left[w_{i j}^{(2)}\right]$ is the matrix of current weights from the hidden layer to the output layer
- $W^{(11)}=\left[w_{i j}^{(11)}\right]$ is the matrix of recurrent weights from the hidden layer to itself

Back Propagation Through Time

First step of backprop: Compute $\nabla_{Y(T)} D I V$ (Compute $\frac{d D I V}{d Y_{i}(T)}$ for all i)
Note: DIV is a function of all outputs $\mathrm{Y}(0)$... $\mathrm{Y}(\mathrm{T})$
In general we will be required to compute $\frac{d D I V}{d Y_{i}(t)}$ for all i and t as we will see. This can be a source of significant difficulty in many scenarios.

Rules we will use

$$
\begin{aligned}
& \text { - } \nabla_{\boldsymbol{Z}_{i}} L=\nabla_{\boldsymbol{Y}_{i}} L \nabla_{\boldsymbol{Z}_{i}} \boldsymbol{Y}_{i} \\
& Y_{i-1} \xrightarrow{W} \xrightarrow{W} \xrightarrow{\longrightarrow} \rightarrow Y_{i} \\
& \text { - } \nabla_{\boldsymbol{Y}_{i-1}} L=\nabla_{\boldsymbol{Z}_{i}} L \boldsymbol{W} \\
& \text { - } \nabla_{W} L=\boldsymbol{Y}_{i-1} \nabla_{Z_{i}}{ }^{L} \\
& \text { - } \nabla_{\boldsymbol{Y}_{i}} L=\nabla_{\boldsymbol{Z}_{i}} L \boldsymbol{W}_{1}+ \\
& \nabla_{\boldsymbol{Z}_{i+1}} L \boldsymbol{W}_{2}
\end{aligned}
$$

Special case, when the overall divergence is a simple sum of local divergences at each time: $\operatorname{DIV}=\sum_{t} \operatorname{Div}(t)$

Must compute $\nabla_{Y(t)} D I V$

$$
\begin{aligned}
& \text { Will get } \nabla_{Y(t)} \operatorname{Div}(t) \\
& \frac{\partial D I V}{\partial Y_{i}(t)}=\frac{\partial \operatorname{Div}(t)}{\partial Y_{i}(t)}
\end{aligned}
$$

Back Propagation Through Time

First step of backprop: Compute $\frac{d D I V}{d Y_{i}(T)}$ for all i

$$
\nabla_{Z^{(2)}(T)} D I V=\nabla_{Y(T)} D I V \nabla_{Z^{(2)}(T)} Y(T)
$$

Vector output activation

$$
\frac{d D I V}{d Z_{i}^{(2)}(T)}=\frac{d D I V}{d Y_{i}(T)} \frac{d Y_{i}(T)}{d Z_{i}^{(2)}(T)} \text { OR } \frac{d D I V}{d Z_{i}^{(2)}(T)}=\sum_{j} \frac{d D I V}{d Y_{j}(T)} \frac{d Y_{j}(T)}{d Z_{i}^{(2)}(T)}
$$

Back Propagation Through Time

$\frac{d D I V}{d Y_{i}(T)}$ for all i

$$
\frac{d D I V}{d h_{i}(T)}=\sum_{j} \frac{d D V V}{d Z_{j}^{(2)}(T)} \frac{d Z_{j}^{(2)}(T)}{d h_{i}(T)}=\sum_{j} w_{i j}^{(2)} \frac{d D I V}{d Z_{j}^{(2)}(T)}
$$

$$
\frac{d D I V}{d Z_{i}^{(2)}(T)}=\frac{d \operatorname{Div}(T)}{d Y_{i}(T)} \frac{d Y_{i}(T)}{d Z_{i}^{(2)}(T)}
$$

