Deep Learning
Recurrent Networks:
Modelling Language

Sequence-to-Sequence models

Spring 2024
Attendance: @1389

Sequence-to-sequence modelling

* Problem:
— Asequence X; ... Xy goesin
— A different sequence Y; ... Yy, comes out
* E.g.
— Speech recognition: Speech goes in, a word sequence comes out

* Alternately output may be phoneme or character sequence

— Machine translation: Word sequence goes in, word sequence comes
out

— Dialog : User statement goes in, system response comes out
— Question answering : Question comes in, answer goes out

* Ingeneral N # M

— No synchrony between X and Y.

Sequence to sequence

I ate an apple - Ich habe einen apfel gegessen

* Sequence goes in, sequence comes out
* No notion of “time synchrony” between input and output

— May even not even maintain order of symbols

 E.g. “late an apple” = “Ich habe einen apfel gegessen”

— Or even seem related to the input

* E.g. “My screen is blank” = “Please check if your computer is plugged in.”

Sequence to sequence

I ate an apple - Ich habe einen apfel gegessen

e Sequence goes in, sequence comes out

* No notion of “time synchrony” between input and output

— May even not even maintain order of symbols

 E.g. “late an apple” = “Ich habe einen apfel gegessen”

— Or even seem related to the input

* E.g. “My screen is blank” = “Can you check if your computer is plugged in?”

Sequence to sequence

@n apple - Ich habe einen apf@

e Sequence goes in, sequence comes out

* No notion of “time synchrony” between input and output

— May even not even maintain order of symbols

 E.g. “late an apple” = “Ich habe einen apfel gegessen”

— Or even seem related to the input

* E.g. “My screen is blank” = “Can you check if your computer is plugged in?”

A different kind of problem

* |[nput and output may not have
correspondence...

But first — a brief detour...

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = @; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
i S
current = blocked;

}

ru->name = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Related math. What is it talking
about?

Proof. Omitted. [N |

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on X, we
have

Ox(F) = {morphy xoy (G, F)}
where G defines an isomorphism F — F of O-modules. 0
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, O
Lemma 0.3. Let 5 be a scheme. Let X be a scheme and X is an affine open

covering. Let i C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: X=2Y' 2YaYaY xxY = X.
be o morphism of algebrate spaces over § and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering,

Consider a common structure on X and X the functor Ox(U7) which is locally of
finite type. 0

This since F € F and r € § the diagram

S —

l

£

O

™\

L
= ——a=

Bor,

= ——=n X

l

Spec(iy) Morges d(Qx,,.G)

i5 @& limit. Then @ s o finite type and assume S 5 a fat and F oand ¢ s a finite
type f.. This is of finite type diagrams, amnd
& the composition of G is a regular sequence,
o My is a sheal of rings.
(I

FProof. We hive see that X = Spec(H) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks, Then the
cohomology of X is an open neighbourhood of [, m|

Proof. This is elear that § is a Anite presentation, see Lemmas 77,
A reduced above we conclude that [7 is an open covering of C. The functor F is a
“fielil

Oy — Fr "”o-\'uul.-l B I:’I:.G‘l{cj‘:'u]
is an isomorphism of covering of Oy, . I F is the unigque element of F such that X
is an somorphism.
The property JF is a disjoint union of Proposition 77 and we can fltered set of
presentations of a scheme O y-algebra with F are opens of finiwe type over S.
If F is a scheme theoretic image points, a

If F is o finite direct sum Oy, is a closed immersion, see Lemma 77, Thisis a
sequence of F is a similar morphism.

And a Wikipedia page explaining it all

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(P3JS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

10

The unreasonable effectiveness of
recurrent neural networks..

* All previous examples were generated blindly
by a recurrent neural network..

— With simple architectures

* http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

Modern text generation is a lot more
sophisticated that that

e ChatGPT...

12

Brief detour: Language models

* Modelling language using recurrent nets

* More generally language models and
embeddings..

Language Models

* LMs model the probability distribution of token
sequences in the language

— Word sequences, if words are the tokens

 Can be usedto
— Compute the probability of a given token sequence

— Generate sequences from the distribution of the
language

Language Models

P(w; w, wyw,) = P(wy) P(w;,|w,)

P(w3|w; wy) P(wy|wy w, wy)...

 The actual target is to model the probabilities of entire word sequences

* However, we typically use Bayes rule to compute this incrementally
— Language models generally perform next symbol prediction
— Always predicting the next symbol, given all previous symbols
 However, never forget, they actually model the probability of entire
sequences
— Sentences, paragraphs, books
— They model language

Language modelling through next-
word prediction using RNNs

Four score and seven years ???

ABRAHAMLINCOL??

* Problem: Given a sequence of words (or
characters) predict the next one

16

Language modelling: Representing
words

* Represent words as one-hot vectors

— Pre-specify a vocabulary of N words in fixed (e.g. lexical) order
* E.g. [A AARDVARK AARON ABACK ABACUS... ZZYP]

— Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)

 E.g. “AARDVARK” 2 [01000...]
e E.g. “AARON” > [001000..]

* Characters can be similarly represented

— English will require about 100 characters, to include both cases,
special characters such as commas, hyphens, apostrophes, etc.,
and the space character

Predicting words

Four score and seven years ???

WTL —_ f(Wo, ver) Wn—l)

N h

Nx1 one-hot vectors

S-roabr oo

=

OO O e

* Given one-hot representations of W,..W,,_,, predict W,

18

Predicting words

Four score and seven years ??? Wo

Wn —_ f(Wo, ver) Wn—l)

N h

Nx1 one-hot vectors

S-roabr oo

SO O e

=

* Given one-hot representations of W,..W,,_,, predict W,

* Dimensionality problem: All inputs W,...W,,_; are both
very high-dimensional and very sparse

19

Why one-hot representation

(1,0,0)

(0,1

v

(0,0,1)

The one-hot representation makes no assumptions about the relative

importance of words
— All word vectors are the same length
It makes no assumptions about the relationships between words

— The distance between every pair of words is the same

20

The one-hot representation

(1,0,0)

(0,1,0)

v

(0,0,1)

The one hot representation uses only N corners of the 2N corners of a unit
cube

— Actual volume of space used =0

* (1,&,6) has no meaning exceptfore = § = 0
. . N
— Density of points: O (r_N)

This is a tremendously inefficient use of dimensions

21

Solution to dimensionality problem

(1,0,0)

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: 0 (riM)

22

Solution to dimensionality problem

w - PW

v

* Project the points onto a lower-dimensional subspace
— Or more generally, a linear transform into a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: 0 (riM)

— If properly learned, the distances between projected points will capture semantic relations
between the words

23

o
Four score and seven years ??? W, '] p
1
Wn — f(PWO, PWZ, ""PWn—l) 28:
W (1)—> P (1)
1
o fO — 0\ W,
. 0
.
0
Wh-1 i P
0

The Projected word vectors

\ 4

* Project the N-dimensional one-hot word vectors into a lower-dimensional space

Replace every one-hot vector W; by PW;
Pisan M X N matrix
PW; is now an M-dimensional vector

