Introduction to Deep Learning

Lecture 19 Transformers

Liangze Li

Kateryna Shapovalenko

11-785, Spring 2024

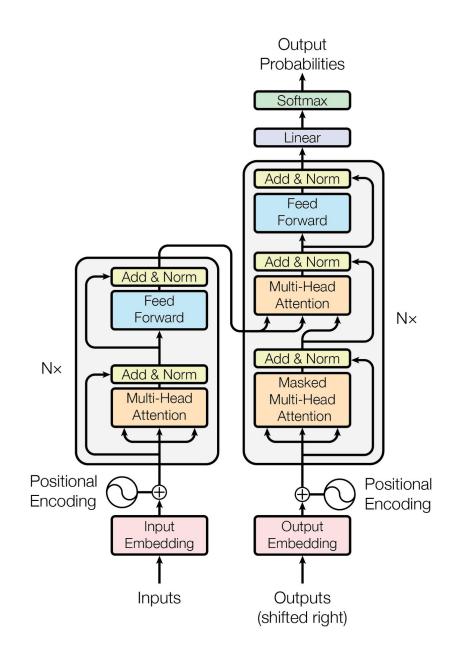
Attendance poll @1585

Table of contents

- **1.** The Transformer Architecture
- 2. Pre-training and Fine-tuning
- 3. Transformer Applications
- 4. Case study Large Language Models

Part 1

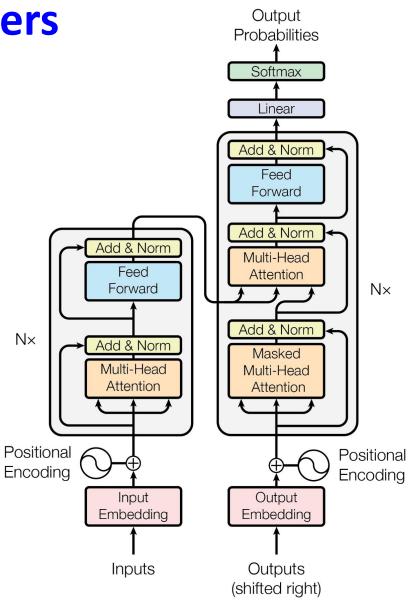
Transformer Architecture



Transformers

- Tokenization
- Input Embeddings
- Position Encodings
- Query, Key, & Value
- Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

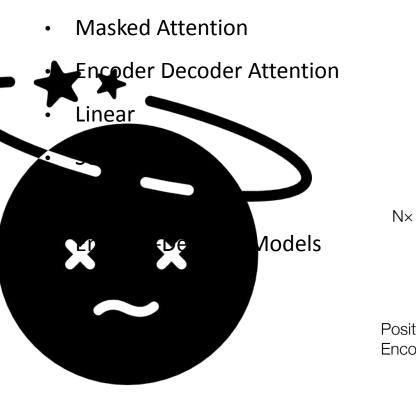
- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

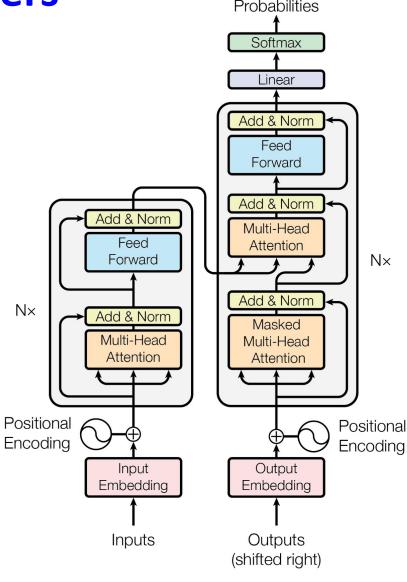


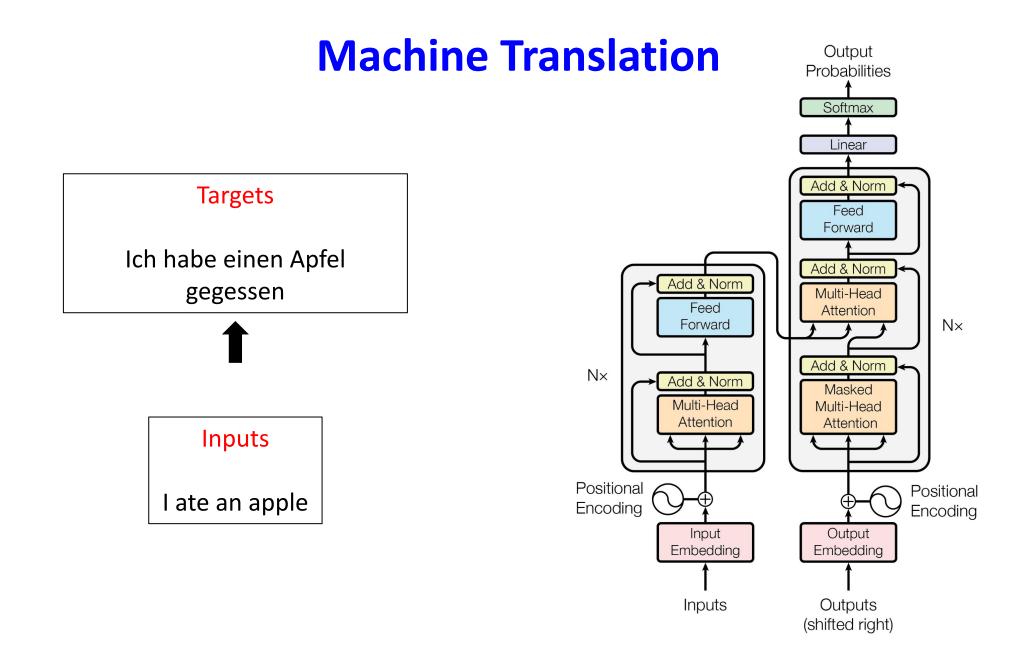
Transformers

Output Probabilities Softmax Linear

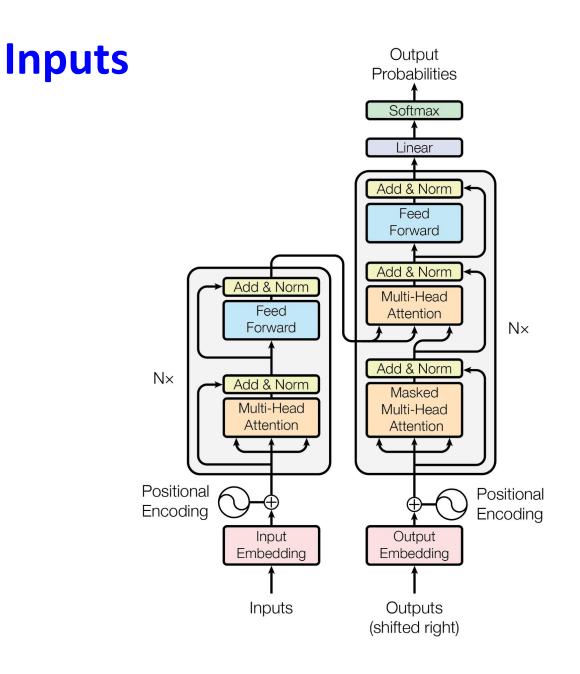
- **Tokenization** •
- Input Embeddings ٠
- Position Encodings •
- Query, Key, & Value •
- Attention •
- Self Attention •
- Multi-Head Attention •
- **Feed Forward** •
- Add & Norm •
- Encoders ٠



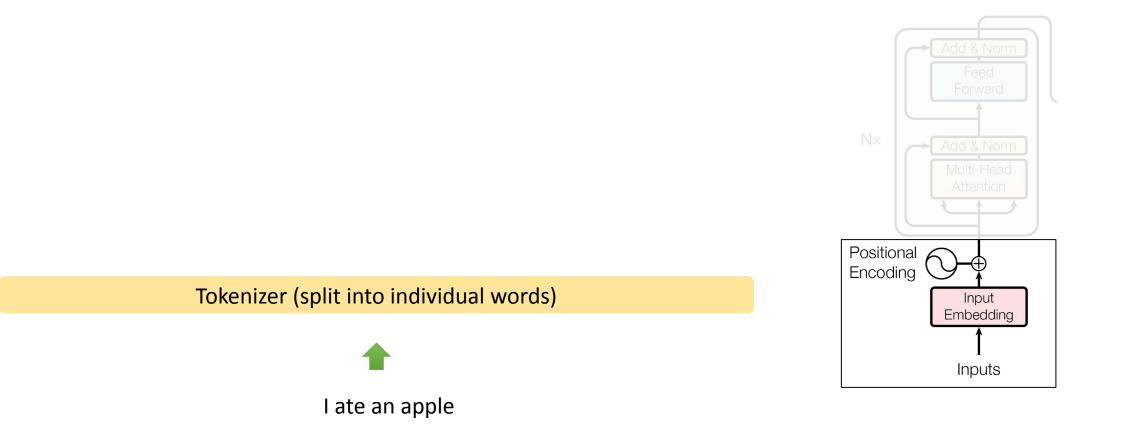




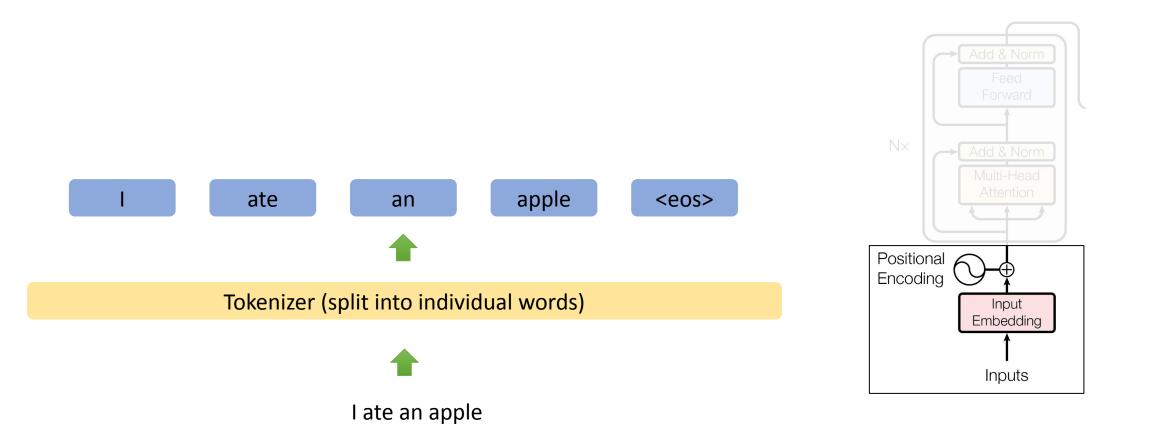
Processing Inputs



Tokenization



Tokenization

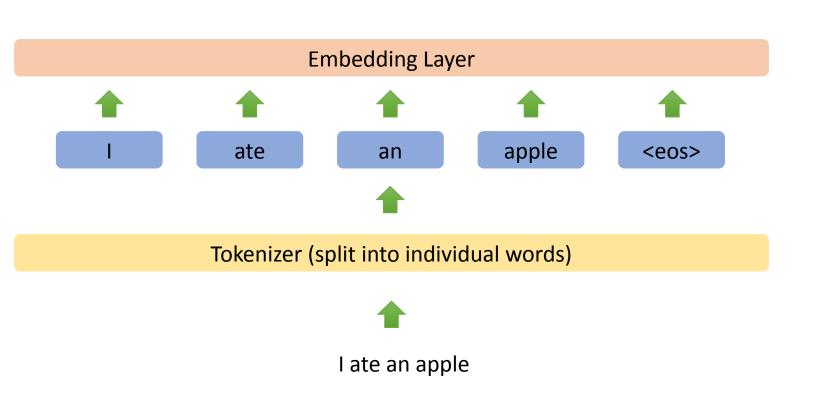


Input Embeddings

Positional Encoding

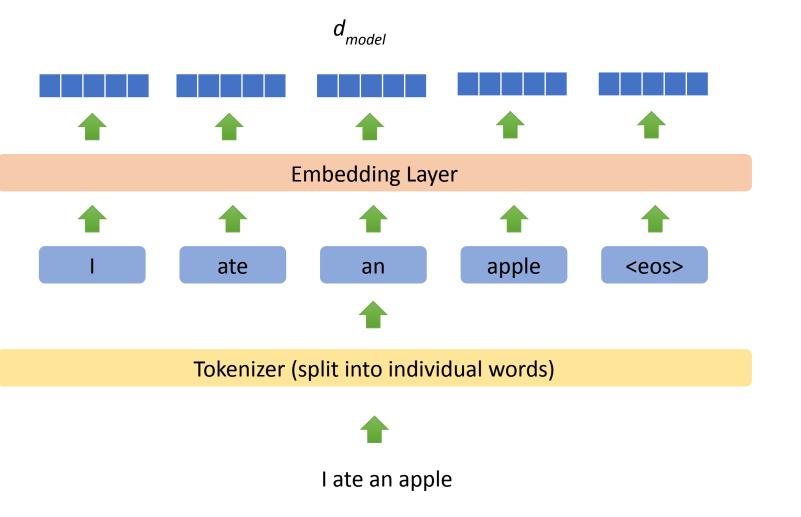
Input Embedding

Inputs



Generate Input Embeddings

Input Embeddings

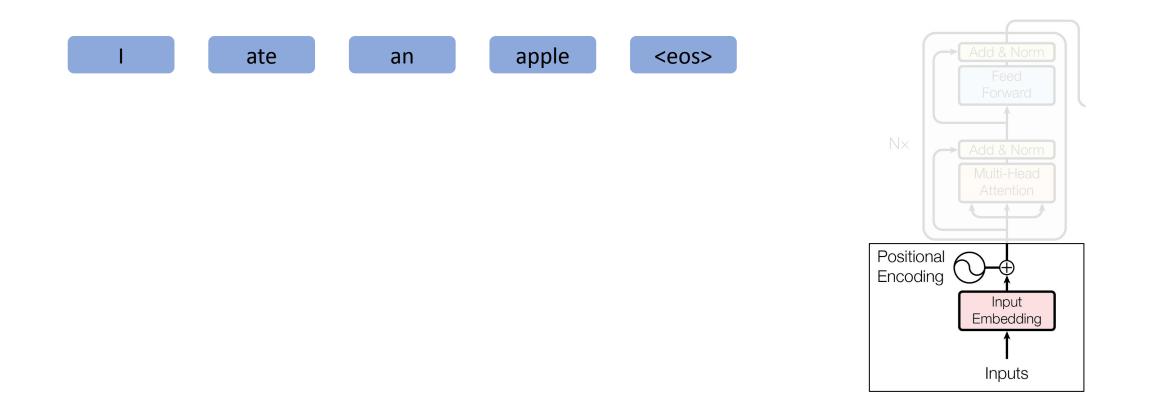


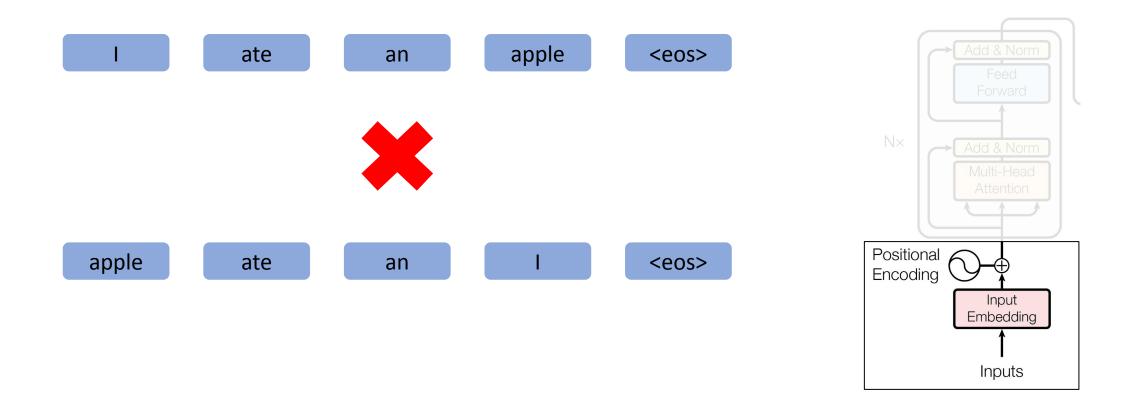
Generate Input Embeddings

Positional Encoding

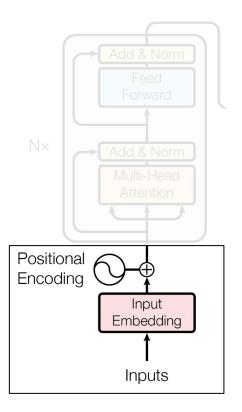
Input Embedding

Inputs



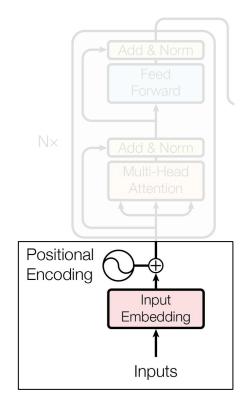


Requirements for Positional Encodings???