$$
\nabla_{h(T)} D I V=\nabla_{Z^{(2)}(T)} D I V W^{(2)}
$$

Back Propagation Through Time

$$
\frac{d D I V}{d Z_{i}^{(2)}(T)}=\frac{d \operatorname{Div}(T)}{d Y_{i}(T)} \frac{d Y_{i}(T)}{d Z_{i}^{(2)}(T)} \quad \frac{d D I V}{d h_{i}(T)}=\sum_{j} w_{i j}^{(2)} \frac{d D I V}{d Z_{j}^{(2)}(T)}
$$

$$
\nabla_{W^{(2)}} D I V=h(T) \nabla_{Z^{(2)}(T)} D I V \quad \frac{d D I V}{d w_{i j}^{(2)}}=\frac{d D I V}{d Z_{j}^{(2)}(T)} h_{i}(T)
$$

Back Propagation Through Time

$$
\begin{array}{rr}
\text { jacobian } & \frac{d D I V}{d Z_{i}^{(1)}(T)}=\frac{d D I V}{d h_{i}(T)} \frac{d h_{i}(T)}{d Z_{i}^{(1)}(T)} \\
\nabla_{Z^{(1)}(T)} D I V=\nabla_{h(T)} D I V \nabla_{Z^{(1)}(T)} h(T)
\end{array}
$$

$\frac{d D I V}{d Z_{i}^{(2)}(T)}=\frac{d D I V}{d Y_{i}(T)} \frac{d Y_{i}(T)}{d Z_{i}^{(2)}(T)}$

$$
\frac{d D I V}{d h_{i}(T)}=\sum_{j} w_{i j}^{(2)} \frac{d D I V}{}
$$

$$
\frac{d D I V}{d w_{i j}^{(2)}}=\frac{d D I V}{d Z_{j}^{(2)}(T)}
$$

Back Propagation Through Time

Back Propagation Through Time

$$
\nabla_{W^{(1)}} D I V=h(T-1) \nabla_{Z^{(1)}(T)} D I V
$$

$$
\frac{d D I V}{d w_{i j}^{(11)}}=\frac{d D I V}{d Z_{j}^{(1)}(T)} h_{i}(T-1)
$$

Back Propagation Through Time

$$
\nabla_{Z^{(2)}(T-1)} D I V=\nabla_{Y(T-1)} D I V \nabla_{Z^{(2)}(T-1)} Y(T-1)
$$

Vector output activation

$$
\frac{d D I V}{d Z_{i}^{(2)}(T-1)}=\frac{d D I V}{d Y_{i}(T-1)} \frac{d Y_{i}(T-1)}{d Z_{i}^{(2)}(T-1)} \text { OR } \frac{d D I V}{d Z_{i}^{(2)}(T-1)}=\sum_{j} \frac{d D I V}{d Y_{j}(T-1)} \frac{d Y_{j}(T-1)}{d Z_{i}^{(2)}(T-1)}
$$

Back Propagation Through Time

$$
\nabla_{h(T-1)} D I V=\nabla_{Z^{(2)}(T-1)} D I V W^{(2)}+\nabla_{Z^{(1)}(T)} D I V W^{(11)}
$$

Back Propagation Through Time

Back Propagation Through Time

$$
\frac{d D I V}{d Z_{i}^{(1)}(T-1)}=\frac{d D I V}{d h_{i}(T-1)} \frac{d h_{i}(T-1)}{d Z_{i}^{(1)}(T-1)}
$$

$$
\nabla_{Z^{(1)}(T-1)} D I V=\nabla_{h(T-1)} D I V \nabla_{Z^{(1)}(T-1)} h(T-1)
$$

Back Propagation Through Time

$$
\nabla_{W^{(1)}} D I V+=X(T-1) \nabla_{Z^{(1)}(T-1)} D I V
$$

Back Propagation Through Time

Note the addition

Back Propagation Through Time

Continue computing derivatives going backward through time until..