Learn P using an appropriate objective

* Distances in the projected space will reflect relationships imposed by the objective
24

“Projection”

W‘l’l — f(PWl,PWZ, ""PW‘I’l—l)

O —

\ 4

* Pisasimple linear transform
 Asingle transform can be implemented as a linear layer with M outputs

— The same linear layer applies to all inputs
— Also viewable as a network with identical subnets (shared parameter network) 25

Predicting words: The TDNN model

\ 4

Predict each word based on the past N words
— “A neural probabilistic language model”, Bengio et al. 2003
— Hidden layer has Tanh() activation, output is softmax

One of the outcomes of learning this model is that we also learn low-dimensional
representations PW of words

26

Alternative models to learn

projections
Wel [Wo] [Wiol
*
\ Mean pooling \
Color indicates
ANANA we Wa W shared parameters

e Soft bag of words: Predict word based on words
in immediate context
— Without considering specific position

e Skip-grams: Predict adjacent words based on
current word

27

Embeddings: Examples

Country and Capital Vectors Projected by PCA

2]] - |]]
Chinar
*Beijing
1.5 F Russia G
Japan«
1 | Moscow |
Turkey< WAnkara Tokyo
0.5 F -
Poland«
0 Germany |
France AWNarsaw
w “»Berlin
-0.5 ltaly Paris -
#Athens
Greece: "
-1 Spaimr Rome -
| .. Adadrid i
-1.5 |- Portugal ot ishorn
_2 i [] | 1 [|]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

 From Mikolov et al., 2013, “Distributed Representations of Words
and Phrases and their Compositionality”

28

Poll 1 (@1390)

Select all that are true

e The distance between any two non-identical one-hot vectors is the same

e Words are represented as one-hot embeddings because these do not
impose any a priori assumption about which words are closer than others

e Word embeddings derived from language models are lower-dimensional
real-valued representations where the distance between words is a
meaningful representation of their closeness

e Low dimensional word embeddings enable you to find representations for
words that were not part of your training vocabulary

29

Poll 1

Select all that are true

e The distance between any two non-identical one-hot vectors is the same

e Words are represented as one-hot embeddings because these do not impose any a priori
assumption about which words are closer than others

e Word embeddings derived from language models are lower-dimensional real-valued

representations where the distance between words is a meaningful representation of their
closeness

e Low dimensional word embeddings enable you to find representations for words that were not
part of your training vocabulary

30

Modelling language

W W3 (Wa| W5 |Wel W, |Ws Ws| |Wig
FNERERNRD

> — > — > — —

A A A A A A A A A

A A A A A A A A A

Wi Wy (Wi (W, [Ws| [We| [Wo] [We| [Ws

 The hidden units are (one or more layers of) LSTM units

* Trained via backpropagation from a lot of text

— No explicit labels in the training data: at each time the next
word is the label.

Generating Language: Synthesis

1 .
i Yo | yi=PW; = ViIWy . Wy y)
. . V2 The probability that the t-th word in the
t t t sequence is the i-th word in the vocabulary
0 given all previous t-1 words
A A A N
Va
P P P
Wi W, Ws

e On trained model : Provide the first few words

— One-hot vectors
After the last input word, the network generates a probability distribution

over words

— Outputs an N-valued probability distribution rather than a one-hot vector
32

Generating Language: Synthesis

Wy 1 .
i il yi=PW, = Vi|Wy W y)
. . V2 The probability that the t-th word in the
t t t sequence is the i-th word in the vocabulary
1 given all previous t-1 words
A A A N
Va
P P P
Wi [We [Ws

On trained model : Provide the first few words
— One-hot vectors
After the last input word, the network generates a probability distribution over words

Outputs an N-valued probability distribution rather than a one-hot vector

Draw a word from the distribution

— And set it as the next word in the series
33

Generating Language: Synthesis

Wy 1 .
S| yi=PW =V Wy .. We_y)
. . ; i yé The probability that the t-th word in the
1 1 1 1 sequence is the i-th word in the
s > vocabulary given all previous t-1 words
A A A A yé\]
P P P P

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution

34

Generating Language: Synthesis

W, Ws " _
S| yi=PW =V Wy .. We_y)
. . ; i yé The probability that the t-th word in the
1 1 1 1 sequence is the i-th word in the
s > vocabulary given all previous t-1 words
A A A A yé\]
P P P P

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution

35

Generating Language: Synthesis

Wal [(Ws| [We] Wzl [Wel [Wo| [Wig

\ 4
v
\ 4
\ 4
v
v

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution
Continue this process until we terminate generation

— In some cases, e.g. generating programs, there may be a natural termination

36

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

}
segaddr = in_SB(in.addr);
selector = seg [/ 16;
setup_works = true;
for (i = 8; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
3
}
rw->name = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Trained on linux source code

Actually, uses a character-level
model (predicts character sequences)

37

Composing music with RNN

2.
X

310N

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neu ral-netwggks/

Generating Language: Synthesis

Wal [(Ws| [We] Wzl [Wel [Wo| [Wig

\ 4
v
\ 4
\ 4
v
v

Feed the drawn word as the next word in the series

— And draw the next word by sampling from the output probability distribution

More generally: When do we stop?

39

A note on beginnings and ends

* A sequence of words by itself does not indicate if it is a
complete sentence or not

.. four score and eight ...

— Unclear if this is the start of a sentence, the end of a
sentence, or both (i.e. a complete sentence)

* To make it explicit, we will add two additional symbols
(in addition to the words) to the base vocabulary

— <S0S> : Indicates start of a sentence

— <eo0s> : Indicates end of a sentence

40

A note on beginnings and ends

Some examples:

four score and eight
— This is clearly the middle of sentence

<sos> four score and eight
— This is a fragment from the start of a sentence

four score and eight <eos>
— This is the end of a sentence

<sos> four score and eight <eos>
— This is a full sentence

In situations where the start of sequence is obvious, the <sos> may not be needed,
but <eos> is required to terminate sequences

Sometimes we will use a single symbol to represent both start and end of
sentence, e.g just<eos>, or even a separate symbol, e.g. <s>

41

Generating Language: Synthesis

Wal [(Ws| [We] Wzl [Wel [Wo| [Wig

\ 4
v
\ 4
\ 4
v
v

Feed the drawn word as the next word in the series
— And draw the next word by sampling from the output probability distribution

Continue this process until we draw an <eos>
— Or we decide to terminate generation based on some other criterion

42

Poll 2 (@1391)

Which of the following is a complete sentence

<sos> Hello World <eos>
<sos> Hello World
Hello World <eos>

Hello World

43

Poll 2

Which of the following is a complete sentence

<sos> Hello World <eos>
<sos> Hello World
Hello World <eos>

Hello World

44

Returning to our problem: Sequence
to sequence modelling

I ate an apple l Ich habe einen apfel gegessen

Sequence X; ... Xy goesin, sequenceY; ... Yy comes out
Cases

— 1 : order correspondence between input and output

* The nth output corresponds to the nth segment of the input

— 2 : No correspondence between input and output
* May even not even maintain order of symbols

— E.g. “late an apple” = “Ich habe einen apfel gegessen”
* Or may even even seem unrelated to the input
* E.g. “My screen is blank” = “Please check if your computer is plugged in.”