Requirements for Positional Encodings

- Some representation of time? (like seq2seq?)
- Should be unique for each position not cyclic

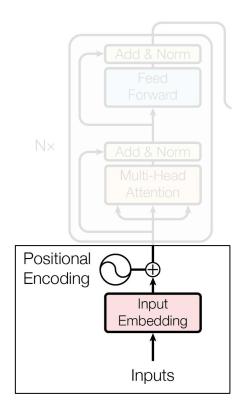


Requirements for Positional Encodings

- Some representation of time? (like seq2seq?)
- Should be unique for each position not cyclic

Possible Candidates :

$$P_{t+1} = P_t + \Delta c$$
$$P_{t+1} = e^{P_{t_{\Delta}}c}$$
$$P_{t+1} = P_t^{i_{\Delta}c}$$

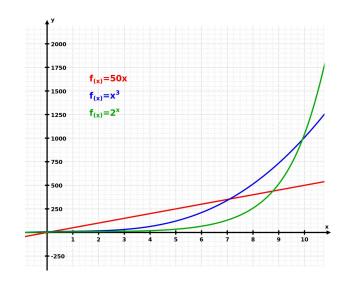


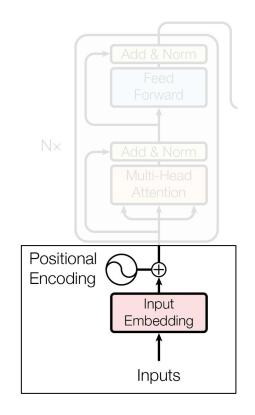
Requirements for Positional Encodings

- Some representation of time? (like seq2seq?)
- Should be unique for each position not cyclic

Possible Candidates :

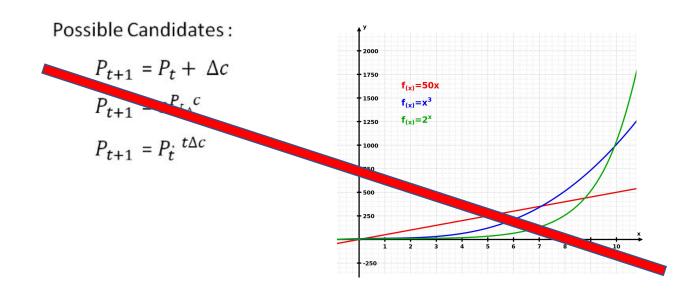
$$P_{t+1} = P_t + \Delta c$$
$$P_{t+1} = e^{P_{t_{\Delta}}c}$$
$$P_{t+1} = P_t^{\cdot t\Delta c}$$

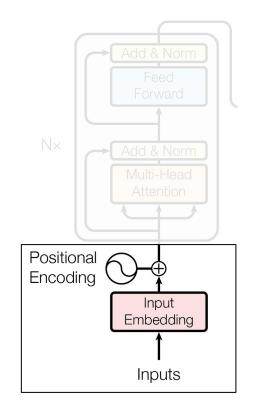




Requirements for Positional Encodings

- Some representation of time? (like seq2seq?)
- Should be unique for each position not cyclic



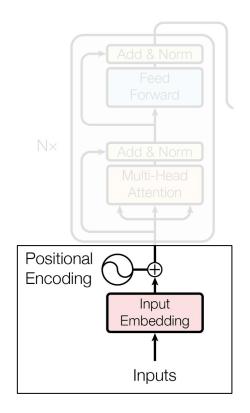


Requirements for Positional Encodings

- Some representation of time? (like **seq2seq**?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates

 $P(t + t') = M^{t'} \times P(t)$



Requirements for Positional Encodings

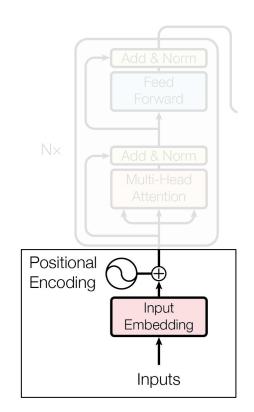
- Some representation of time? (like **seq2seq**?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates

 $P(t + t') = M^{t'} x P(t)$

M?

- 1. Should be a unitary matrix
- 2. Magnitudes of eigen value should be 1 -> norm preserving
- 3. The matrix can be learnt
- 4. Produces unique rotated embeddings each time



Rotary Position Embedding

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \end{pmatrix}$$

Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks.

Model	MRPC	SST-2	QNLI	STS-B	QQP	MNLI(m/mm)
BERTDevlin et al. [2019]	88.9	93.5	90.5	85.8	71.2	84.6/83.4
RoFormer	89.5	90.7	88.0	87.0	86.4	80.2/79.8

Positional Encoding Input Embedding Inputs

REF: Rotary Position Embeddings

Requirements for Position Encodings

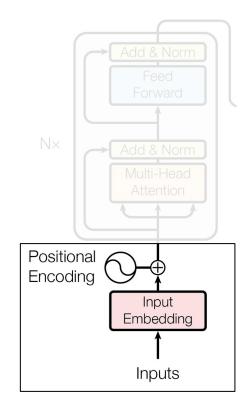
- Some representation of time? (like **seq2seq**?)
- Should be unique for each position
- Bounded

Actual Candidates

sine(**g(t)**)

cosine(**g(t)**)

2 sinx 1.5 cos x 0.5 0 -0.5 -1 -1.5 -2 2π -2π $-3\pi/2$ -π $-\pi/2$ 0 $\pi/2$ $3\pi/2$ π



Requirements for g(t)

- Must have same dimensions as input embeddings
- Must produce overall unique encodings

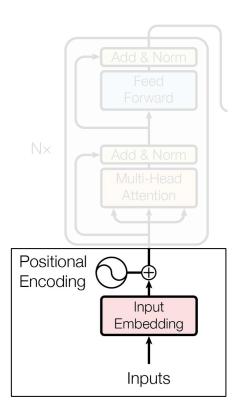
For each position, an embedded input is moved the same distance but at a different angle. Inputs that are close to each other in the sequence have similar perturbations, but inputs that are far apart are perturbed in different directions.

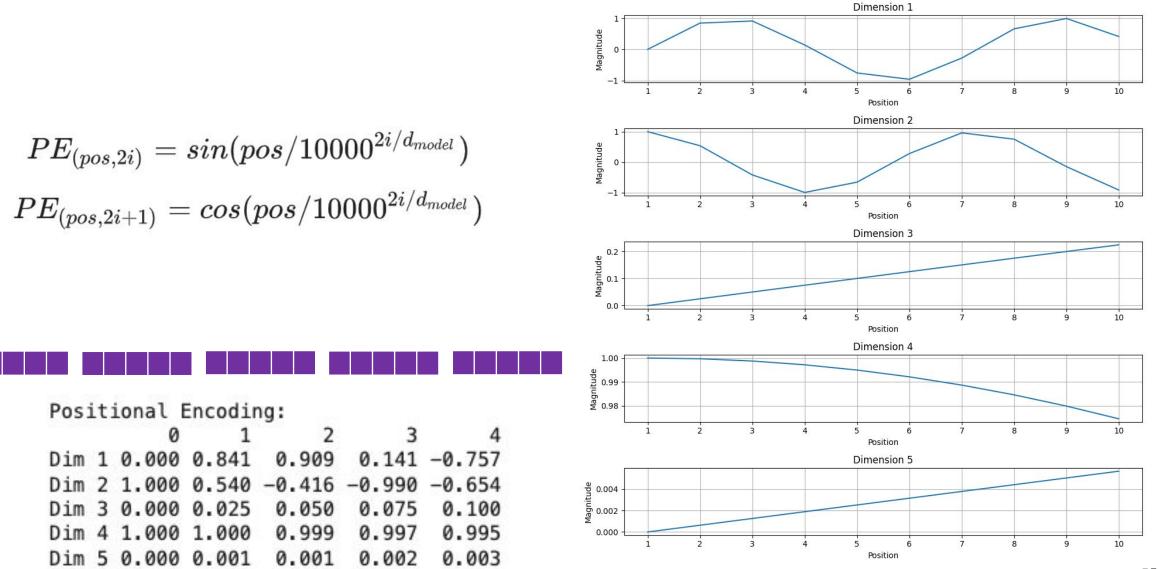
 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})
onumber \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

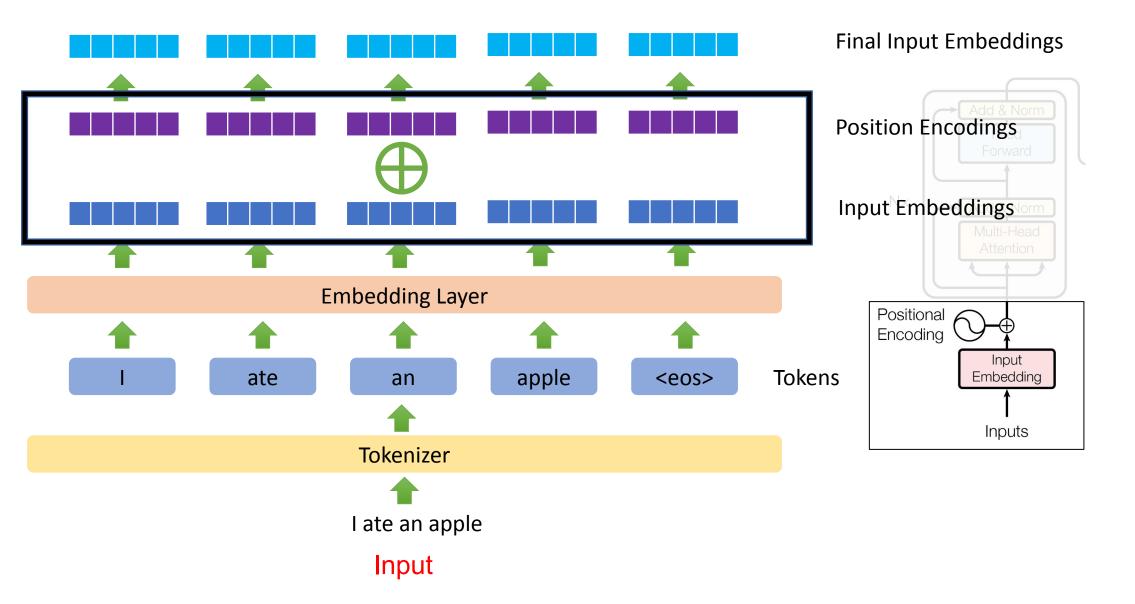
pos -> idx of the token in input sentence
 i -> ith dimension out of d

d model -> embedding dimension of each token

Different calculations for odd and even embedding indices



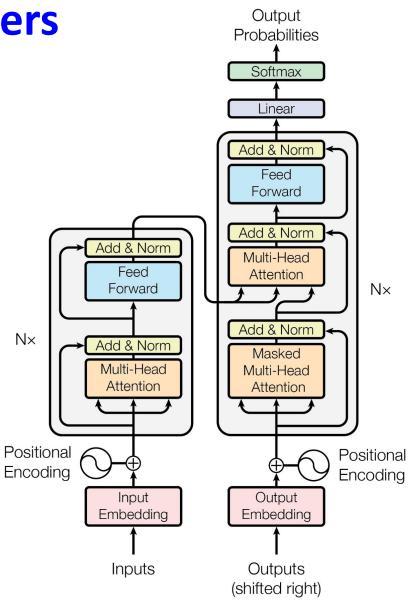


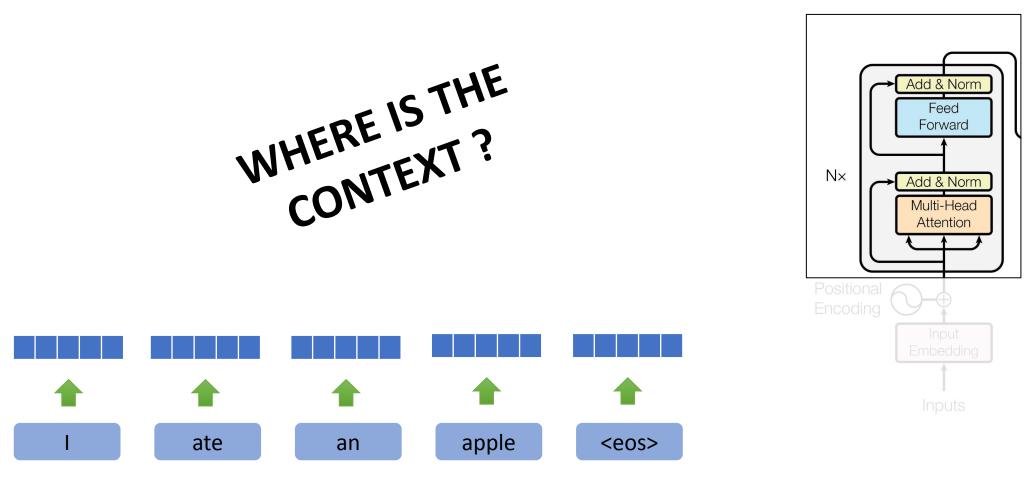


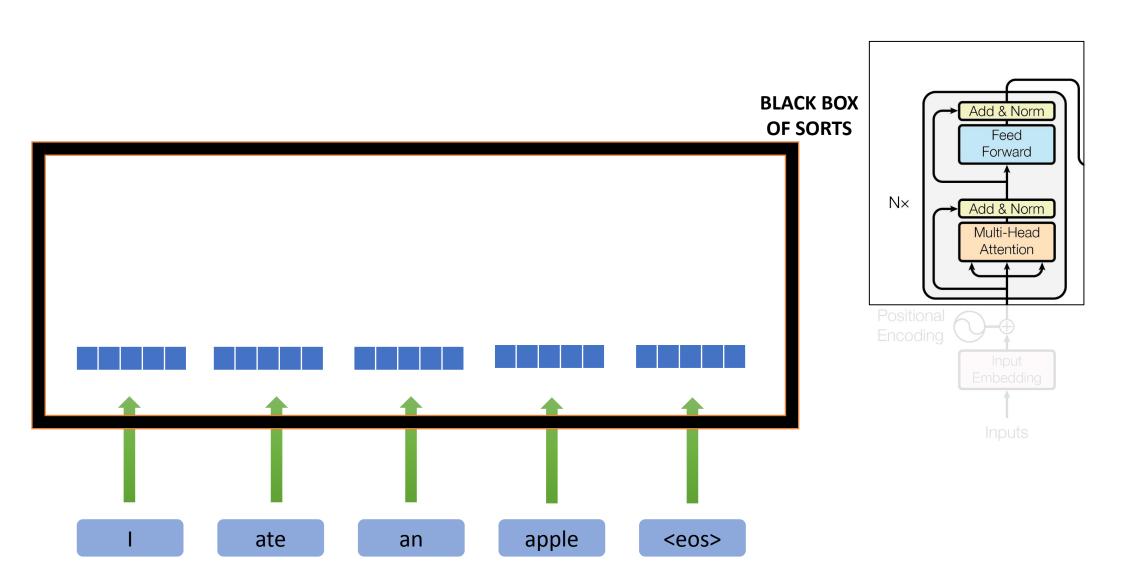
Transformers

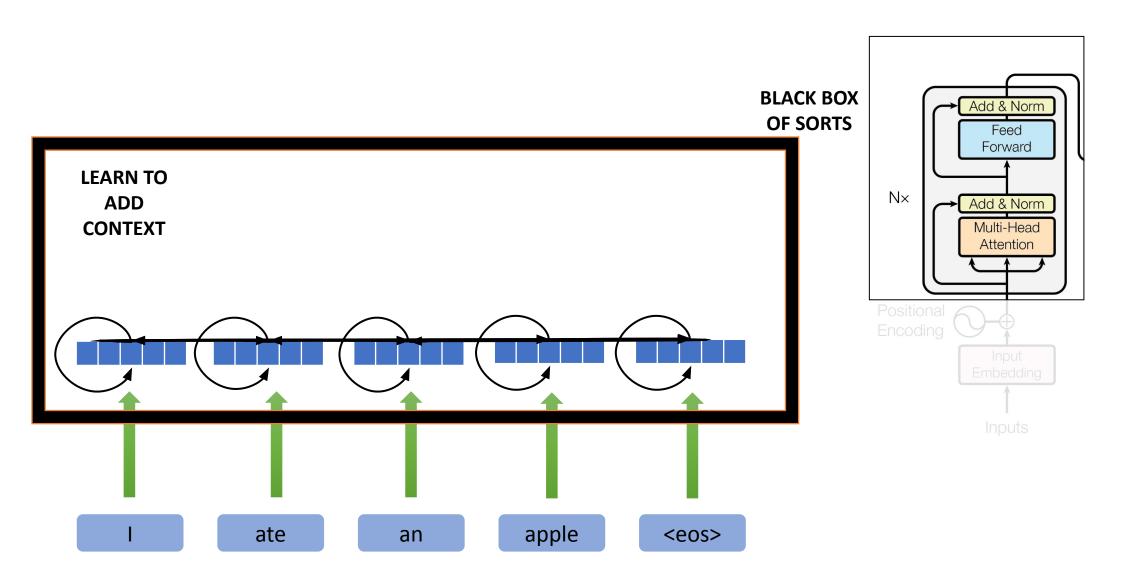
- ✔ Tokenization
- Input Embeddings
- ✔ Position Encodings
- Query, Key, & Value
- Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