$$
\frac{d D I V}{d h_{i}(-1)}=\sum_{j} w_{i j}^{(11)} \frac{d D I V}{d Z_{j}^{(1)}(0)}
$$

$$
\nabla_{h_{-1}} D I V=\nabla_{Z^{(1)}(0)} D I V W^{(11)}
$$

Back Propagation Through Time

Initialize all derivatives to 0
For $\mathrm{t}=\mathrm{T}$ downto 0
$\nabla_{Z^{(2)}(t)} D I V=\nabla_{Y(t)} D I V \nabla_{Z^{(2)}(t)} Y(t)$
$\nabla_{h(t)} D I V=\nabla_{Z^{(2)}(t)} D I V W^{(2)}+\nabla_{Z^{(1)}(t+1)} D I V W^{(11)}$
$\nabla_{Z^{(1)}(t)} D I V=\nabla_{h(t)} D I V \nabla_{Z^{(1)}(t)} h(t)$

$\|$$\nabla_{W^{(2)}} D I V+=h(t) \nabla_{Z^{(2)}(t)} D I V$ $\nabla_{W^{(11)}} D I V+=h(t-1) \nabla_{Z^{(1)}(t)} D I V$ $\nabla_{W^{(1)}} D I V+=X(t) \nabla_{Z^{(1)}(t)} D I V$

$$
\nabla_{h_{-1}} D I V=\nabla_{Z^{(1)}(0)} D I V W^{(11)}{ }^{6}
$$

Back Propagation Through Time

$$
\frac{d D I V}{d h_{i}^{(k)}(t)}=\sum_{j} w_{i, j}^{(k+1)} \frac{d D I V}{d Z_{j}^{(k+1)}(t)}+\sum_{j} w_{i, j}^{(k, k)} \frac{d D I V}{d Z_{j}^{(k)}(t+1)}
$$

Not showing derivatives at output neurons

$$
\frac{d D I V}{d Z_{i}^{(k)}(t)}=\frac{d D I V}{d h_{i}^{(k)}(t)} f_{k}^{\prime}\left(Z_{i}^{(k)}(t)\right)
$$

Back Propagation Through Time

$$
\frac{d D I V}{d h_{i}(-1)}=\sum_{j} w_{i j}^{(11)} \frac{d D I V}{d Z_{j}^{(1)}(0)}
$$

$$
\begin{equation*}
\frac{d D I V}{d w_{i j}^{(1)}}=\sum_{t} \frac{d D I V}{d Z_{j}^{(1)}(t)} X_{i}(t) \tag{98}
\end{equation*}
$$

$$
\frac{d D I V}{d w_{i j}^{(11)}}=\sum_{t} \frac{d D I V}{d Z_{j}^{(1)}(t)} h_{i}(t-1)
$$

BPTT

\# Assuming forward pass has been completed
\# Jacobian (x, y) is the jacobian of x w.r.t. y
\# Assuming $d Y(t)=$ gradient(div,Y(t)) available for all t
\# Assuming all $d z, d h, d W$ and $d b$ are initialized to 0
for $t=T-1:$ downto:0 \# Backward through time

```
dzo(t) = dY(t) Jacobian(Y(t), zo(t))
dW
db。 += dzo(t)
dh(t,L) += dzo(t)W%
```

for $1=\mathrm{L}: 1$ \# Reverse through layers
$d z(t, l)=d h(t, l)$ Jacobian (h(t,l), $z(t, l))$
$d h(t, l-1)+=d z(t, l) \quad W_{c}(l)$
$d h(t-1, l)=d z(t, 1) \quad W_{r}(1)$
$d W_{c}(1)+=h(t, l-1) d z(t, l)$
Subscript "c" - current
Subscript "r" - recurrent
$d W_{r}(1)+=h(t-1, l) d z(t, l)$
$\mathrm{db}(1)+=\mathrm{dz}(\mathrm{t}, \mathrm{l})$

BPTT

- Can be generalized to any architecture

Poll 3 (@943, @944)

SGD trains neural networks one input at a time, rather than over batches of inputs. The corresponding equivalent for RNNs would be to update the network after each input vector: True or False

- True
- False

Select all that are true:

- In RNNs the divergence we minimize is the sum of the divergences for the individual inputs in the time series
- The divergence is the divergence between the actual sequence of outputs and the desired sequence of outputs and cannot always be decomposed into the sum of divergences at individual time steps.