45

Returning to our problem: Sequence
to sequence modelling

Jed
\\
I ate an apple - . -inen apfel gegessen

Sequence X; ... Xy goesin, sequenceY; ... Yy comes out

Cases

— 1 : order correspondence between input and output
* The nth output corresponds to the nth segment of the input

— 2 : No correspondence between input and output
* May even not even maintain order of symbols

— E.g. “late an apple” = “Ich habe einen apfel gegessen”
* Or may even even seem unrelated to the input
* E.g. “My screen is blank” = “Please check if your computer is plugged in.”

46

Returning to our problem: Sequence
to sequence modelling

I ate an apple l Ich habe einen apfel gegessen

* Sequence X; ...Xy goesin, sequenceY; ...Y); comes out
* Cases

— 1 : order correspondence between input and output

* The nth output corresponds to the nth segment of the input

— 2 : No correspondence between input and output
e May even not even maintain order of symbols

— E.g. “l ate an apple” = “Ich habe einen apfel gegessen”
* Or may even even seem unrelated to the input
* E.g. “My screen is blank” = “Please check if your computer is plugged in.”

Modelling the problem

many to many

* Delayed sequence to sequence

Modelling the problem

many to many

First process the input /~ : \T T

and generate a hidden ‘

representation for it Eai i
\L v

* Delayed sequence to sequence

49

Pseudocode

First run the inputs through the network
Assuming h(-1,1) is available for all layers
for t = 0:T-1 # Including both ends of the index
[h(t),..] = RNN input step(x(t) h(t-1),...)
H= h(T-1)
“RNN_input” may be

a multi-layer RNN of
any kind

| 50

Modelling the problem

many to many

First process the input P Then use it to generate
and generate a hidden an output
representation for it ki fiad

* Delayed sequence to sequence

51

Pseudocode

First run the inputs through the network

Assuming h(-1,1) is available for all layers

for t = 0:T-1 # Including both ends of the index
[h(t) ,..] = RNN input step(x(t),h(t-1),...)

H= h(T-1)

Now generate the output y_, . (1) ,¥..(2),..

t =0
h .(0) = H
do

t = t+l
[V (£) ,hyye (£)] = RNN output_step (h,,, (t-1))
Vour (£) = draw _word from(y (t))

until vy _,. (t) == <eos>

52

Pseudocode

First run the inputs through the network

Assuming h(-1,1) is available for all layers

for t = 0:T-1 # Including both ends of the index
[h(t) ,..] = RNN input step(x(t),h(t-1),...)

H = h(T-1

The output at each time is a probability distribution
over symbols.
We draw a word from this distribution

Now generate the output y/,.(1),¥..(2),..

t =0

houe (0) = H

do
t = t+l
[v (£) ,hyye (£)] =/RNN output_step (h,,, (t-1))
Vour (£) = draw _word from(y (t))

until vy _,. (t) == <eos>

53

Modelling the problem

First process the input
and generate a hidden
representation for it

many to many

7

~

T

Then use it to generate
an output

* Problem: Each word that is output depends only on
current hidden state, and not on previous outputs

54

Pseudocode

Changing this output at time t does not affect the output at t+1

E.g. If we have drawn "It was a” vs "It was an”, the probability fex
that the next word is "dark” remains the same (dark must ideally
hot follow "an")

This is because the output at time t does not influence the

computation at t+1 g D g

NOW g erate the Alritnrisd <2 [T\ «» {2\ o A I s

£ -0 The RNN recursion only considers the hidden
state h(t-1) from the previous time and not the

he,(0) = H actual output word vy, (t-1)

do

- |
[v (£) ;e (£) N\= RNN output_step (h,,, (t-1))
Vour (£) = draw _word from(y (t))

until vy _,. (t) == <eos>

Modelling the problem

many to many

* Delayed sequence to sequence

— Delayed self-referencing sequence-to-sequence

56

The “simple” translation model

A 4
\ 4
A 4

A A A A !

[ate an apple<cos>

 The input sequence feeds into a recurrent structure

 The input sequence is terminated by an explicit <eos> symbol
— The hidden activation at the <eos> “stores” all information about the sentence

57

The “simple” translation model

TP

A 4
\ 4
A 4

A A A A !

[ate an apple<cos>

 The input sequence feeds into a recurrent structure

 The input sequence is terminated by an explicit <eos> symbol
— The hidden activation at the <eos> “stores” all information about the sentence

 Subsequently a second RNN uses the hidden activation as initial state, and
<s0s> as initial symbol, to produce a sequence of outputs

— The output at each time becomes the input at the next time

— Output production continues until an <eos> is produced
58

The “simple” translation model

Ich

A A A A ! A

I ate an apple <eos><sos>

\ 4
\ 4
\ 4

 The input sequence feeds into a recurrent structure

 The input sequence is terminated by an explicit <eos> symbol
— The hidden activation at the <eos> “stores” all information about the sentence

 Subsequently a second RNN uses the hidden activation as initial state, and
<s0s> as initial symbol, to produce a sequence of outputs

— The output at each time becomes the input at the next time

— Output production continues until an <eos> is produced
59

The “simple” translation model

Ich habe

A A A A ! A A

| ate an apple<eos><sos> Ich

\ 4
\ 4
\ 4
\ 4

 The input sequence feeds into a recurrent structure

 The input sequence is terminated by an explicit <eos> symbol
— The hidden activation at the <eos> “stores” all information about the sentence

 Subsequently a second RNN uses the hidden activation as initial state, and
<s0s> as initial symbol, to produce a sequence of outputs

— The output at each time becomes the input at the next time

— Output production continues until an <eos> is produced
60

The “simple” translation model

Ich habe einen

\ 4
\ 4
\ 4
\ 4
\ 4

A A A A !

| ate an apple<eos><sos> [ch habe

 The input sequence feeds into a recurrent structure

 The input sequence is terminated by an explicit <eos> symbol
— The hidden activation at the <eos> “stores” all information about the sentence

 Subsequently a second RNN uses the hidden activation as initial state, and
<s0s> as initial symbol, to produce a sequence of outputs

— The output at each time becomes the input at the next time

— Output production continues until an <eos> is produced
61

The “simple” translation model

Ich habe einen apfel gegessen <eos>

A A A A ! A A A A A A

\ 4
\ 4
\ 4
\ 4
A 4
A 4
\ 4
A 4

I ate an apple<eos><sos> Ich habe einen apfel gegessen

 The input sequence feeds into a recurrent structure

 The input sequence is terminated by an explicit <eos> symbol
— The hidden activation at the <eos> “stores” all information about the sentence

 Subsequently a second RNN uses the hidden activation as initial state, and
<s0s> as initial symbol, to produce a sequence of outputs