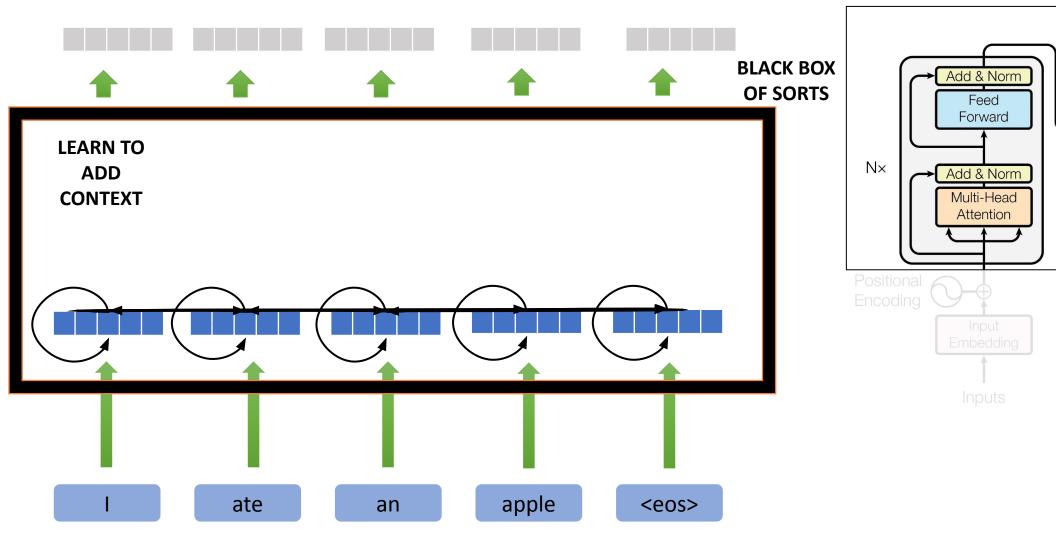


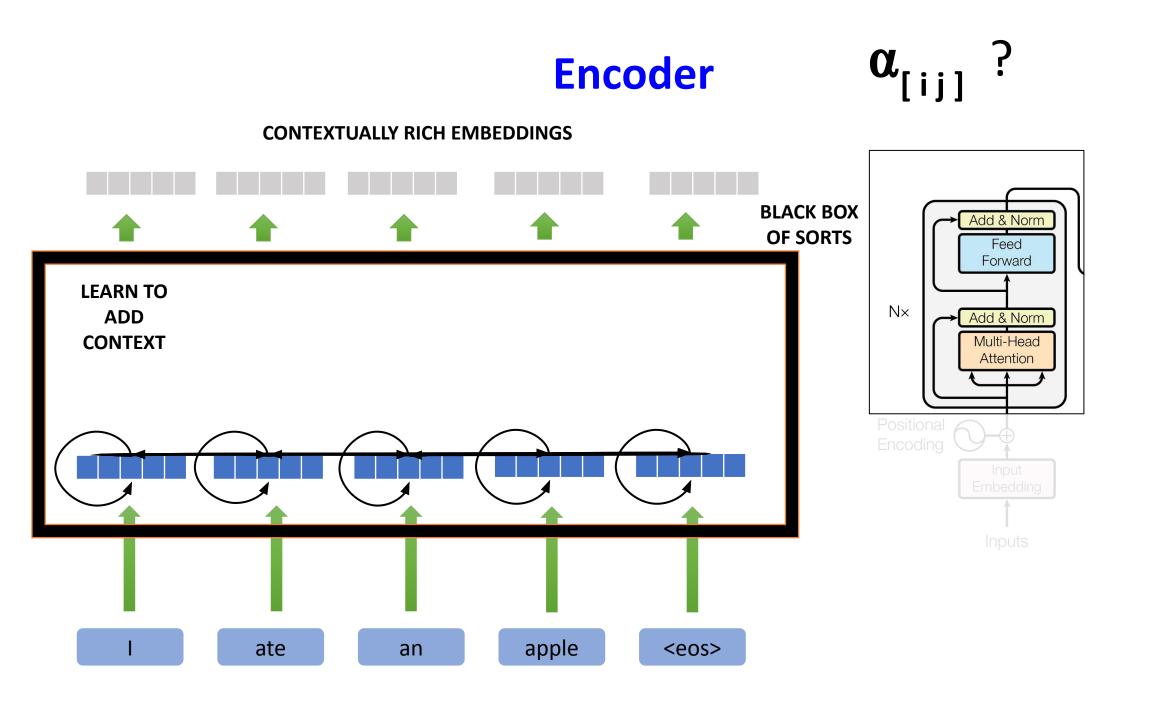






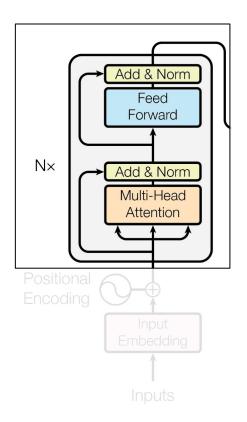
CONTEXTUALLY RICH EMBEDDINGS





Attention

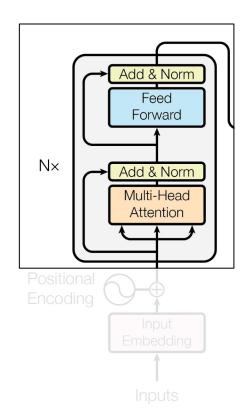
$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$



Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- Query
- Key
- Value



Query, Key & Value

Database

{Key, Value store}

{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"i2", ...}},

Query, Key & Value

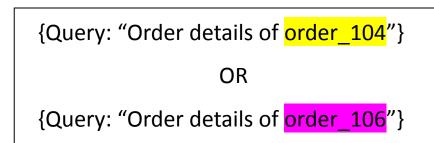
Database

{Key, Value store}

{Query: "Order details of <mark>order_104</mark> "}				
OR				
{Query: "Order details of <mark>order_106</mark> "}				

{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"i1", "delivery_date":"i2", ...}},

{Key, Value store}



{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_108": {"items":"h1", "delivery_date":"i2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"i2", ...}},

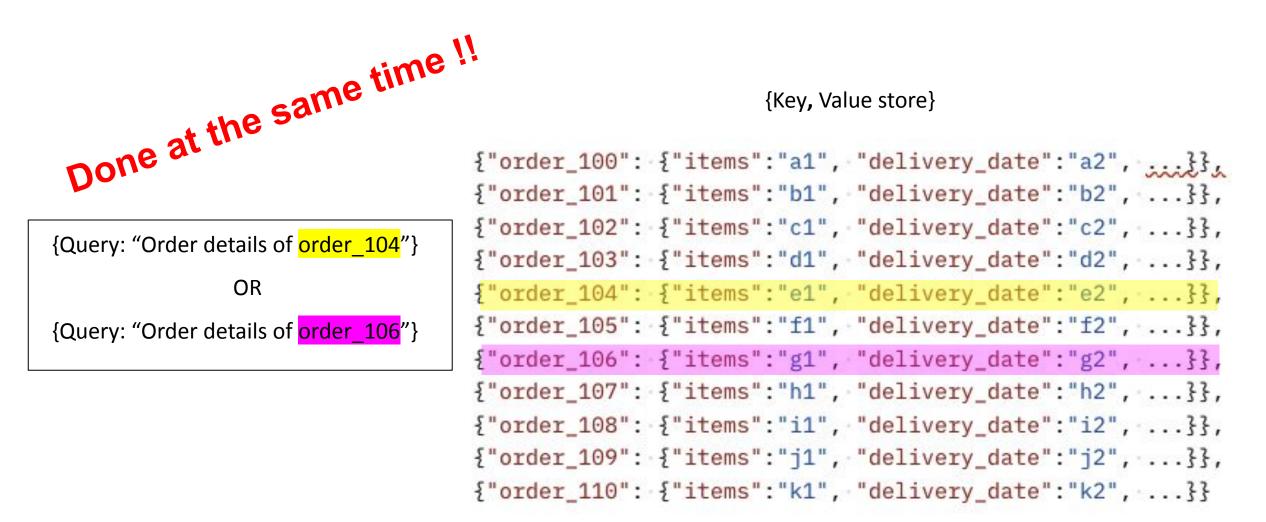
{Key, Value store}

{Query: "Order details of order_104"} OR {Query: "Order details of order_106"} {"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_108": {"items":"h1", "delivery_date":"i2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"i2", ...}},

{Key, Value store}

{Query: "Order details of <mark>order_104</mark> "}						
OR						
{Query: "Order details of <mark>order_106</mark> "}						

{"order_100": {"items":"a1", "delivery_date":"a2",}},
{"order_101": {"items":"b1", "delivery_date":"b2",}},
{"order_102": {"items":"c1", "delivery_date":"c2",}},
{"order_103": {"items":"d1", "delivery_date":"d2",}},
{"order_104": {"items":"e1", "delivery_date":"e2",}},
{"order_105": {"items":"f1", "delivery_date":"f2",}},
{"order_106": {"items":"f1", "delivery_date":"g2",}},
{"order_107": {"items":"h1", "delivery_date":"h2",}},
{"order_108": {"items":"i1", "delivery_date":"i2",}},
{"order_108": {"items":"i1", "delivery_date":"i2",}},
{"order_109": {"items":"i1", "delivery_date":"i2",}},
{"order_109": {"items":"i1", "delivery_date":"i2",}},



{Query: "Order details of order_104"}
OR
{Query: "Order details of <mark>order_106</mark> "}

<pre>{"order_100": {"items":"a1", "delivery_date":"a2",}}</pre>
<pre>{"order_101": {"items":"b1", "delivery_date":"b2",}},</pre>
<pre>{"order_102": {"items":"c1", "delivery_date":"c2",}},</pre>
<pre>{"order_103": {"items":"d1", "delivery_date":"d2",}},</pre>
<pre>{"order_104": {"items":"e1", "delivery_date":"e2",}},</pre>
<pre>{"order_105": {"items":"f1", "delivery_date":"f2",}},</pre>
<pre>{"order_106": {"items":"g1", "delivery_date":"g2",}},</pre>
<pre>{"order_107": {"items":"h1", "delivery_date":"h2",}},</pre>
<pre>{"order_108": {"items":"i1", "delivery_date":"i2",}},</pre>
<pre>{"order_109": {"items":"j1", "delivery_date":"j2",}},</pre>
<pre>{"order_110": {"items":"k1", "delivery_date":"k2",}}</pre>

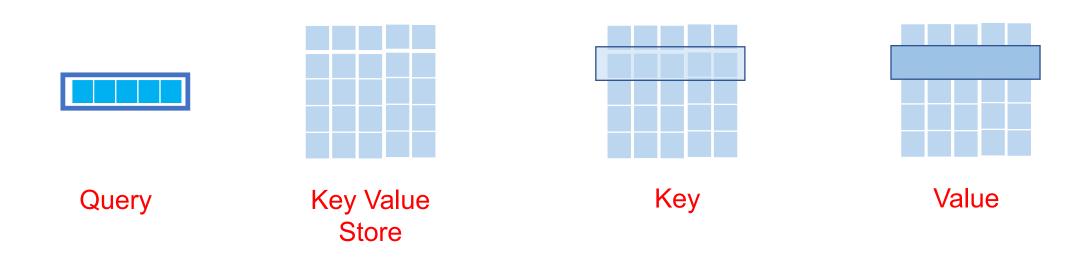
Query

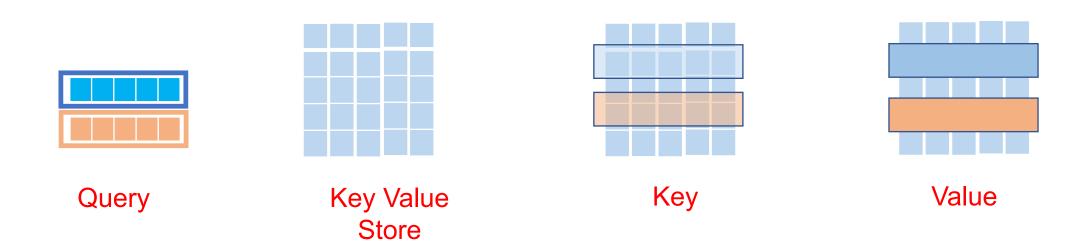
1. Search for info

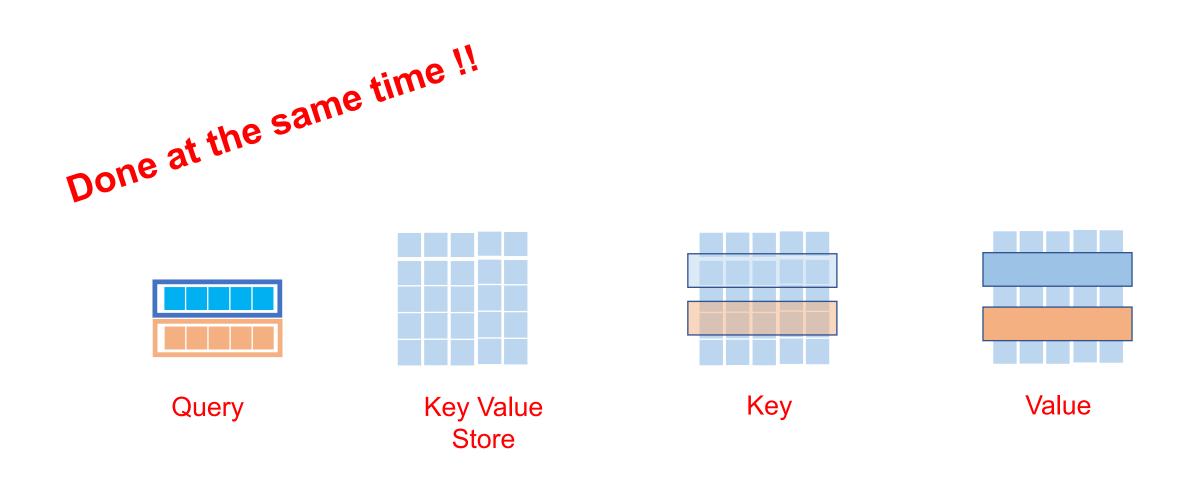
- Кеу
- 1. Interacts directly with Queries
- 2. Distinguishes one object from another
- 3. Identify which object is the most relevant and by how much