Poll 3

SGD trains neural networks one input at a time, rather than over batches of inputs. The corresponding equivalent for RNNs would be to update the network after each input vector: True or False

- True
- False

Select all that are true:

- In RNNs the divergence we minimize is the sum of the divergences for the individual inputs in the time series
- The divergence is the divergence between the actual sequence of outputs and the desired sequence of outputs and cannot always be decomposed into the sum of divergences at individual time steps.

Extensions to the RNN: Bidirectional RNN

Bidirectional RNN (BRNN)

Must learn weights w2, w3, w4 \& w5; in addition to w1 \& w6.

Proposed by Schuster and Paliwal 1997

Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks*

- In problems where the entire input sequence is available before we compute the output, RNNs can be bidirectional
- RNN with both forward and backward recursion
- Explicitly models the fact that just as the future can be predicted from the past, the past can be deduced from the future

Bidirectional RNN

- "Block" performs bidirectional inference on input
- "Input" could be input series $\mathrm{X}(0)$.... $\mathrm{X}(\mathrm{T})$ or the output of a previous layer (or block)
- The Block has two components
- A forward net process the data from $t=0$ to $t=T$
- A backward net processes it backward from $\mathrm{t}=\mathrm{T}$ down to $\mathrm{t}=0$

Bidirectional RNN block

- The forward net process the data from $t=0$ to $t=T$
- Only computing the hidden state values.

Bidirectional RNN block

- The backward nets processes the input data in reverse time, end to beginning
- Initially only the hidden state values are computed
- Clearly, this is not an online process and requires the entire input data
- Note: This is not the backward pass of backprop.

Bidirectional RNN block

- The computed states of both networks are combined to give you the output of the bidirectional block
- Typically just concatenate them

$$
h(t)=\left[h_{f}(t) ; h_{b}(t)\right]
$$

Bidirectional RNN

- Actual network may be formed by stacking many independent bidirectional blocks followed by an output layer
- Forward and backward nets in each block are a single layer
- Or by a single bidirectional block followed by an output layer
- The forward and backward nets may have several layers
- In either case, it's sufficient to understand forward inference and backprop rules for a single block
- Full forward or backprop computation simply requires repeated application of these rules

Poll 4 (@945)

A day trader in the stock exchange uses RNNs to make predictions from historical market data to decide which stocks to buy. He can use a bidirectional RNN for his task.

- True
- False

Poll 4

A day trader in the stock exchange uses RNNs to make predictions from historical market data to decide which stocks to buy. He can use a bidirectional RNN for his task.

- True
- False

Bidirectional RNN block: inference

\# Subscript f represents forward net, b is backward net
\# Assuming $h_{f}(-1, *)$ and $h_{b}(i n f, *)$ are known
\# $\mathbf{x}(t)$ is the input to the block (which could be from a lower layer)
\#forward recurrence
for $t=0: T-1$ \# Going forward in time

```
    hf}(t,0)=x(t) # Vectors. Initialize hf(0) to inpu
    for l = 1:Lf # L Lf is depth of forward network hidden layers
        zf
        hf}(t,l)=\operatorname{tanh}(\mp@subsup{z}{f}{\prime}(t,l)) # Assuming tanh activ
```