— The output at each time becomes the input at the next time

— Output production continues until an <eos> is produced
62

The “simple” translation model

Ich / habe einen apfel gegessen <eos>

A A A A A A

\ 4
\ 4
\ 4
\ 4
A 4
A 4
\ 4
A 4

-

A A A 17 A A A A A A
/

I ate an/ apple <eos><sos> habe einen apfel gegessen

Note that drawing a different word here

Would result in a different word being input here, and as a
result the output here and subsequent outputs would all change

63

Ich habe einen apfel gegessen <eos>

»
A A A A A A A A A A

A 4
\ 4
A 4
A 4

A 4
\ 4
\ 4

I ate an apple <cos> <sos> Ich habe einen apfel gegessen

Ich habe einen apfel gegessen <eos>

\ 4
\ 4
\ 4
\ 4
A 4

A 4
A 4
A 4

-
-

A 4
A 4
A 4
A 4
A 4
A\ 4
A 4
A 4

1 ate an apple <eos> <sos> Jch habe einen apfel gegessen

 We will illustrate with a single hidden layer, but the
discussion generalizes to more layers

64

Pseudocode

First run the inputs through the network
Assuming h(-1,1) is available for all layers

t =0
do
[h(t),..] = RNN input step(x(t) h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output y_,.(1) ,¥V..c(2),..
t =0
h_.,.(0) = H

Note: begins with a “start of sentence” symbol

<sos> and <eos> may be identical

Yout (0) = <sos>

do
t = t+l
[y (t) ,hye (t)] = RNN output step(h_, . (t-1), y,..(t-1))
Yout (£) = draw_word from(y (t))

until y_..(t) == <eos>

Pseudocode

First run the inputs through the network
Assuming h(-1,1) is available for all layers
t =0
do

[h(t),..] = RNN input step(x(t) h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output y_,.(1) ,¥V..c(2),..
t =0
h_.,.(0) = H

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
Yout (0) = <sos>
do
t = t+l
[y (t) ,hye (t)] = RNN output step(h_, . (t-1), y,..(t-1))

I **out

Yout (£) = draw_word from(y (t)) Pl

until y.,.(t) == <eos> \ Drawing a different word at t will change the
next output since y, .(t) is fed back as input

The “simple” translation model
E NCODE R Ich habe emen apfel gegessen <eos>

\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4

_all

I ate an apple<eos>[<sos> Ich habe einen apfel gegessen

DECODER

* The recurrent structure that extracts the hidden
representation from the input sequence is the encoder

* The recurrent structure that utilizes this representation
to produce the output sequence is the decoder

The “simple” translation model

Ich habe einen apfel gegessen <eos>

A A A A A A

v

\ 4
\ 4
\ 4
A 4
A 4
A 4
A 4

1 ate an apple <eos><sos> Ich habe einen apfel gegessen

A more detailed look: The one-hot word
representations may be compressed via embeddings

— Embeddings will be learned along with the rest of the net

— In the following slides we will not represent the projection
matrices

What the network actually produces

ich
Yo

|, apfel
Yo

bier

Yo

\ 4
\ 4
\ 4

ate an apple <eos><sos>

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

69

What the network actually produces

Ich
v

|, apfel
Yo

bier

Yo

\ 4
\ 4
\ 4

ate an apple <eos><sos>

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

70

What the network actually produces

Ich
v

|, apfel
Yo

bier

Yo

\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> Ich

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

71

What the network actually produces

Ich
yeet | | yih

{,apfell | apfel
Yo Y1

bier bier

Yo V1

A
)
Q
%)
\/

\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> Ich

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

What the network actually produces

Ich habe
y6 | |y

{,apfell | apfel
Yo Y1

bier bier

Yo V1

A
)
Q
%)
\/

\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> Ich

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

What the network actually produces

Ich habe
ich ich
Yo Y1
{,apfell | apfel
Yo Y1
bier bier
Yo Y1
y0<eos V1<eos:>

\ 4
\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> Ich habe

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

What the network actually produces

Ich habe

ich ich ich
Yo Y1 Y2
{,apfell | apfell | apfel
Yo Y1 Y2
bier bier bier

Yo V1 Y2

<eos>»

A
)
Q
%)
\/

\ 4
\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> Ich habe

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

What the network actually produces

Ich habe einen
ich ich ich
Yo 1 Y2
{,apfell | apfell | apfel
Yo Y1 Y2
bier bier bier

Yo V1 Y2

<eos

A
)
Q
%)
\/

\ 4
\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> Ich habe

At each time k the network actually produces a probability distribution over the output vocabulary
- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time

What the network actually produces

Ich habe einen apfel gegessen <eos>

ich ich ich ich ich ich
Yo Y1 Y2 Y3 V4 Vs
{,apfell | apfell | apfell | apfell | apfell | apfel
Yo Y1 Y2 Y3 Y4 ¥s
bier bier bier bier bier bier
Yo Y1 Y2 Y3 V4 Vs
y0<eos, :V1<eos,> y2<eos,> :J3<eos,> y4<eos, y5<eos:>

\ 4
\ 4
\ 4

\ 4

\ 4

\ 4

ate an apple <eos><sos> [ch habe einen

\ 4
\ 4

apfel gegessen

At each time k the network actually produces a probability distribution over the output vocabulary

- y]‘(/v :P(Ok :W|Ok_1, ...,01,11, ,IN)

— The probability given the entire input sequence I, ..., Iy and the partial output sequence 04, ..., Ox_1 until k

At each time a word is drawn from the output distribution

The drawn word is provided as input to the next time

77

Generating an output from the net

Ich habe einen apfel gegessen <eos>
ich ich ich ich ich ich
Yo Y1 Y2 Y3 Va Vs
{,apfell | apfell | apfell | apfell | apfell | apfel
Yo Y1 Y2 Y3 Ya Ys
bier bier bier bier bier bier

Yo V1 Y2 V3 V4 Vs

<eos

\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> Ich habe einen apfel gegessen

At each time the network produces a probability distribution over words, given the
entire input and entire output sequence so far

At each time a word is drawn from the output distribution
The drawn word is provided as input to the next time
The process continues until an <eos> is drawn 78

Pseudocode

First run the inputs through the network
Assuming h(-1,1) is available for all layers

t =0
do
[h(t),..] = RNN input step(x(t) h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output y_,.(1) ,¥V..c(2),..
t =0
h_.,.(0) = H

Note: begins with a “start of sentence” symbol
<sos> and <eos> may be identical
Yout (0) = <sos>
do
t = t+l

[y (t) ,hye (t)] = RNN output step(h_, . (t-1), y,..(t-1))

I **out

Yout (£) = draw_word from(y (t))

until y,,. (t) == <eos>
out N What is this magic operation?