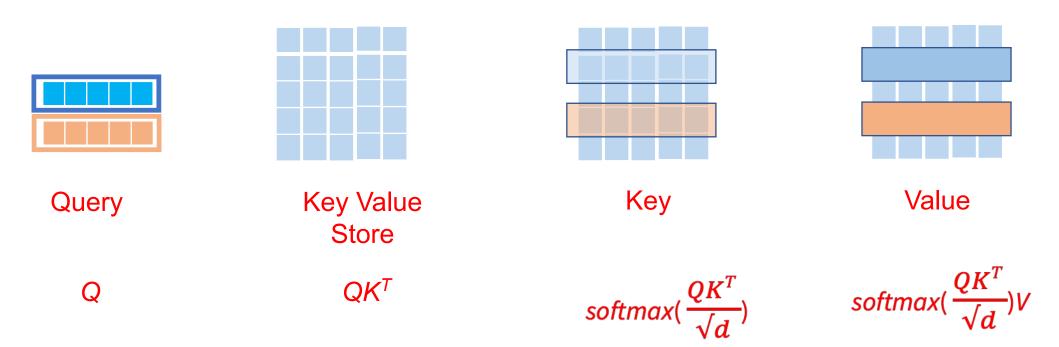
Value

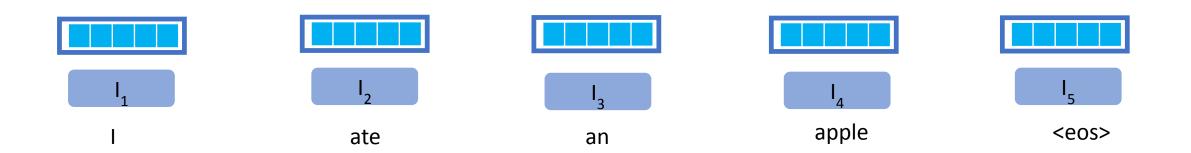
- 1. Actual details of the object
- 2. More fine grained