\#backward recurrence
$h_{b}(T,:,:)=h_{b}(i n f,:,:)$ \# Just the initial value
for $t=T-1: d o w n t o: 0$ \# Going backward in time
$h_{b}(t, 0)=x(t) \#$ Vectors. Initialize $h_{b}(0)$ to input
for $1=1: L_{b} \# L_{b}$ is depth of backward network hidden layers $\mathrm{z}_{\mathrm{b}}(\mathrm{t}, \mathrm{l})=\mathrm{W}_{\mathrm{bc}}(\mathrm{l}) \mathrm{h}_{\mathrm{b}}(\mathrm{t}, \mathrm{l}-1)+\mathrm{W}_{\mathrm{br}}(\mathrm{l}) \mathrm{h}_{\mathrm{b}}(\mathrm{t}+1,1)+\mathrm{b}_{\mathrm{b}}(\mathrm{l})$ $h_{b}(t, l)=\tanh \left(z_{b}(t, l)\right)$ \# Assuming tanh activ.
for $t=0: T-1$ \# The output combines forward and backward

$$
h(t)=\left[h_{f}\left(t, L_{f}\right) ; h_{b}\left(t, L_{b}\right)\right]
$$

Bidirectional RNN: Simplified code

- Code can be made modular and simplified for better interpretability...

First: Define forward recurrence

Inputs:
L : Number of hidden layers
$\mathrm{W}_{\mathrm{c}}, \mathrm{W}_{\mathrm{r}}, \mathrm{b}$: current weights, recurrent weights, biases
hinit: initial value of $h(r e p r e s e n t i n g h(-1, *))$
x: input vector sequence
T : Length of input vector sequence
Output:
\# $h, z:$ sequence of pre-and post activation hidden
representations from all layers of the RNN
function RNN_forward(L, $\mathrm{W}_{\mathrm{c}}, \mathrm{W}_{\mathrm{r}}, \mathrm{b}$, hinit, \mathbf{x}, T)
$h(-1,:)=$ hinit $\#$ hinit is the initial value for all layers
for $\mathrm{t}=0: \mathrm{T}-1$ \# Going forward in time
$h(t, 0)=x(t)$ \# Vectors. Initialize $h(0)$ to input
for l = 1:L
$z(t, l)=W_{c}(1) h(t, l-1)+W_{r}(l) h(t-1, l)+b(l)$
$h(t, l)=\tanh (z(t, l))$ \# Assuming tanh activ.
return h

Bidirectional RNN block

\# Subscript f represents forward net, b is backward net
\# Assuming $h_{f}(-1, *)$ and $h_{b}(i n f, *)$ are known
\#forward pass
$h_{f}=R N N _f o r w a r d\left(L_{f}, W_{f c}, W_{f r}, b_{f}, h_{f}(-1,:), \mathbf{x}, T\right)$
\#backward pass
$x_{\text {rev }}=f l i p l r(x) \quad \#$ Flip it in time
$h_{b r e v}=$ RNN_forward ($\left.L_{b}, W_{b c}, W_{b r}, b_{b}, h_{b}(i n f,:), x_{\text {rev }}, T\right)$
$h_{b}=f l i p l r\left(h_{b r e v}\right)$ \# Flip back to straighten time
\#combine the two for the output
for $t=0: T-1$ \# The output combines forward and backward

$$
h(t)=\left[h_{f}\left(t, L_{f}\right) ; h_{b}\left(t, L_{b}\right)\right]
$$

Backpropagation in BRNNs

- Forward pass: Compute both forward and backward networks and final output

Backpropagation in BRNNs

- Backward pass: Assume gradients of the divergence are available for the block outputs $h(t)$
- Obtained via backpropagation from network output
- Will have the same dimension (length) as $h(t)$
- Which is the sum of the dimensions of $h_{f}(t)$ and $h_{b}(t)$

Backpropagation in BRNNs

- Separate gradient into forward and backward components

$$
\nabla_{h(t)} D i v=\left[\nabla_{h_{f}(t)} D i v ; \nabla_{h_{b}(t)} D i v\right]
$$

- Extract $\nabla_{h_{f}(t)} \operatorname{Div}$ and $\nabla_{h_{b}(t)} \operatorname{Div}$ from $\nabla_{h(t)} \operatorname{Div}$.
- Separately perform backprop on the forward and backward nets