79

The probability of the output

O, O, O, O, O; <eos>
ich ich ich ich ich ich
Yo V1 Y2 Y3 Va Vs
{,apfell | apfell | apfell | apfell | apfell | apfel
Yo Y1 Y2 Y3 Ya Ys
bier bier bier bier bier bier

Yo V1 Y2 V3 V4 Vs

:V0<eOS: v1<605:> V2<eos y3<eos V4<eos V5<eos:>
A A A A A A
> > > —> > > > > >
A A A A A A A A A A
| ate an apple <eos><sos> O; O, 0O O, O;

P(Ol, veey 0L|11' rany IN)

— P(Oll[lN, ---,IN)P(OZ'Ol, 11, ---,IN)P(03|01, 02’ 11’ ---,IN) nunn P(0L|01, nen 0L_1’ 11’ nunn

— .01 07 Or
_yl yz ---yL

'IN)

80

The probability of the output

O, O, O, O, O; <eos>
ich ich ich ich ich ich
Yo V1 Y2 Y3 Va Vs
{,apfell | apfell | apfell | apfell | apfell | apfel
Yo Y1 Y2 Y3 Ya Ys
bier bier bier bier bier bier

Yo V1 Y2 V3 V4 Vs

yo<eos: V1<eos:> ,v2<€OS: y3<eos:> V4<eos: V5<eos>
A A A A A A
> > > —> > > > > >
A A A A A A A A A
ate an apple <eos><sos> O; O, O O, O

The objective of drawing: Produce the most likely output (that ends in an <eos>)

in in
argmax P(Ol, e, O WL, L, Wiy
04,..,0

_ 01,.,02 Op,
= argmaxy, 'y, > ..V,
01,...,0L 81

Greedy drawing

ich ich ich ich ich ich
Yo Vi Y2 Y3 Va Vs
va'pfel Vapfel Vapfel Vapfel Vapfel Vapfel
Objective: y NN & N RN ¢ T € S,
0, 0Oy oL bier bier bier bier bier bier
argmaxyl yz yL yO Y1 yZ y3 V4 yS
04,..,0],
vo<eos V1<eos: V2<eos> y3<eos:> V4<eos: V5<eos:
A A A A A A
> > > —> > > > > >
A A A A A A A A A
ate an apple <eos><sos> O; O, O O, O

So how do we draw words at each time to get the most likely word
sequence?

Greedy answer — select the most probable word at each time

Pseudocode

First run the inputs through the network
Assuming h(-1,1) is available for all layers
t =0
do

[h(t),..] = RNN input step(x(t) h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output y_,.(1) ,¥V..c(2),..
t =0
h .(0) = H

Note: begins with a “start of sentence” symbol

<sos> and <eos> may be identical

Yout (0) = <sos>

do
t = t+l
[y (t) ,hye (t)] = RNN output step(h_, . (t-1), y,..(t-1))
YOut<t) = argmaxi(y(tl l))

until y_..(t) == <eos>
\ Select the most likely output at each time

83

Greedy drawing

O, O, O, O, O; <eos>

ich ich ich ich ich ich
Yo Vi Y2 Y3 Va Vs
va'pfel Vapfel Vapfel Vapfel Vapfel Vapfel
Objective: y NN & N RN ¢ T € S,
0, 0Oy oL bier bier bier bier bier bier
argmaxyl yl yl yO Y1 yZ Y3 Yy yS
04,..,0],
yo<eos: vl<eos: V2<eos> y3<eos: v4<eos: V5<eos:
A A A A A A
> > > —> > > > > >
A A A A A A A A A A
| ate an apple <eos><sos> O; O, 0O O, O;

e Cannot just pick the most likely symbol at each time
— That may cause the distribution to be more “confused” at the next time

— Choosing a different, less likely word could cause the distribution at the next
time to be more peaky, resulting in a more likely output overall

Greedy is not good

A A
he nose ? E he knows ? 2
S S
S S)
S S
=0 1 2 T=0 1 2 |lm = =
W, W, . Wy W, W, Wi .. W,

 Hypothetical example (from English speech recognition : Input is speech, output
must be text)

* “Nose” has highest probability at t=2 and is selected

— The modelis very confused at t=3 and assigns low probabilities to many words at the next
time

— Selecting any of these will result in low probability for the entire 3-word sequence

 “Knows” has slightly lower probability than “nose”, but is still high and is selected

— “he knows” is a reasonable beginning and the model assigns high probabilities to words such
as “something”

— Selecting one of these results in higher overall probability for the 3-word sequence
85

Greedy is not good

—~
What should we he ? 1

have chosen at t=277
1 2 XX

nose knows

rIN)

Will selecting “nose”
continue to have a
bad effect into the
distant future?

P(02|01, 11,

T=0 1 2

* Problem: Impossible to know a priori which word leads to
the more promising future

— Should we draw “nose” or “knows”?
— Effect may not be obvious until several words down the line

— Or the choice of the wrong word early may cumulatively lead to
a poorer overall score over time

86

Greedy is not good

\ ? N
What should we 5
have chosen at t=1?? &
S
Choose “the” or “he”? &
= O >
w, the w;, he

* Problem: Impossible to know a priori which word leads to the more
promising future

— Even earlier: Choosing the lower probability “the” instead of “he” at T=0 may
have made a choice of “nose” more reasonable at T=1..

* In general, making a poor choice at any time commits us to a poor future
— But we cannot know at that time the choice was poor

87

Drawing by random sampling

O, O, O, O, O; <eos>

ich ich ich ich ich ich
Yo Vi Y2 Y3 Va Vs
va'pfel Vapfel Vapfel Vapfel Vapfel Vapfel
Objective: o |1 12 143 | 4 15
0, 0Oy oL ybler ybler ybler bier bier bier
1 y YVa
argmaxy, "y, > Yy 0 2 3 Vs
04,..,0],
yo<eos y1<eos,> y2<eos,= y3<eos y4<eo y5<eos:>
A A A A A A
> > > —> > > > > >
A A A A A A A A A

ate an apple <e0s><s0S> Ol 02 03 04 05

Alternate option: Randomly draw a word at each
time according to the output probability
distribution

Pseudocode

First run the inputs through the network
Assuming h(-1,1) is available for all layers

t =0
do
[h(t),..] = RNN input step(x(t) h(t-1),...)
until x(t) == “<eos>”
H = h(T-1)

Now generate the output y_,.(1) ,¥V..c(2),..
t =0
h_.,.(0) = H

Note: begins with a “start of sentence” symbol

<sos> and <eos> may be identical

Yout (0) = <sos>

do
t = t+l
[y (t) ,hye (t)] = RNN output step(h_, . (t-1), y,..(t-1))
YOut<t) = Sample(y(t))

until You:(t) == <eos>\ Randomly sample from the output distribution.