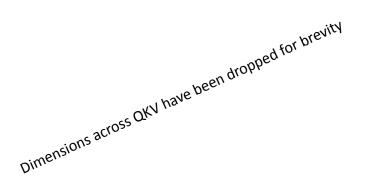


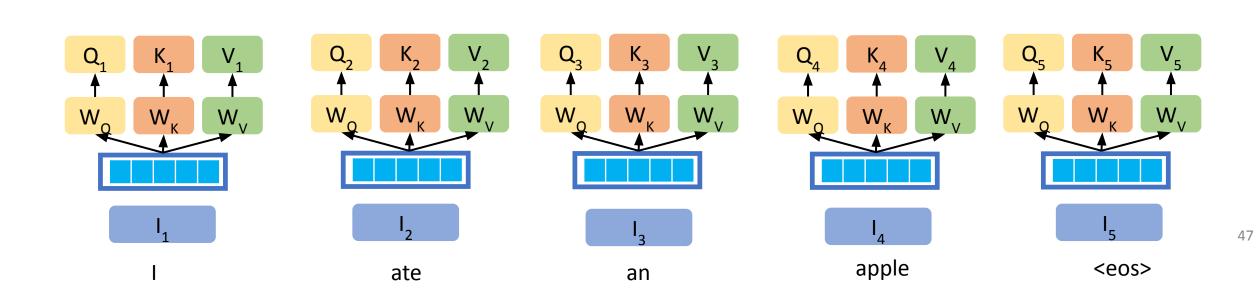


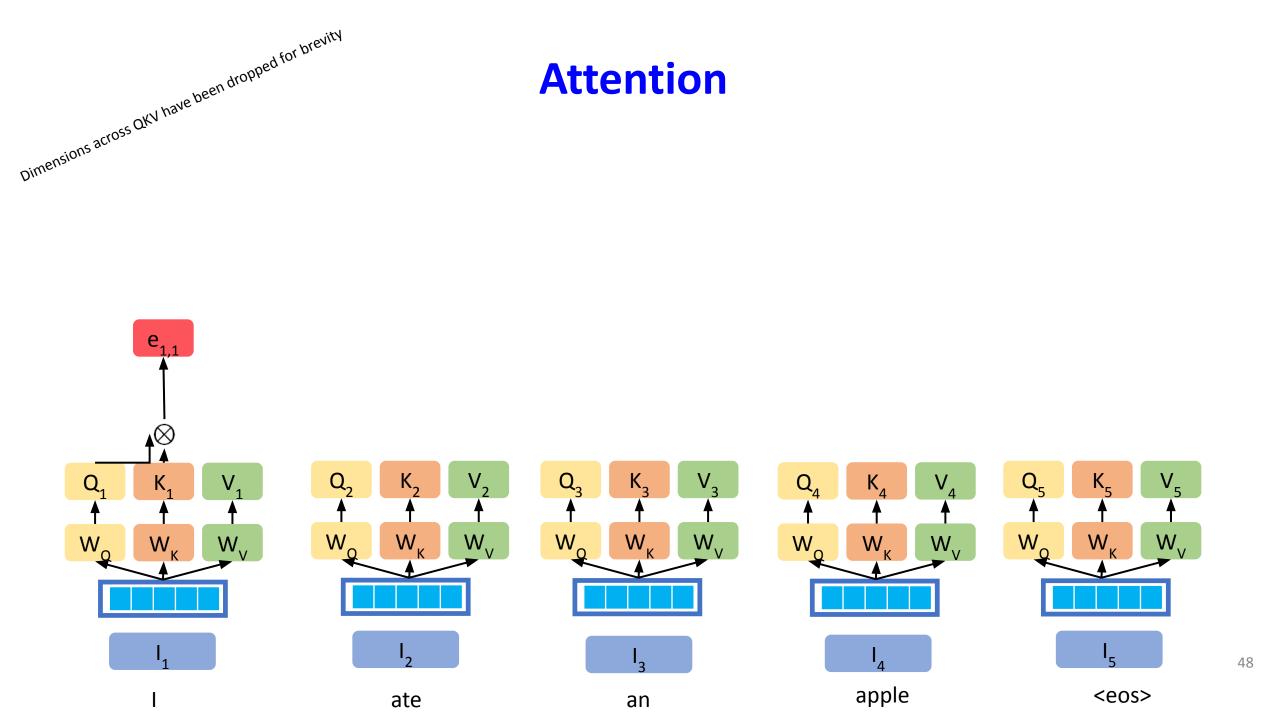


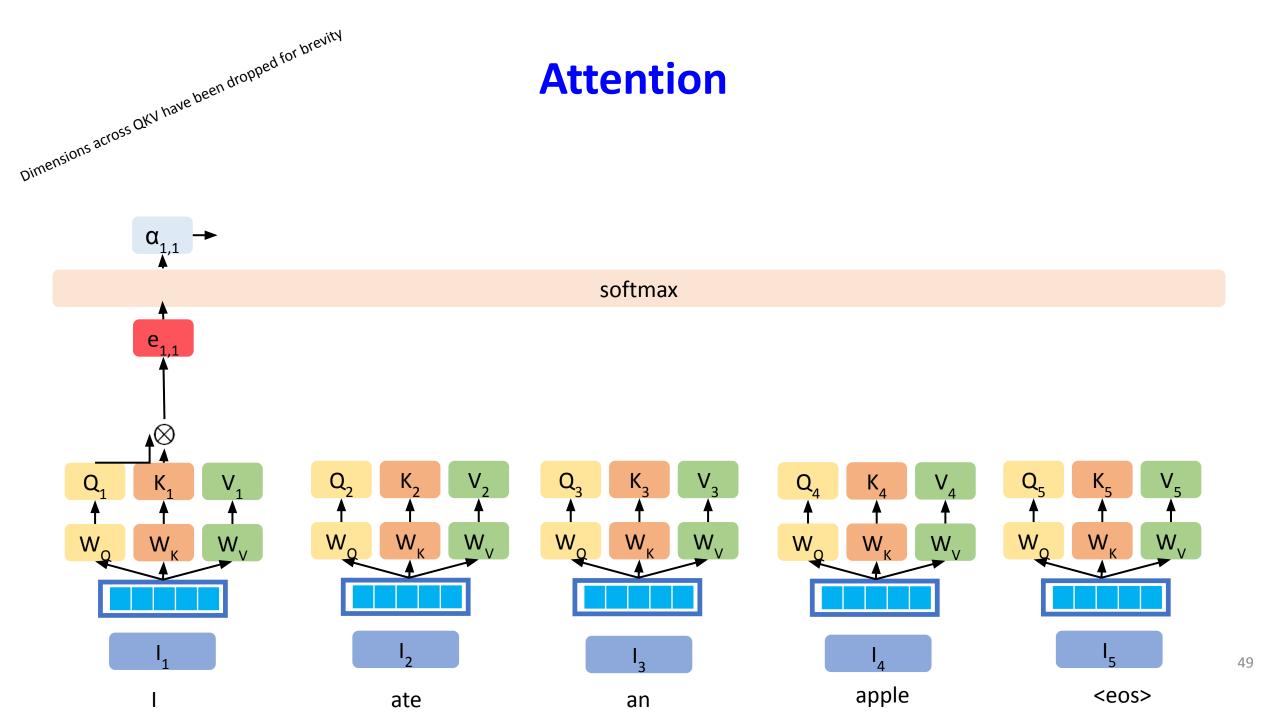


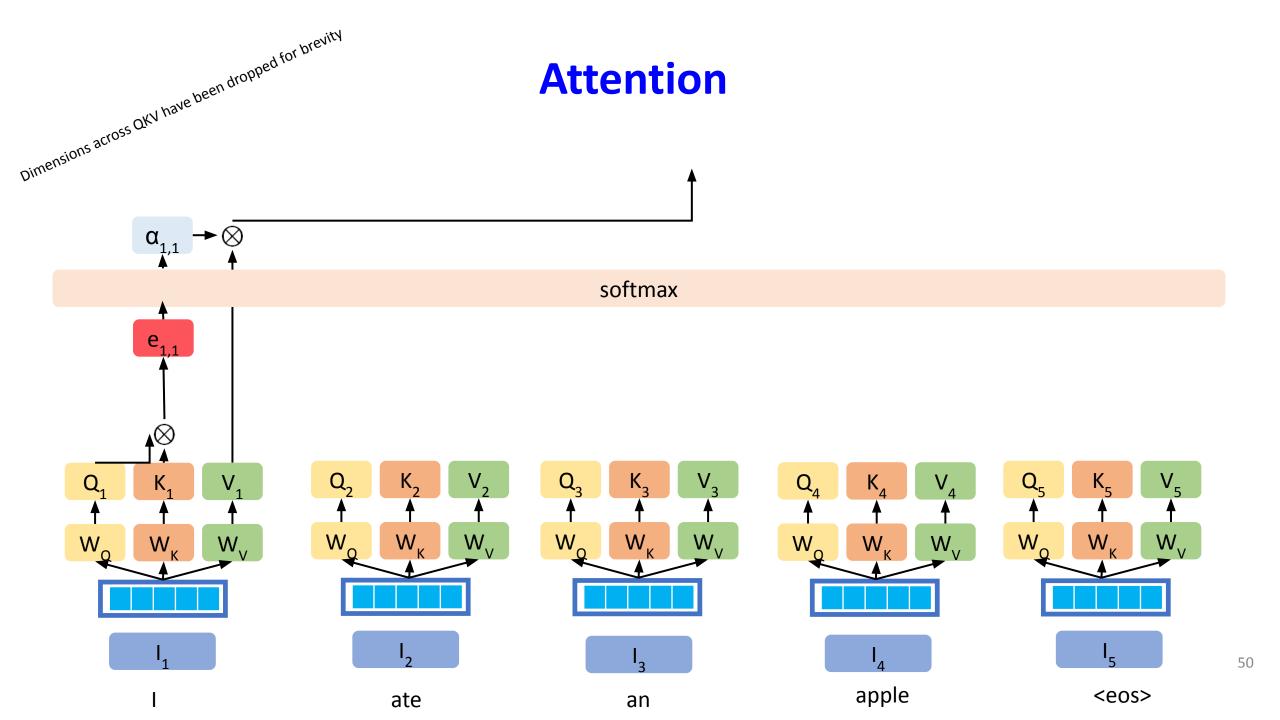


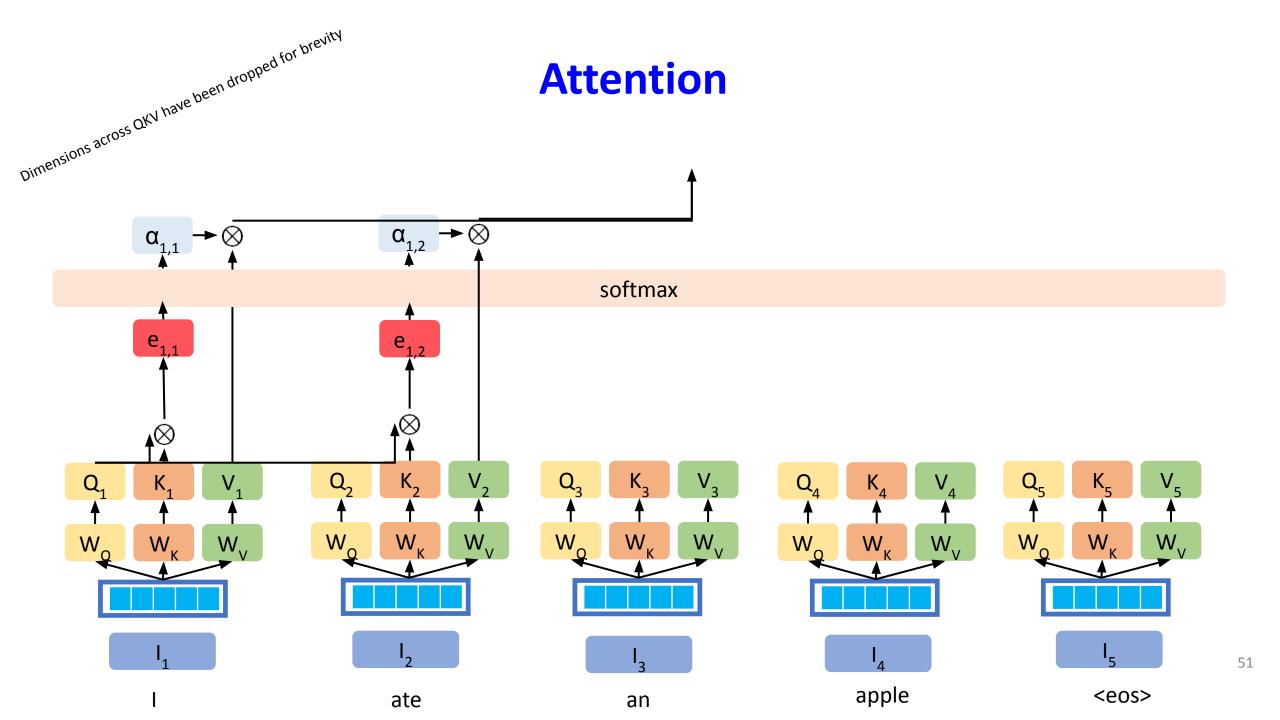


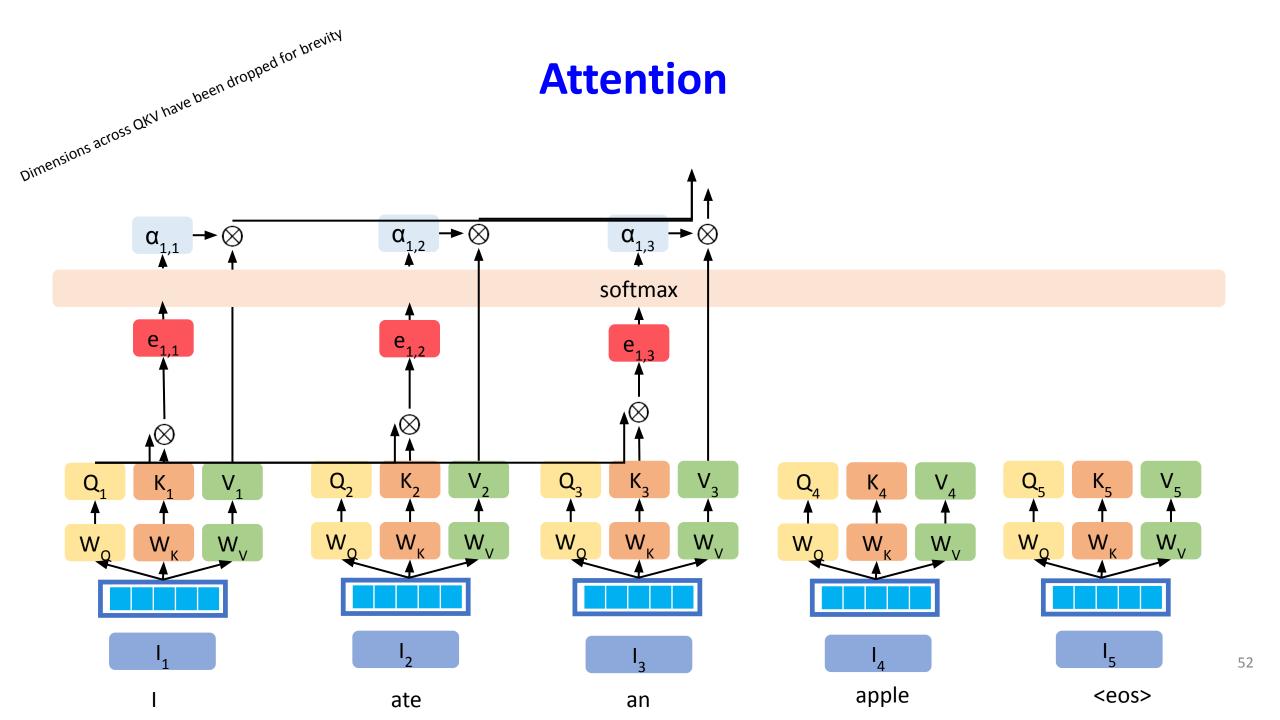


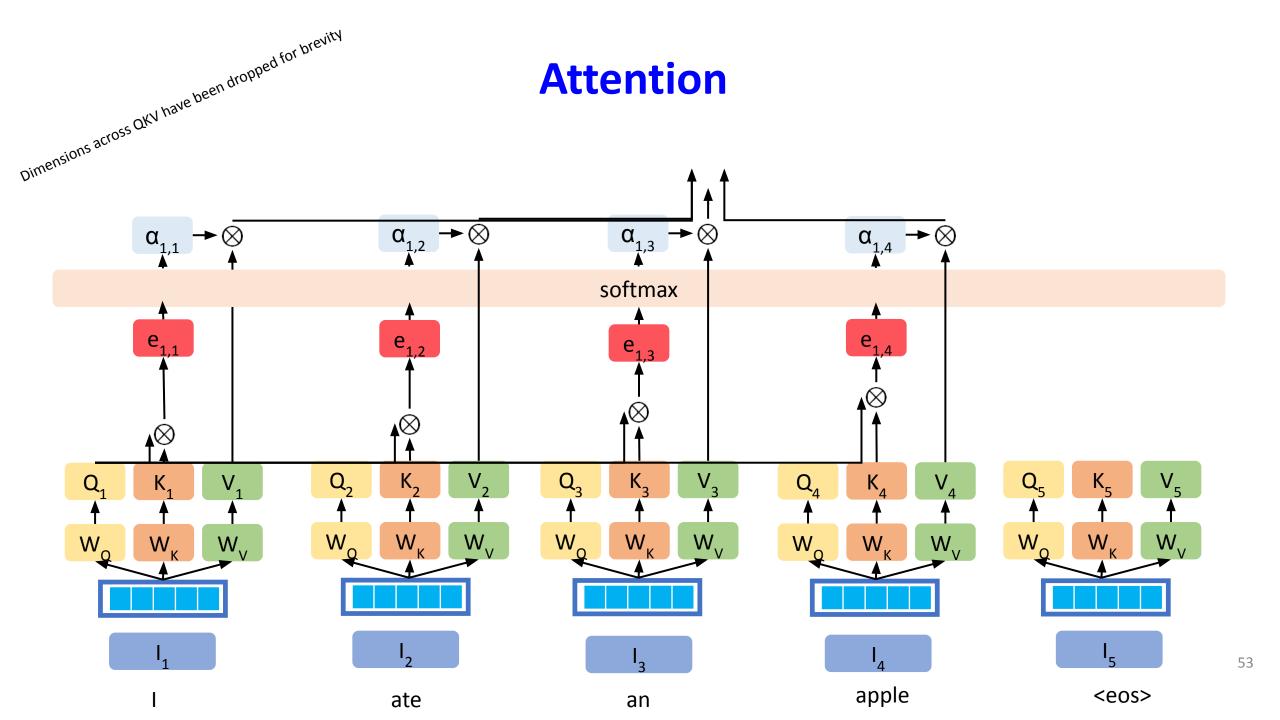


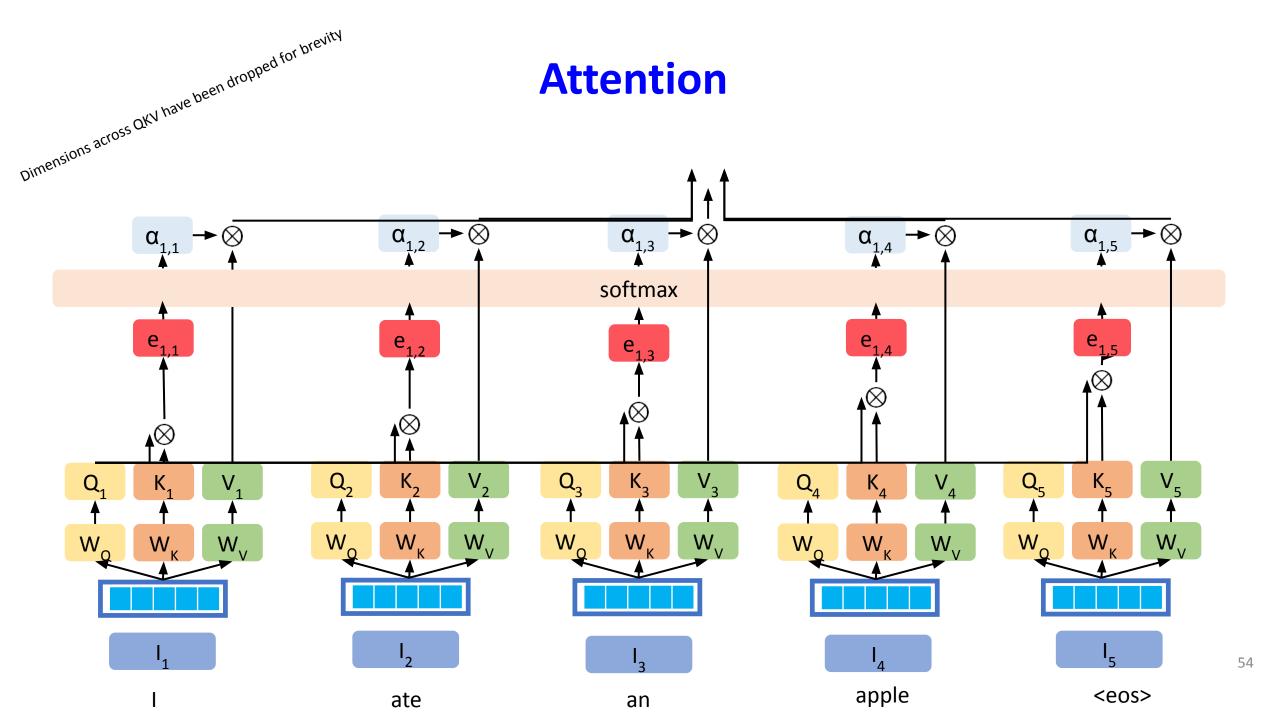


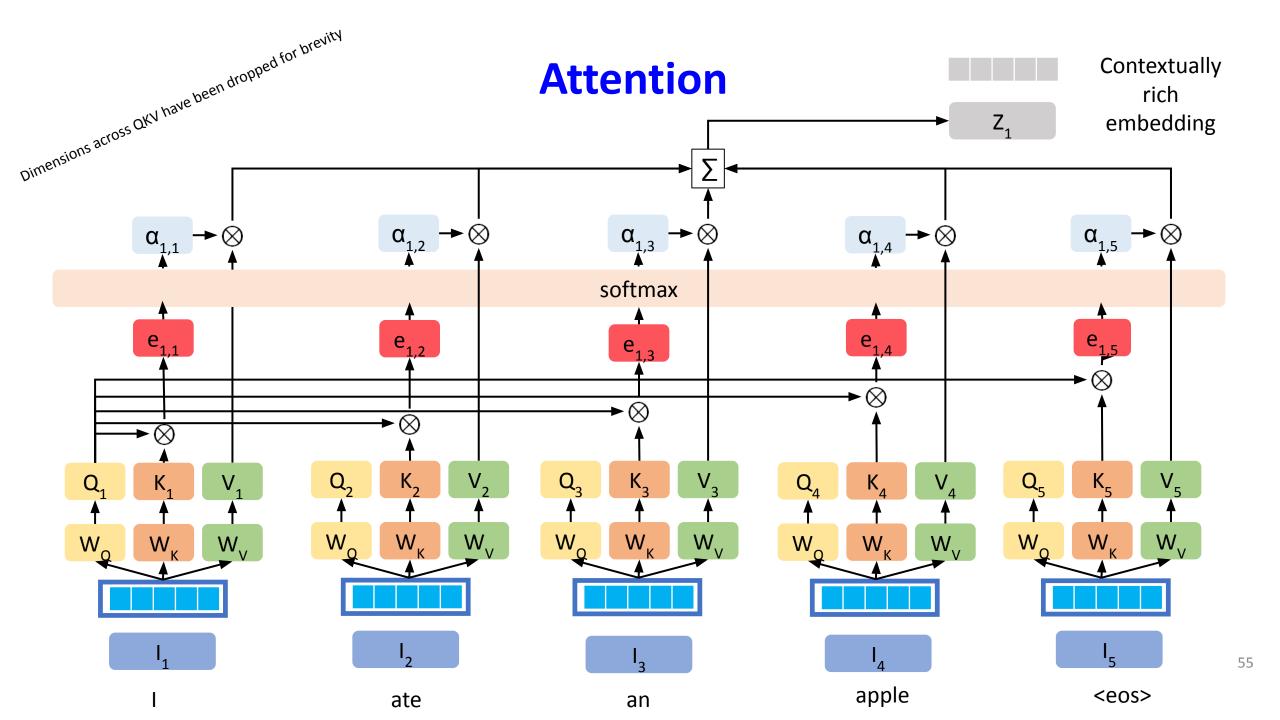


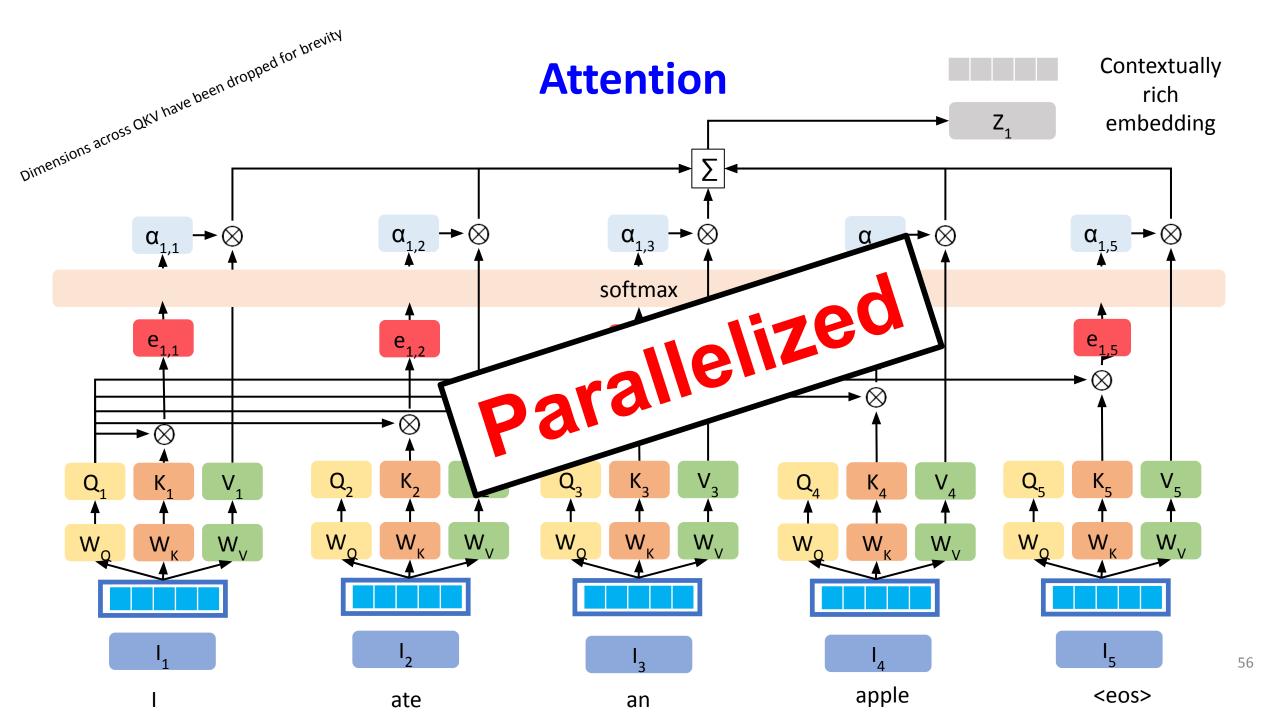








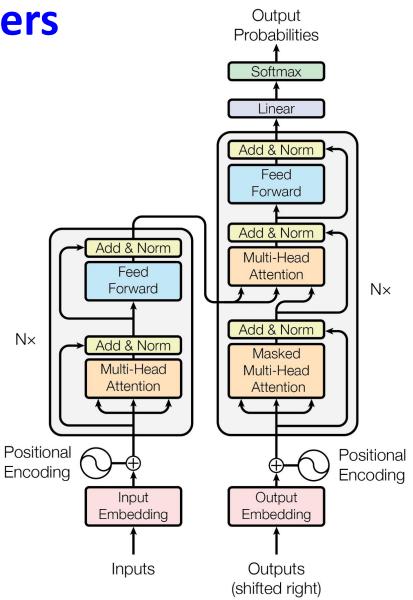




Transformers

- ✔ Tokenization
- Input Embeddings
- ✔ Position Encodings
- ✔ Query, Key, & Value
- ✔ Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

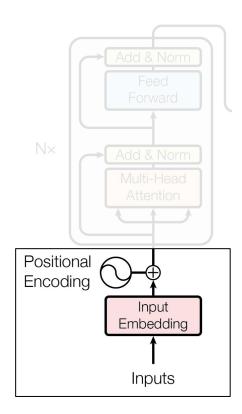
- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models



Poll 1 - @1581

Which of the following are true about attention?

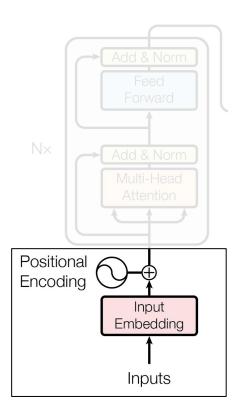
- a. To calculate attention weights for input I_2 , you would use key k_2 , and all queries
- b. To calculate attention weights for input I_2 , you would use query q_2 , and all keys
- c. We scale the QK^T product to bring attention weights in the range of [0,1]
- d. We scale the QK^T product to allow for numerical stability



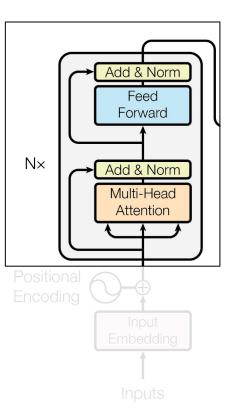
Poll 1 - @1581

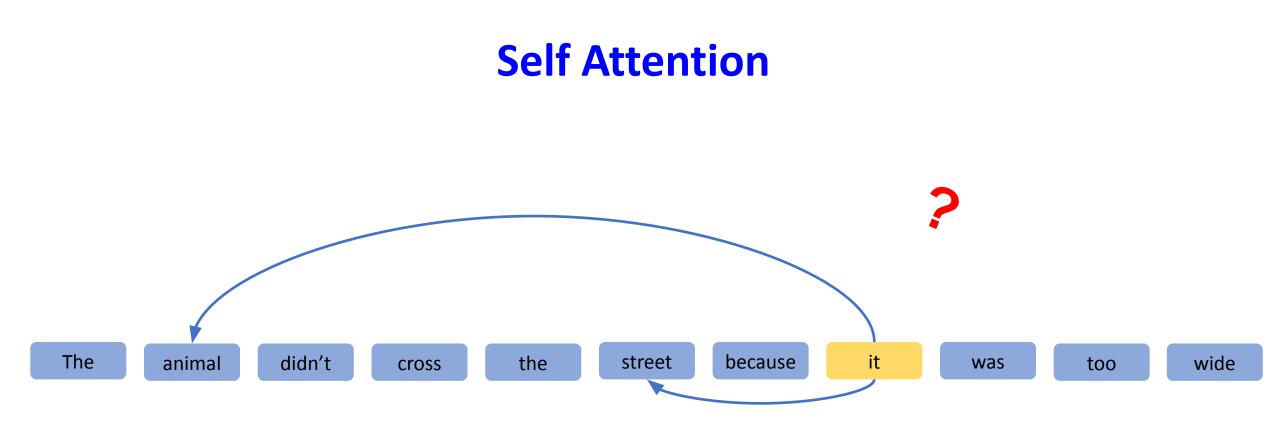
Which of the following are true about attention?