Backpropagation in BRNNs

- Backprop for forward net:
- Backpropagate $\nabla_{h_{f}(t)} D i v$ from $t=T$ down to $t=0$ in the usual way
- Will obtain derivatives for all the parameters of the forward net
- Will also get $\nabla_{X(t)}$ Div forward
- Partial derivative of the gradient for $X(t)$ computed through the forward net

Backpropagation in BRNNs

- Backprop for backward net:
- Backpropagate $\nabla_{h_{b}(t)}$ Div forward from $t=0$ up to $t=T$
- Will obtain derivatives for all the parameters of the forward net
- Will also get $\nabla_{X(t)}$ Div backward
- Partial derivative of the gradient for $X(t)$ computed through the backward net

Backpropagation in BRNNs

- Finally add up the forward and backward partial derivatives to get the full gradient for $X(t)$
$\nabla_{X(t)} \operatorname{Div}=\nabla_{X(t)}$ Div backward $+\nabla_{X(t)}$ Div $_{\text {forward }}$

Backpropagation: Pseudocode

- As before we will use a 2-step code:
- A basic backprop routine that we will call
- Two calls to the routine within a higher-level wrapper

First: backprop through a recurrent net

```
Inputs:
    (In addition to inputs used by L : Number of hidden layers
    dh top: derivatives ddiv/dh*(t,L) at each time (* may be f or b)
    h, z: h and z values returned by the forward pass
    T: Length of input vector sequence
Output:
# dW c, dW b, db dh init : derivatives w.r.t current and recurrent weights,
# biases, and initial h.
# Assuming all dz, dh, dW , dW m
function RNN_bptt(L, W
    dh = zeros
    for t = T-1:downto:0 # Backward through time
        dh(t,L) += dhhtop (t)
        h(t,0) = x(t)
        for l = L:1 # Reverse through layers
            dz(t,l) = dh(t,l) Jacobian(h(t,l),z(t,l))
            dh(t,l-1) += dz(t,l) W (l)
            dh(t-1,l) += dz(t,l) W
            dW
            dW
            db(l) += dz(t,l)
            dx(t)= dh(t,0)
    return dx, dWc, dWr, db, dh(-1) # dh(-1) is actually dh(-1,1:L,:)
```


BRNN block: gradient computation

```
# Subscript f represents forward net, b is backward net
# Given dh(t), t=0...T-1 : The sequence of gradients from the upper layer
# Also assumed available:
# x(t), t=0...T-1 : the input to the BRNN block
# ( zf (t), hf(t) : Complete forward-computation outputs for all layers of the forward net
# ( 
# LIf
for t = 0:T-1 # Separate out forward and backward net gradients
    dh
    dh
#forward net
```



```
#backward net
x rev = fliplr(x) # Flip it in time
dh
hbrev = fliplr(h
z
[d\mp@subsup{\mathbf{x}}{\mathrm{ brev }}{},\textrm{dW}}\mp@subsup{\textrm{bc}}{\mp@code{c}}{,}\textrm{dW
dx
for t = 0:T-1 # Add the partials
    dx(t) = dx f
```


Story so far

- Time series analysis must consider past inputs along with current input
- Recurrent networks look into the infinite past through a state-space framework
- Hidden states that recurse on themselves
- Training recurrent networks requires
- Defining a divergence between the actual and desired output sequences
- Backpropagating gradients over the entire chain of recursion
- Backpropagation through time
- Pooling gradients with respect to individual parameters over time
- Bidirectional networks analyze data both ways, begin \rightarrow end and end \rightarrow beginning to make predictions
- In these networks, backprop must follow the chain of recursion (and gradient pooling) separately in the forward and reverse nets

RNNs..

- Excellent models for series data analysis tasks
- Time-series prediction
- Time-series classification
- Sequence generation..