Drawing by random sampling

O, O, O, O, O; <eos>

ich ich ich ich ich ich
Yo Y1 Y2 Y3 Y4 Vs

|, apfel Vapfel l,apfell | apfell | apfell | apfel

Obijective: Yo 17 Y2 Y5 | ¥a | Y5

01 .0, 0y, bier bier bier bier bier bier
argmaxy, 'y, 2 .. Y; Yo Y1 Y2 Y3 Ya Ys
04,..,0],

1,<eos> |, <eos> V<eos {,<eos> |,<eos>* [, <eos
y J2 y y

\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4

ate an apple <eos><sos> O, 0, O O, O;

Alternate option: Randomly draw a word at each time according to the
output probability distribution

— Unfortunately, not guaranteed to give you the most likely output
— May sometimes give you more likely outputs than greedy drawing though

Poll 3 (@1392, @1393, @1394)

For greedy decoding, we choose the word that has been assigned the
highest probability at each time (T/F)

o True

. False

In decoding through random sampling we randomly choose the next
word according to the probability assigned to it by the decoder (T/F)
J True
. False

The procedure used for randomly sampling a word from a distribution
has been presented in today’s class (T/F)

J True

. False

91

Poll 3

For greedy decoding, we choose the word that has been assigned the highest probability at each time

(T/F)

e True
e False

In decoding through random sampling we randomly choose the next word according to the probability
assigned to it by the decoder (T/F)

e True
e False

The procedure used for randomly sampling a word from a distribution has been presented in today’s
class (T/F)

e True
e False

Your choices can get you stuck

What should we
have chosen at t=177

A
P(041L, ..., In) /

Choose “the” or “he”?

* Problem: making a poor choice at any time

commits us to a poor future

— But we cannot know at that time the choice was poor

e Solution: Don’t choose..

93

Optimal Solution: Multiple choices

* Retain all choices and fork the network

— With every possible word as input

94

Problem: Multiple choices

||
L]
B, H

sssss ||

—

[]
hd]
* Problem: This will blow up very quickly

— For an output vocabulary of size V, after T output steps
we’d have forked out VT branches

Optimal Solution: Multiple choices

SSSSS

* Retain all choices and fork the network

— With every possible word as input

Solution: Prune

e Solution: Prune

— At each time, retain only the top K scoring forks

Solution: Prune

Topyg P(O4|14, ..., Iy)

SSSSS

e Solution: Prune

— At each time, retain only the top K scoring forks

98

Solution: Prune

Topyg P(O4|14, ..., Iy)

e Solution: Prune

— At each time, retain only the top K scoring forks

99

Solution: Prune

Topyg P(O4|14, ..., Iy)

e Solution: Prune

— At each time, retain only the top K scoring forks

Solution: Prune

Note: based on product

l

Topg P(0,04|14, ..., Iy)

— TOpK P(02|01'11'""IN)P(OllIl'""IN)

e Solution: Prune

— At each time, retain only the top K scoring forks

101

Solution: Prune

Note: based on product

l

Topg P(0,04|14, ..., Iy)

— TOpK P(02|01'11'""IN)P(OllIl'""IN)

e Solution: Prune

— At each time, retain only the top K scoring forks

102

Solution: Prune

e Solution: Prune

— At each time, retain only the top K scoring forks

103

Solution: Prune

— TOpKP(03|01, 02, 11, ""IN) X
P(0,|04, 13, ..., Iy) X
P(O4|14, ..., Iy)

e Solution: Prune

— At each time, retain only the top K scoring forks

104

Solution: Prune

— TOpKP(03|01, 02, 11, ""IN) X
P(0,|04, 13, ..., Iy) X
P(O4|14, ..., Iy)

— At each time, retain only the top K scoring forks

105

Solution: Prune

— At each time, retain only the top K scoring forks

106

Terminate

N
N
—~] <eos>
L s || N
N N
B BB N
HiErREInEn
N
N
[
N
he N
se .
) | /
* Terminate k3

— When the current most likely path overall ends in <eos>

* Or continue producing more outputs (each of which terminates in <eos>) to
get N-best outputs 107

Termination: <eos>

5

L Example has K =2
||
L] Kipuws
. o
L P || ||
NN ||
|
||
¥ ||
hd
Nose ||
. ||] L]
* Terminate o

— Paths cannot continue once the output an <eos>
* So paths may be different lengths

— Select the most likely sequence ending in <eos> across all terminating sequences

108

v

Pseudocode: Beam search

Assuming encoder output H is available
path = <sos>
beam = {path}
pathscore = [path] =1
state[path] = h[0] # Output of encoder
do # Step forward
nextbeam = {}
nextpathscore = []
nextstate = {}
for path in beam:
cfin = path[end]
hpath = state[path]
[y,h] = RNN output step (hpath,cfin)
for c¢c in Symbolset
newpath = path + c¢
nextstate[newpath] = h
nextpathscore[newpath] = pathscore[path]*y[c]
nextbeam += newpath # Set addition
end
end
beam, pathscore, state, bestpath = prune (nextstate,nextpathscore,nextbeam, bw)
until bestpath[end] = <eos>

109

Pseudocode: Prune

Note, there are smarter ways to implement this

function prune (state, score, beam, beamwidth)

sortedscore = sort(score)
threshold = sortedscore |[beamwidth]

prunedstate {}
prunedscore = []
prunedbeam = {}

bestscore = -inf
bestpath = none
for path in beam:
if score[path] > threshold:
prunedbeam += path # set addition
prunedstate[path] = state[path]
prunedscore[path] = score[path]
if score[path] > bestscore
bestscore = score[path]
bestpath = path
end
end
end

return prunedbeam, prunedscore, prunedstate, bestpath

Poll 4 (@1395, @1396)

“Theoretically correct” decoding requires you to evaluate the entire tree
representing every possible word sequence to select the best one (T/F)

e True
e False

Beam search is theoretically correct decoding (T/F)

e True
e False

111

Poll 4

“Theoretically correct” decoding requires you to evaluate the entire tree representing every possible
word sequence to select the best one (T/F)

e True
e False

Beam search is theoretically correct decoding (T/F)

e True
e False

Training the system

Ich habe einen apfel gegessen <eos>

A A A A A A

—»
A A A A A A A A A A

\ 4
\ 4
\ 4

\ 4
\ 4
\ 4
\ 4
\ 4

| ate an apple <eos> <sos> Ich habe einen apfel gegessen

 Must learn to make predictions appropriately

— Given “| ate an apple <eos>", produce “Ich habe
einen apfel gegessen <eos>".

Training : Forward pass

A 4
A 4
A 4

\ 4
\ 4
\ 4
\ 4
\ 4

—»
A A A A A A A A A A

| ate an apple <eos><sos> Ich habe einen apfel gegessen

 Forward pass: Input the source and target sequences,
sequentially

— Output will be a probability distribution over target symbol set
(vocabulary)

Training : Backward pass

Ich habe einen apfel gegessen <eos>

Yo¢ Y1¢ Y2¢ Y3¢ YJ Ys¢

A 4
A 4

A 4

»
>

»
>

»
>

»
>

»
>

—»
A A

| ate an

 Backward pass: Compute the divergence

apple <eos><sos>

Ich habe einen

apfel gegessen

between the output distribution and target word

sequence

115

Training : Backward pass

Ich habe einen apfel gegessen <eos>

[
I I I I I
A, A / A A A A I
——-;4——-——-|—|———--——-—--/——-—-/————'—/—-—-‘-/————f—/——— —/
/ [f 1 1 l 1 1
I - b iy > b — b
‘ A I A I A l A A I A l A l A l A l A
v v v v v v v v
I ate an apple <eos><sos> Ich habe einen apfel gegessen

Backward pass: Compute the divergence between the output
distribution and target word sequence