- a. To calculate attention weights for input I_2 , you would use key k_2 , and all queries
- b. To calculate attention weights for input I_2 , you would use query q_2 , and all keys
- c. We scale the QK^T product to bring attention weights in the range of [0,1]
- d. We scale the QK^T product to allow for numerical stability

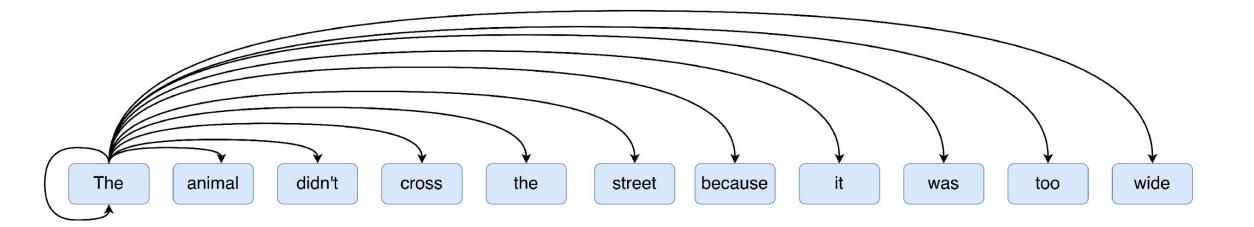


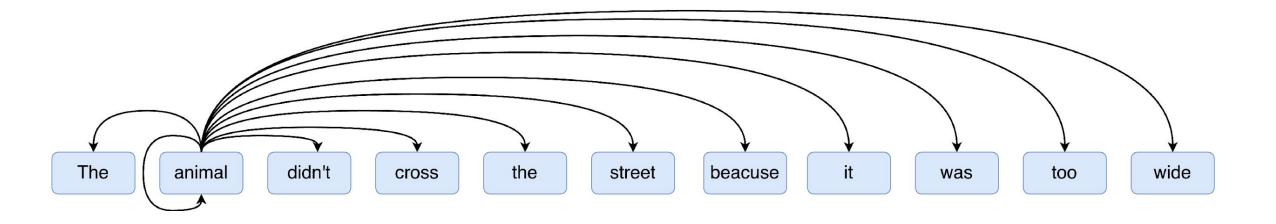
$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

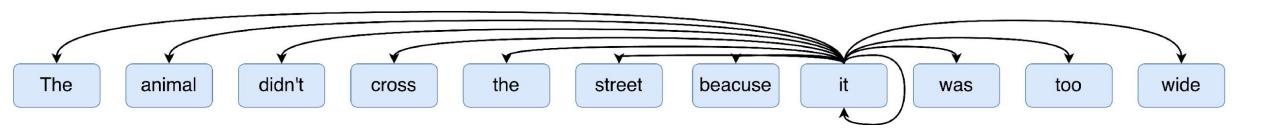


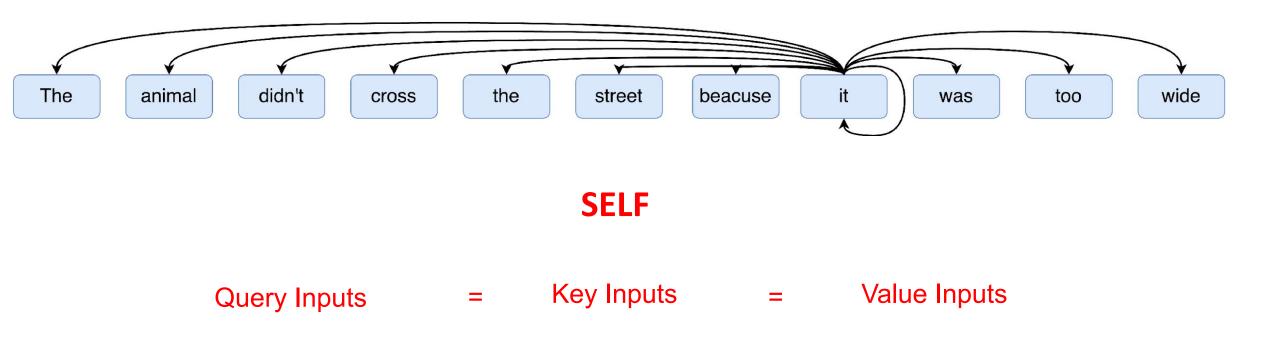


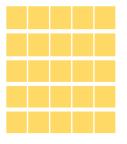
coreference resolution?