Backpropagate the derivatives of the divergence through the
network to learn the net

116

Training : Backward pass

Ich habe einen apfel gegessen <eos>

LR

I
I
A A A A ' A A
—_—-?‘__"I—__—-'—————————————-—————-——/
z / [l l / 1 (1
" L > > BN i I > >
‘ A I A I A | A | | A I A I A l A A A
v v v v v v v v
I ate an apple <eos><sos> Ich habe einen apfel gegessen

* |In practice, if we apply SGD, we may randomly sample words from the
output to actually use for the backprop and update

— Typical usage: Randomly select one word from each input training instance
(comprising an input-output pair)
* For each iteration

— Randomly select training instance: (input, output)

— Forward pass
— Randomly select a single output y(t) and corresponding desired output d(t) for backprop 117

Overall training

* Given several training instance (X, D)

* For each training instance
— Forward pass: Compute the output of the network for
(X, D)
* Note, both X and D are used in the forward pass

— Backward pass: Compute the divergence between
selected words of the desired target D and the actual
output Y

* Propagate derivatives of divergence for updates

* Update parameters

Trick of the trade: Reversing the input

Ich habe einen apfel gegessen <eos>

Yo) Y) Y, ‘ Y;) YJ Yy)
7'y 7'y 7'y 7'y 7'y 7'y
g g > — > > > >
7'y 7y 7y 7y 7y 7y 7y 7'y

<eos> apple an ate I <sos> Ich habe emen apfel gegessen

e Standard trick of the trade: The input
sequence is fed in reverse order

— Things work better this way

119

Trick of the trade: Reversing the input

Ich habe einen apfel gegessen <eos>

|
YO¢ Y1¢ Y2¢ Y3¢ IYJ Y5¢

I
I
I

A
/

4
LG g o = gae o = g o o e [—-— - - e -

» »
> >

A A A A A

* - =v ~
<t = Vv~

N = T

b I» b
| I I
v % =

<eos> apple an ate I <sos> Ich habe einen apfel gegessen

e Standard trick of the trade: The input
sequence is fed in reverse order

— Things work better this way

120

Trick of the trade: Reversing the input

Ich habe einen apfel gegessen <eos>
Hhi ht YLof 1 Tf Y

A A A A A A

> > > —>
A A A A A A A A A A

<eos> apple an ate I <sos> Ich habe einen apfel gegessen

\ 4
\ 4
\ 4
\ 4
\ 4

e Standard trick of the trade: The input sequence is fed
in reverse order

— Things work better this way

* This happens both for training and during inference on
test data

121

Overall training

* Given several training instance (X, D)

* Forward pass: Compute the output of the
network for (X, D) with input in reverse order

— Note, both X and D are used in the forward pass

* Backward pass: Compute the divergence
between the desired target D and the actual
output Y

— Propagate derivatives of divergence for updates

Applications

Machine Translation

— My name is Tom =2 Ich heisse Tom/Mein name ist
Tom

Automatic speech recognition
— Speech recording =2 “My name is Tom”

Dialog

o

— “l have a problem” = “How may | help you”

Image to text
— Picture = Caption for picture

-5

-6

Machine Translation Example

A A F 3 A ¥ 3
[ate an apple<eos>
151 _
O | was given a card by her in the garden
OMary admires John 10F QO In the garden , she gave me a card
C She gave me a card in the garden
OCMary is in love with John
5 -
iy i ! or
OMary respects John
| OdJohn admires Mary
=3[O She was given a card by me in the garden
OdJohn is in love with Mary
’ O In the garden , | gave her a card
-1|:|._
=15k
OdJohn respects Mary O | gave her a card in the garden
i i i ']] i L i] ‘_20 i Il $
-6 -4 -2] 2 4 [8 10 -15 -10 -5 o 5 10 15 20

-8

Hidden state clusters by meaning!

— From “Sequence-to-sequence learning with neural networks”,

Sutskever, Vinyals and Le

124

Machine Translation Example

Type

Sentence

Our model

Ulrich UNK ., membre du conseil d° administration du constructeur automobile Audi .
affirme qu’ 1l s’ agit d” une pratique courante depuis des années pour que les teléphones
portables puissent étre collectés avant les réunions du conseil d” administration afin qu’ ils
ne soient pas utilisés comme appareils d’ écoute a distance .

Truth

Ulrich Hackenberg , membre du conseil d” administration du constructeur automobile Audi ,
declare que la collecte des teléphones portables avant les réunions du conseil , afin qu’ 1ls

ne puissent pas etre utilisés comme appareils d’ écoute a distance , est une pratique courante
depuis des années .

Our model

*“ Les teléphones cellulaires , qui sont vraiment une question , non seulement parce qu’ ils
pourraient potentiellement causer des interférences avec les appareils de navigation , mais
nous savons , selon la FCC , qu’ ils pourraient interférer avec les tours de téléphone cellulaire
lorsqu’ 1ls sont dans 1" air ” , dit UNK .

Truth

* Les telephones portables sont veritablement un probleme , non seulement parce qu’ ils
pourraient éventuellement créer des interférences avec les instruments de navigation , mais
parce que nous savons , d” apres la FCC | qu’ ils pourraient perturber les antennes-relais de
telephonie mobile s’ ils sont utilisés a bord , a déclaré Rosenker .

Our model

Avec la crémation , 1l y a un ** sentiment de violence contre le corps d” un étre cher ™,
qui sera “ réduit a une pile de cendres ” en tres peu de temps au lieu d” un processus de
décomposition “ qui accompagnera les étapes du deuil .

Truth

Il y a, avec la crémation , * une violence faite au corps aime ™,
qui va étre “ réduit a un tas de cendres ” en frés peu de temps , et non apres un processus de
décomposition , qui ** accompagnerait les phases du deuil .

 Examples of translation

— From “Sequence-to-sequence learning with neural networks”,
Sutskever, Vinyals and Le

125

Human Machine Conversation: Example

Machine: what is the error that you are running
please

Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?

Human: connection refused or something like
that

Machine: may i know the version of network
connect you connect ?

Human: i am not sure i know that

Machine: is the network connect prompting for
any user certificate

* From “A neural conversational model”, Orin Vinyals and Quoc Le
* Trained on human-human converstations
 Task: Human text in, machine response out 126

Generating Image Captions

CNN

log pi(S1) | | log p(S2) log pr(Sn)
/) 1 1 t
s p| [P pN
53 r 1 1
> >3 2. p
; — ; b 5 —_—ee — ;
- — -l -
“*‘ WeSo WS WeSn-i
| t t t
image So Si SN-1

Image

 Not really a seg-to-seq problem, more an image-to-sequence problem
* |Initial state is produced by a state-of-art CNN-based image classification

system

— Subsequent model is just the decoder end of a seg-to-seq model

* “Show and Tell: A Neural Image Caption Generator”, O. Vinyals, A. Toshey, S. Bengio, D.

Erhan

127

Generating Image Captions

E 4 -
= '

* Decoding: Given image

— Process it with CNN to get output of classification layer

128

Generating Image Captions

a
Yo
boy
Yo

cat

Yo

- wTﬁ

E

<S0s>

* Decoding: Given image
— Process it with CNN to get output of classification layer
— Sequentially generate words by drawing from the conditional
output distribution P(W;|W W, ... W;_{, Image)

— In practice, we can perform the beam search explained earlier
129

Generating Image Captions

A Dboy
Vo || V1
b b

ybOY':yloy

cat cat

Yo V1

- wTﬁ |

E

A 4

<sos> A

* Decoding: Given image
— Process it with CNN to get output of classification layer
— Sequentially generate words by drawing from the conditional
output distribution P(W;|W W, ... W;_{, Image)

— In practice, we can perform the beam search explained earlier
130

Generating Image Captions

A Dboy on

Yo ||y || Y2

yé)oy ylboy yzboy

y6r | |yi® | |5
? |:> — $ ﬁ A A
{ i T A A

<sos> A boy

* Decoding: Given image
— Process it with CNN to get output of classification layer
— Sequentially generate words by drawing from the conditional
output distribution P(W;|W W, ... W;_{, Image)

— In practice, we can perform the beam search explained earlier
131

Generating Image Captions

A boy on a
vo || Y1 || Y2 || y3
b b b b
Vo 2 Ly | 5% | s

cat cat cat cat
Yo V1 Y2 Y3
F 7 i 7y y Y yy
| l« $ A A A
E |

<s0s> A boy on

* Decoding: Given image
— Process it with CNN to get output of classification layer
— Sequentially generate words by drawing from the conditional
output distribution P(W;|W W, ... W;_{, Image)

— In practice, we can perform the beam search explained earlier
132

Generating Image Captions

A Dboy on a surfboard
Yo || y1 || Yz || Y3 Vi
b b b b b
y! 0y y! 0y y! 0y y! 0y y! 0y

cat cat cat cat cat
Yo V1 Y2 Y3 Yy

o | 1 maaa

E

A 4
A 4
\ 4
A 4

<s0s> A boy on a

* Decoding: Given image
— Process it with CNN to get output of classification layer
— Sequentially generate words by drawing from the conditional
output distribution P(W;|W W, ... W;_{, Image)

— In practice, we can perform the beam search explained earlier
133

Generating Image Captions

A boy on a surtboard<eos>

a a a a a a
Yo || V1 Y2 || V3 Va4 Vs
boy boy boy boy boy boy
Yo V1 Y Y3 Yy Ys
cat cat cat cat cat cat
Yo ||V1 Y2 ||)3 YVa Ys
F — i A A A A A
| l« $ A A A A A
E i
<sos> A boy on a surfboard

* Decoding: Given image
— Process it with CNN to get output of classification layer
— Sequentially generate words by drawing from the conditional
output distribution P(W;|W W, ... W;_{, Image)

— In practice, we can perform the beam search explained earlier
134

Training

log pi(Si) log p2(S2) log pn(Sn)

T\ T A

PI p2 PN
t 1 t
o 3 >3 >
Sl L lElLlE =B
<33 i i 4 a

"7‘ WeSo WeS| WeSn.i

t t t t

image So Si SN-1

Training: Given several (Image, Caption) pairs

CNN

Image

The image network is pretrained on a large corpus, e.g. image net

135

a a a a a a
Yo || V1 Y2 Y3 Va4 Vs
boy boy boy boy boy boy
Yo V1 Y2 Y3 V4 Ys
cat cat cat cat cat cat
Yo || V1 Y2 ||Y3 YVa Ys
F — A i A A A A A
. l, $ A A A A A
E i
<s0s> A boy on a surfboard

Training: Given several (Image, Caption) pairs

— The image network is pretrained on a large corpus, e.g. image net

Forward pass: Produce output distributions given the image and caption

136

surfboard<eos>

A bog on a

yo || y1 || Y2 || ¥3

b b b b
Vo 2 1% 3, e >

cat cat cat cat cat cat
Yo Y1 Y2 Y3 2 Vs

A 4
A 4
\ 4

A 4
\ 4

<sos> A boy on a surfboard
* Training: Given several (Image, Caption) pairs
— The image network is pretrained on a large corpus, e.g. image net

Forward pass: Produce output distributions given the image and caption

Backward pass: Compute the divergence w.r.t. training caption, and backpropagate
derivatives

All components of the network, including final classification layer of the image classification net are
updated

— The CNN portions of the image classifier are not modified (transfer learning) 137

- N B e

‘construction worker in orange “two young girls are playing with "boy is doing backflip on

guitar.’ safety vest is working on road.” lego toy." wakeboard.”

‘a young boy is holding a "acatis sittingona couchwitha "awoman holding a teddy bearin "a horse is standing in the middle
baseball bat.” remote control.” front of a mirror.” ofaroad.’; 55

A better model: Encoded
input embedding is input to
all output timesteps

Variants

Ich habe einen apfel gegessen <eos>

rt+ t+ 1+ t

A A A A A A

» »
> >

\ 4
\ 4

\ 4
A 4
A 4

<eos> apple an ate I

e

o — | Ly | Ly,
— —1— | 1
1 |

= = = L L

<S0s>

A bOf’ on a surfboard <eos>

139
<sos> A boy on a surfboard

Translating Videos to Natural Language Using Deep
Recurrent Neural Networks

Input Video Convolutional Net Recurrent Net Output
oNN — Y — 5™] 1sT™ |— 4
CNN — LSTM [— | LSTM |— phoy
— LSTM [— LSTM |— is

mean |

CNN — LSTM [—| LSTM |— 4
CNN _K —| LSTM LSTM |— ball

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko 140
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015.

Pseudocode

Assuming encoded input H (from text, image, video)
is available

Now generate the output y_,.(1) ,¥..(2),..

t =0

h,,.(0) = H # Encoder embedding

Note: begins with a “start of sentence” symbol

<sos> and <eos> may be identical

Yout (0) = <sos>

do
t = t+l
[y (£) ,hoe (£)] = RNN output step(h,,.(t-1), yo..(t-1), H)
Yout (C) = generate(y(t)) # Beam search, random, or greedy

until y_ . (t) == <eos>

141

Pseudocode

Assuming encoded input H (from text, image, video)
is available

Now generate the output y_,.(1) ,¥..(2),..

t =0

h,,.(0) = H # Encoder embedding

Note: begins with a “start of sentence” symbol .
9 Also consider

<sos> and <eos> may be identical —— embedding
Yout (0) = <sos>
do /

t = t+l

[y (£) ,hoe (£)] = RNN output step(h,,.(t-1), yo..(t-1), H)

Yout (C) = generate(y(t)) # Beam search, random, or greedy

until y_ . (t) == <eos>

142

But wait...

Ich habe einen apfel gegessen <eos>

\ 4
A 4
\ 4

4

A

4

A

4

A

A

A

4

A

—»

\ 4

\ 4

\ 4

\ 4

\ 4

A

I ate

 We are overloading this guy

* How can we do

e Next class

vetter?

an apple <eos> <sos> Ich habe einen

apfel gegessen

143