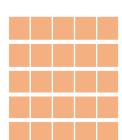




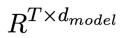




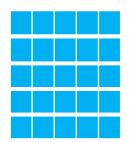
 W_Q



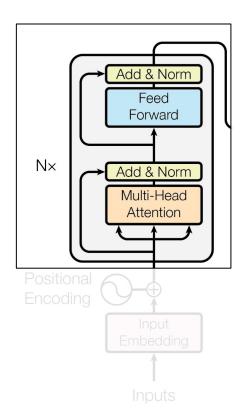
W_v

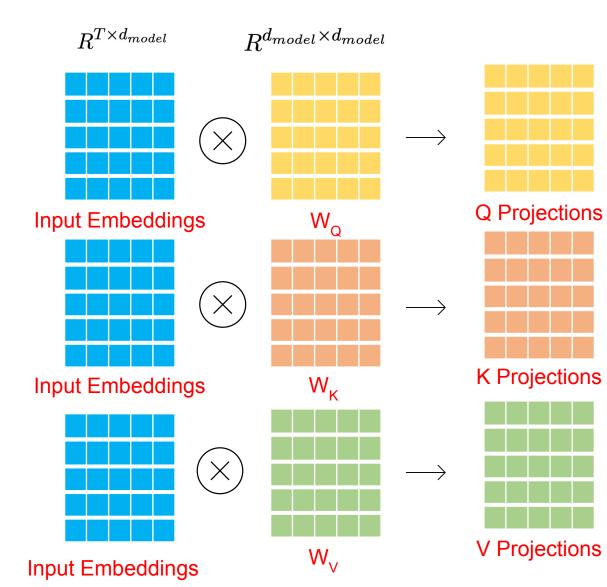


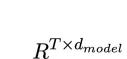
 W_{κ}



Input Embeddings

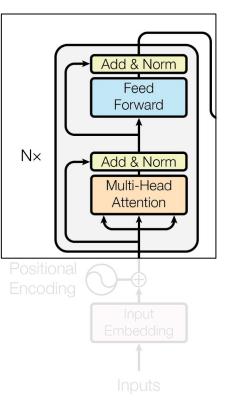


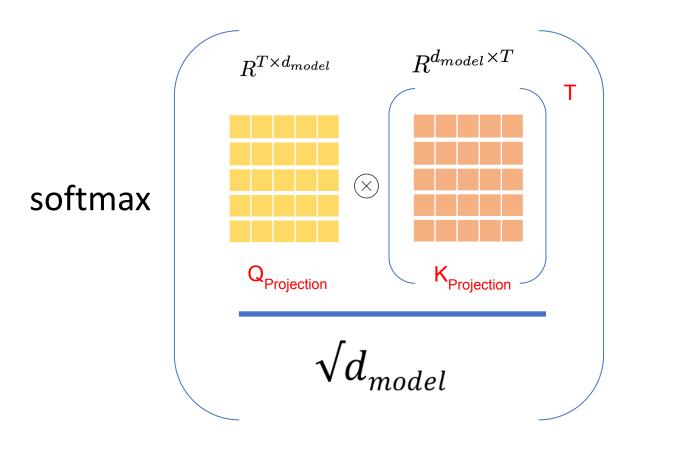


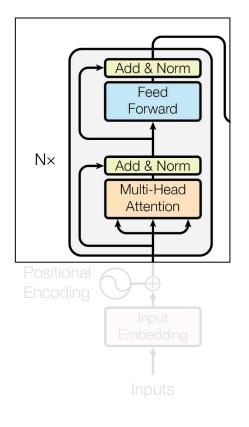


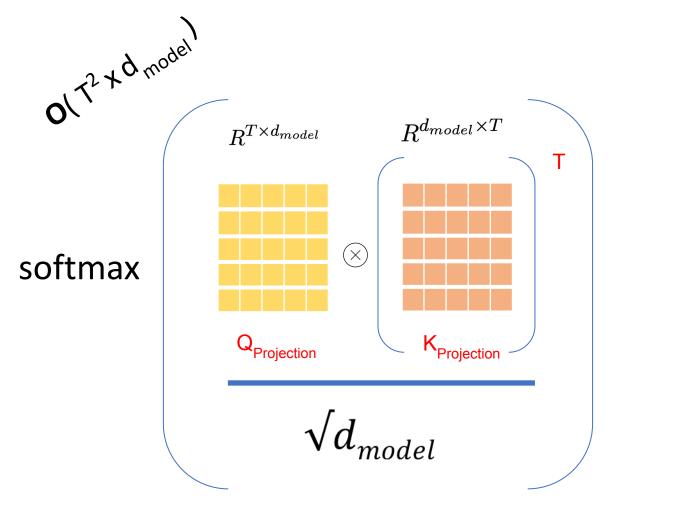
 $R^{T \times d_{model}}$

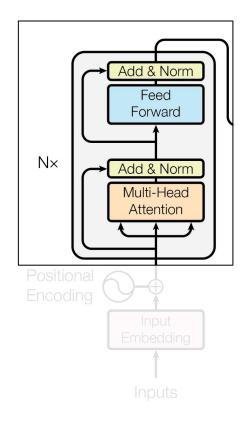
 $R^{T imes d_{model}}$

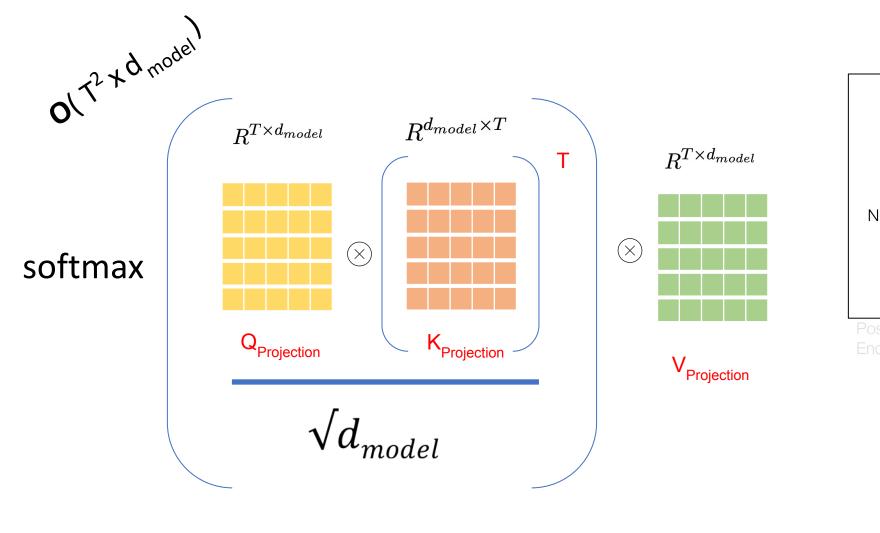




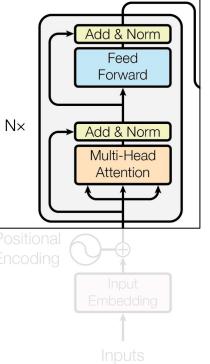






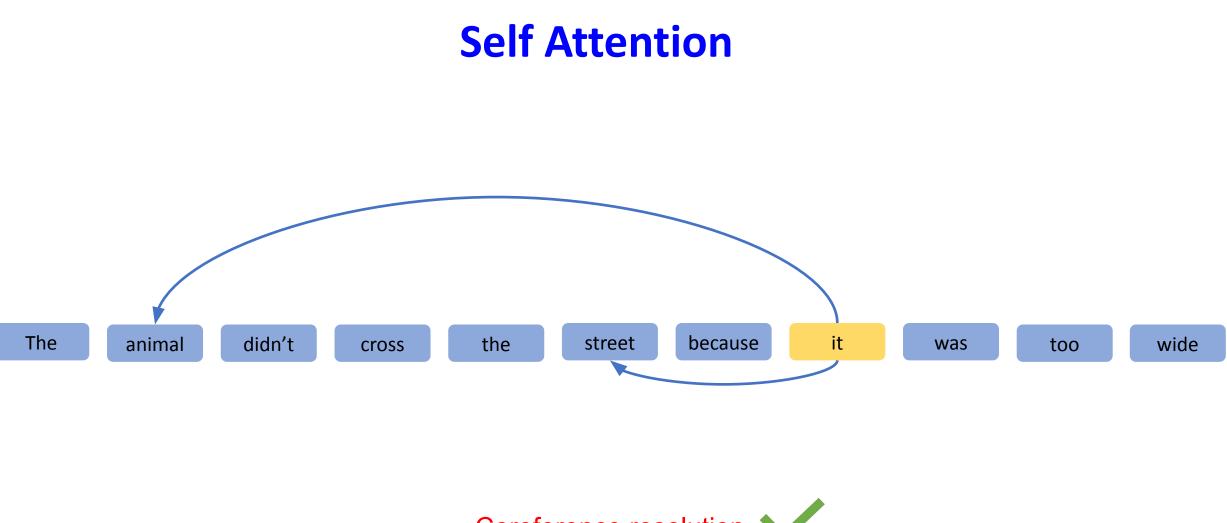


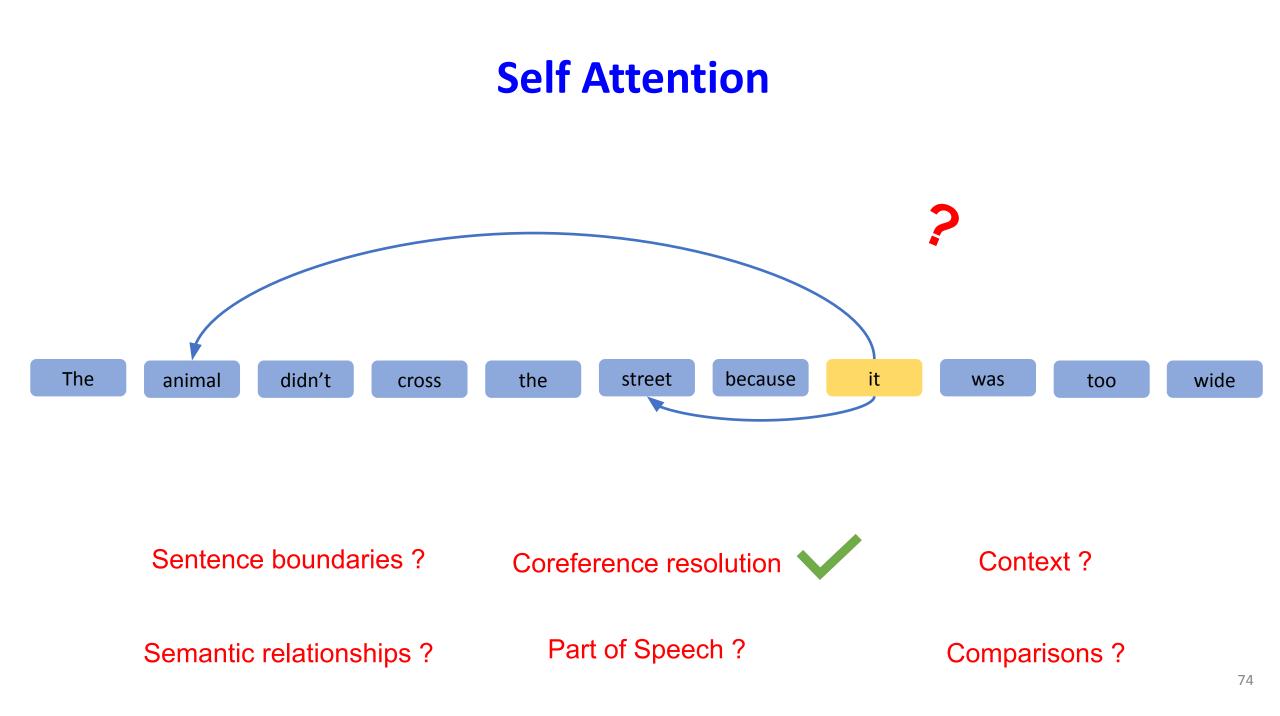
 $R^{T \times T}$



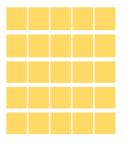


nputs

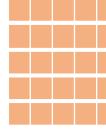




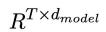
Self Attention



 W_Q

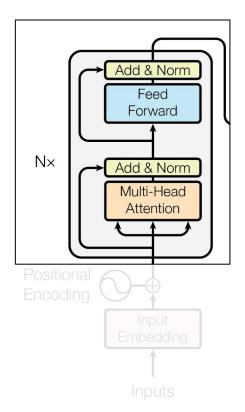


W_v



 W_{κ}

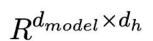
Input Embeddings

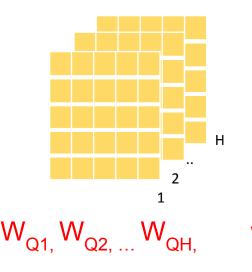


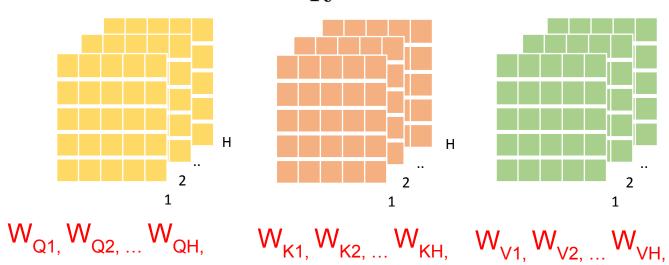
Multi-Head

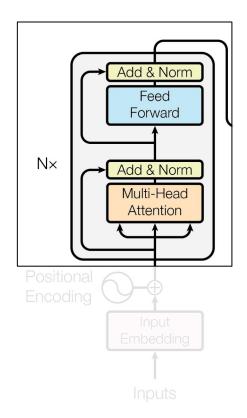
Н

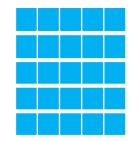
2

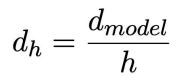


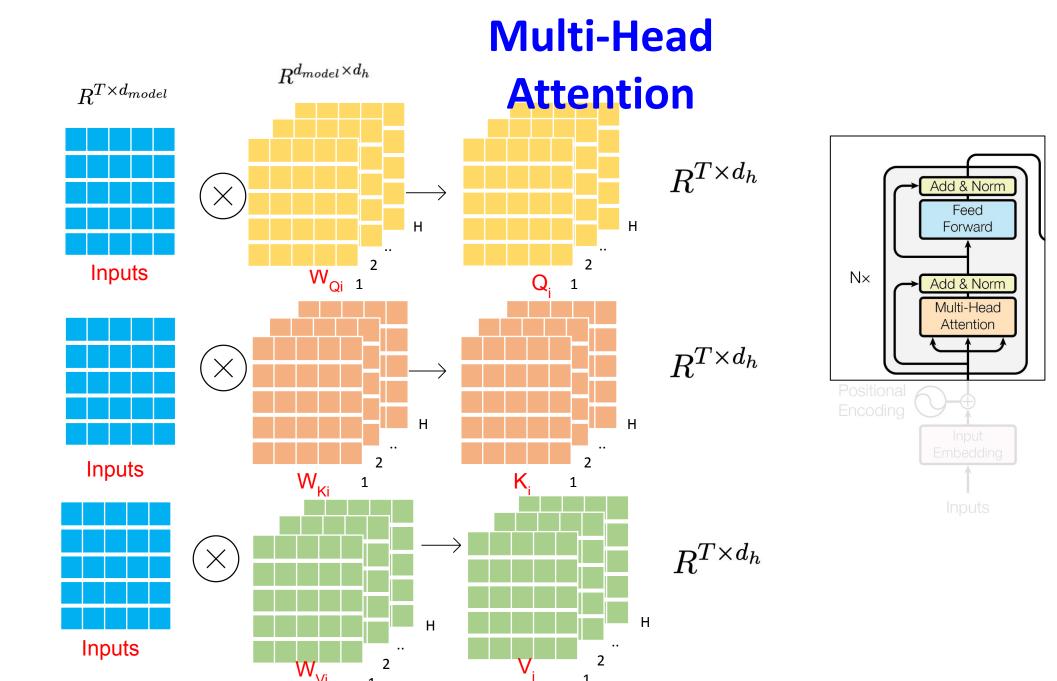




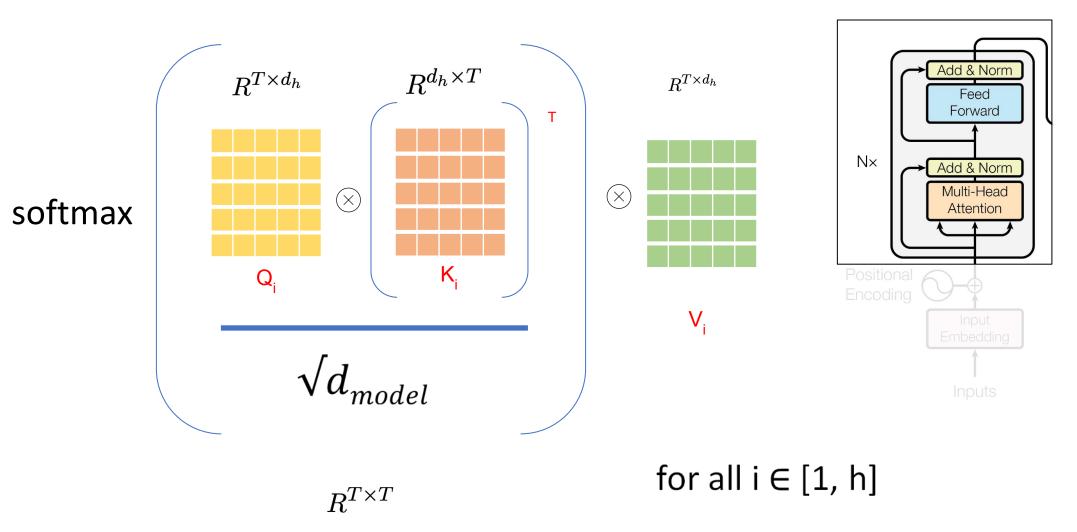




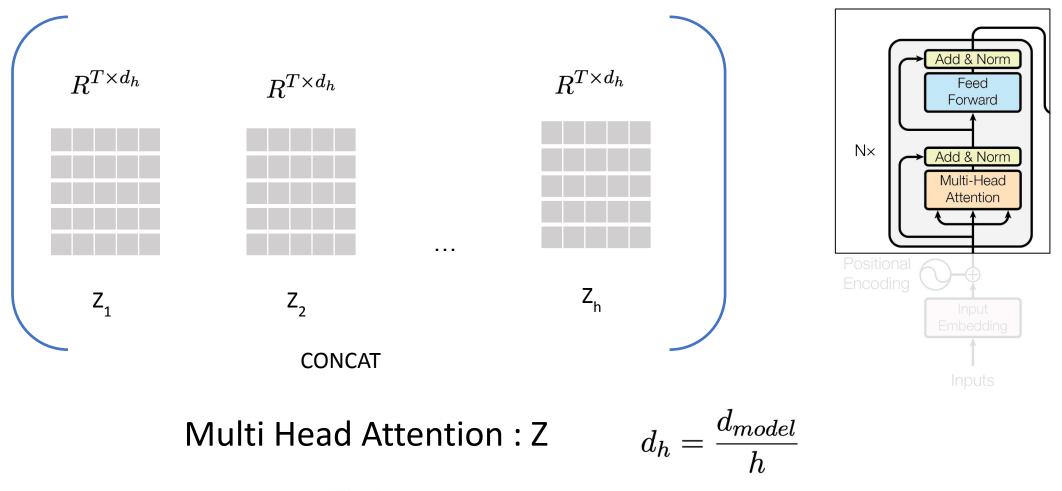


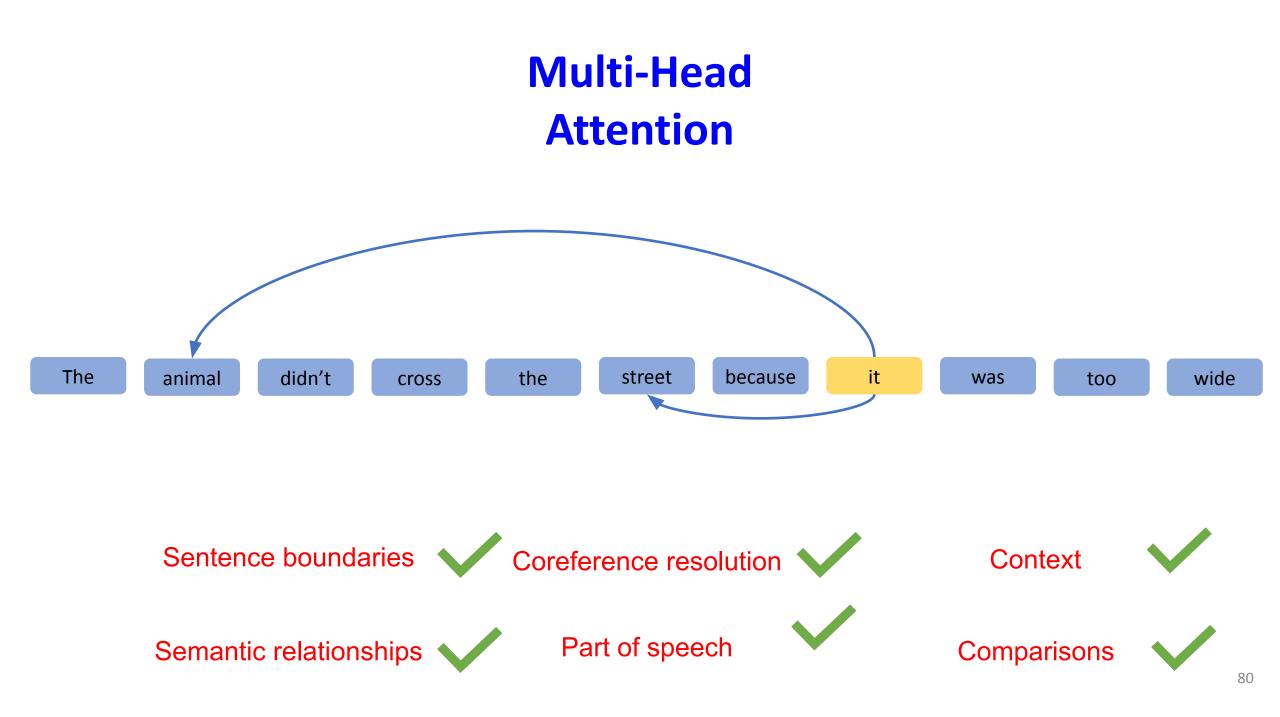


Multi-Head Attention

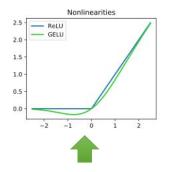


Multi-Head Attention



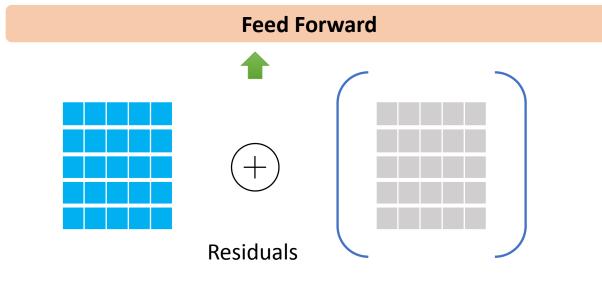


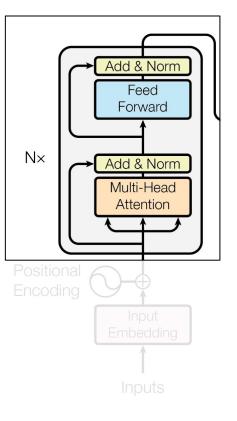
Feed Forward



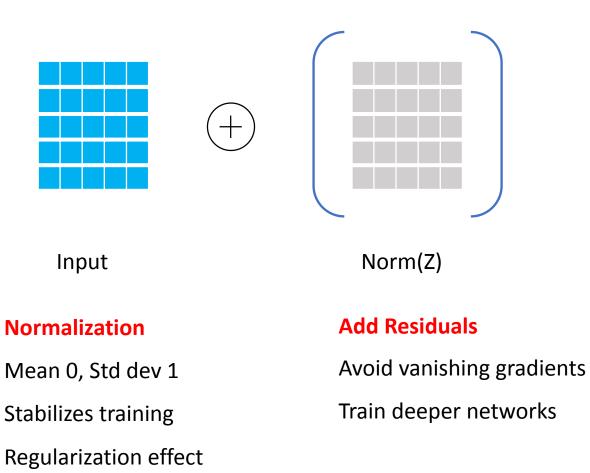
Feed Forward

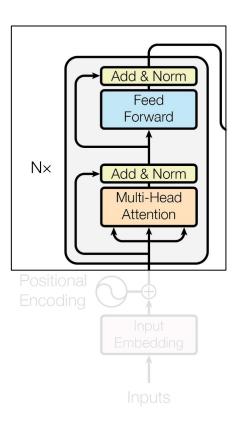
- Non Linearity
- Complex Relationships
- Learn from each other



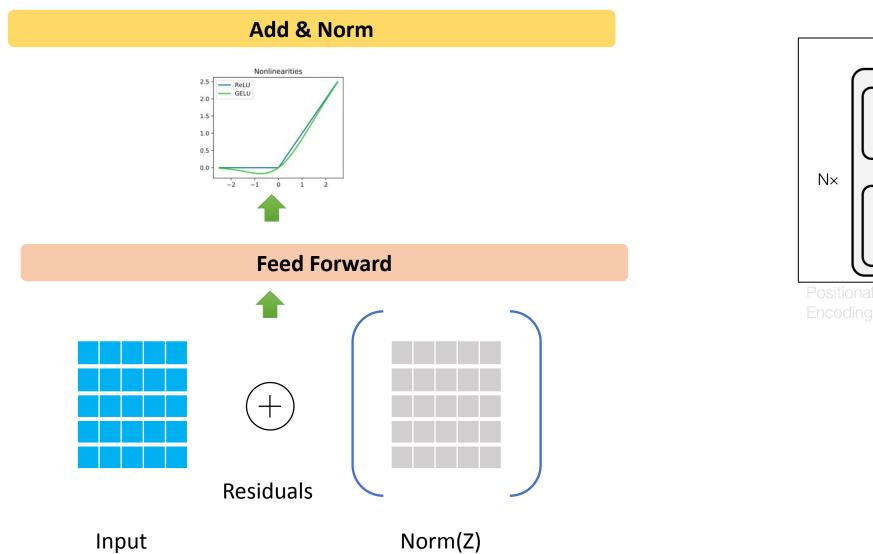


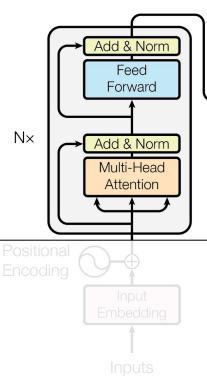
Add & Norm

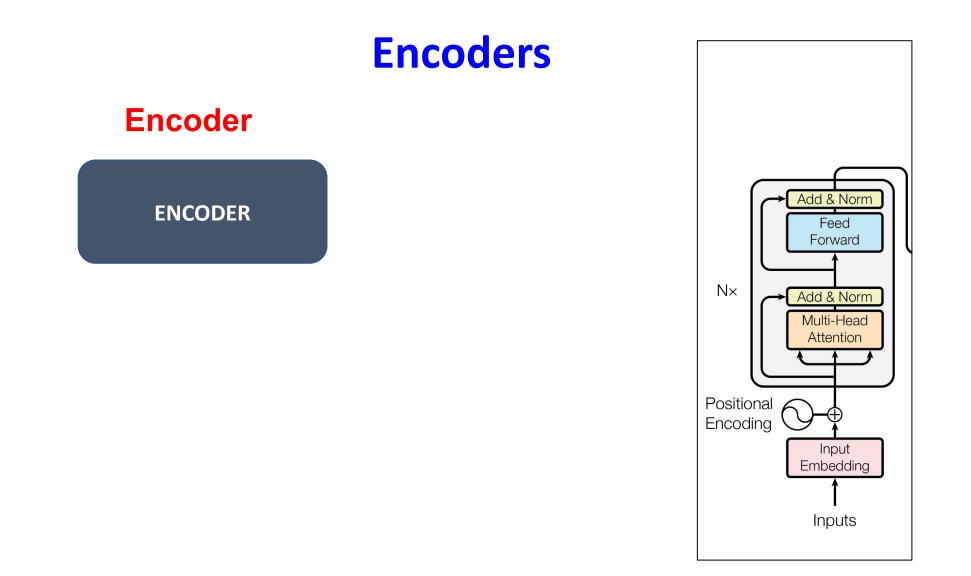


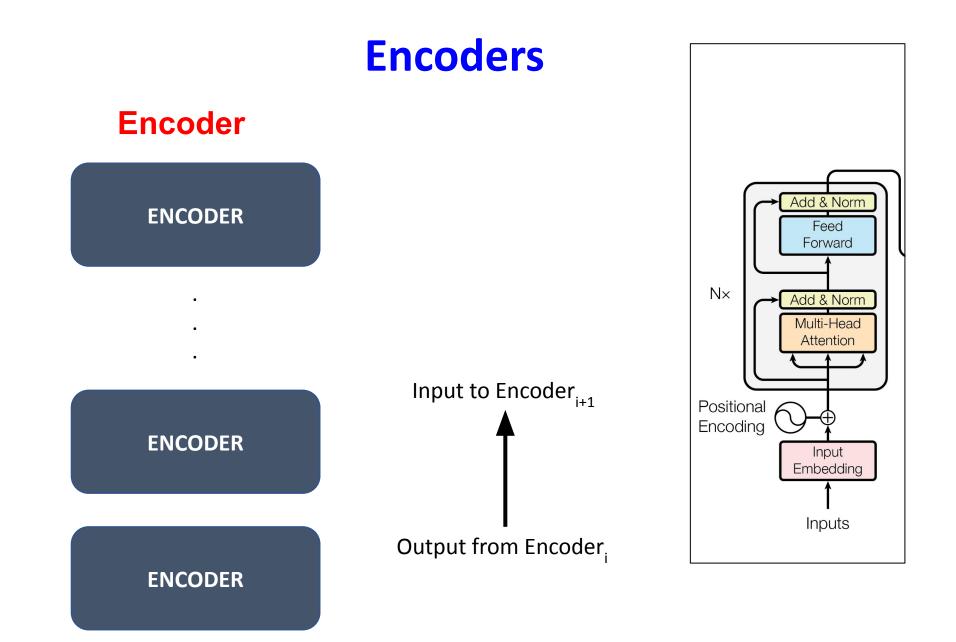


Add & Norm





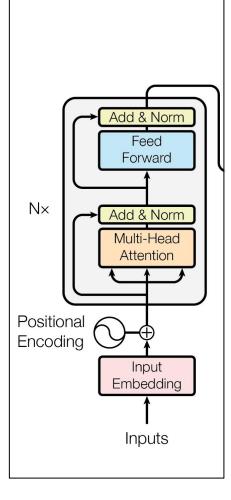


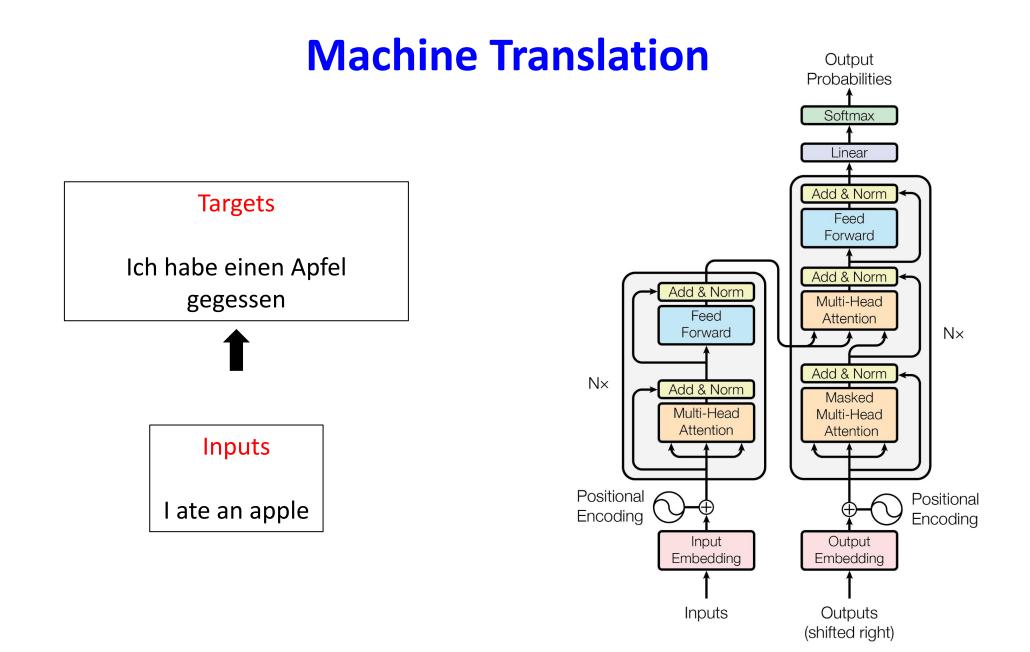


Transformers

- ✔ Tokenization
- Input Embeddings
- Position Encodings
- ✔ Query, Key, & Value
- ✔ Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

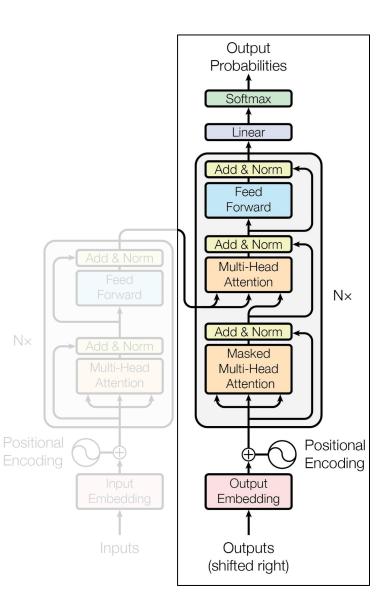




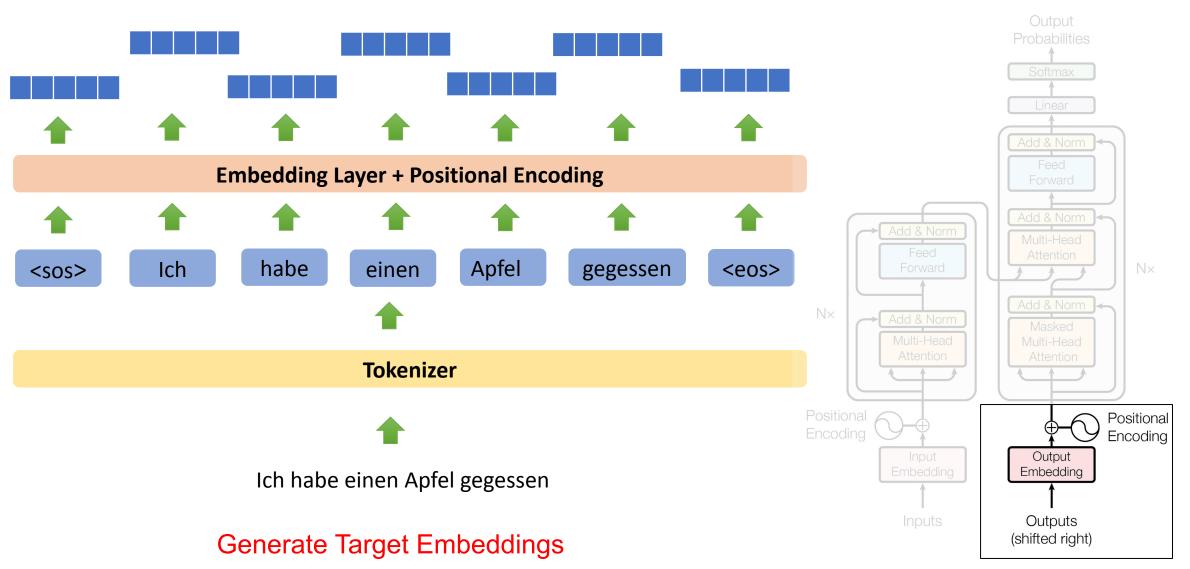
Targets

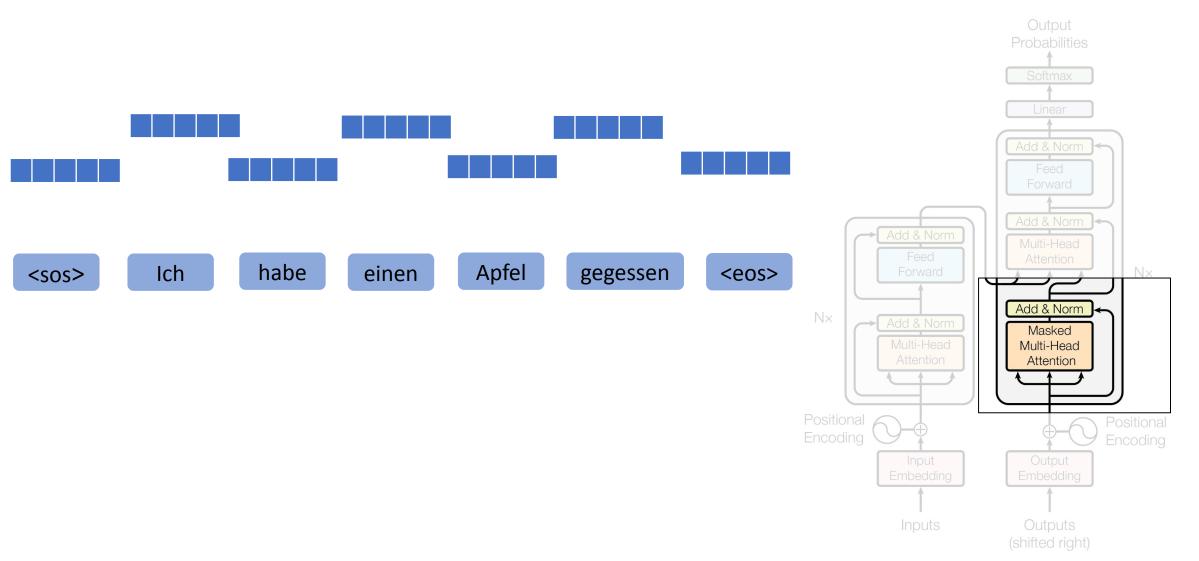
Targets

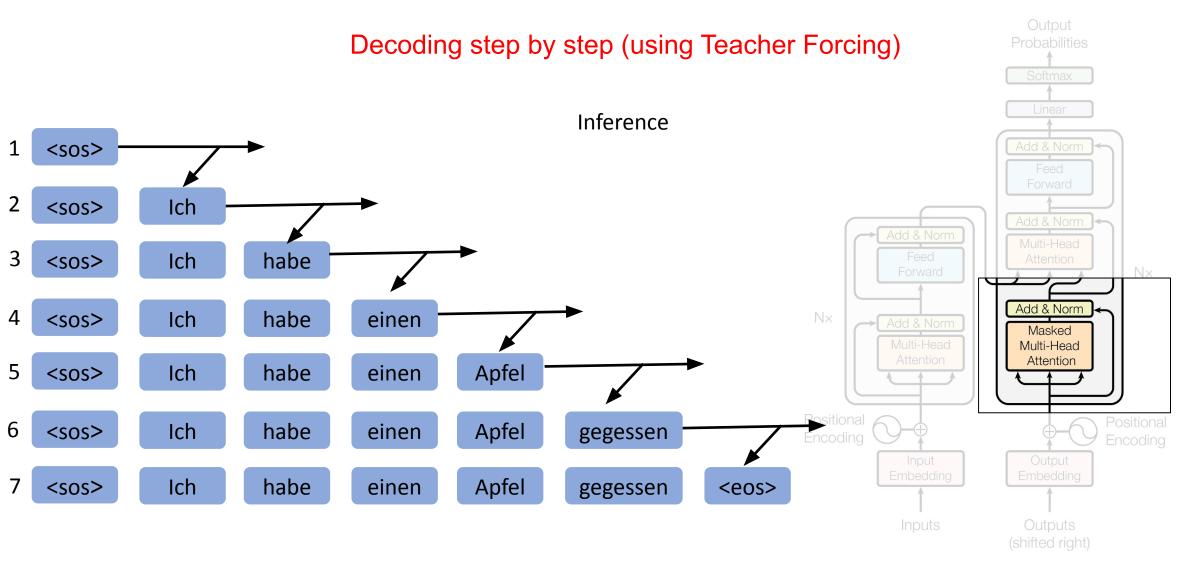
Ich habe einen Apfel gegessen

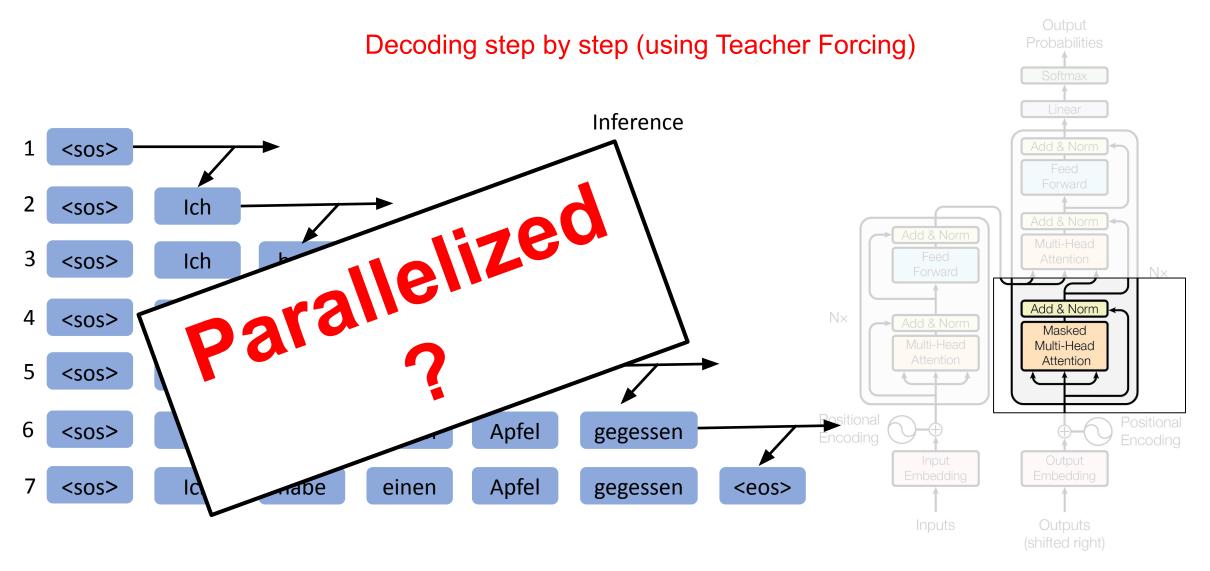


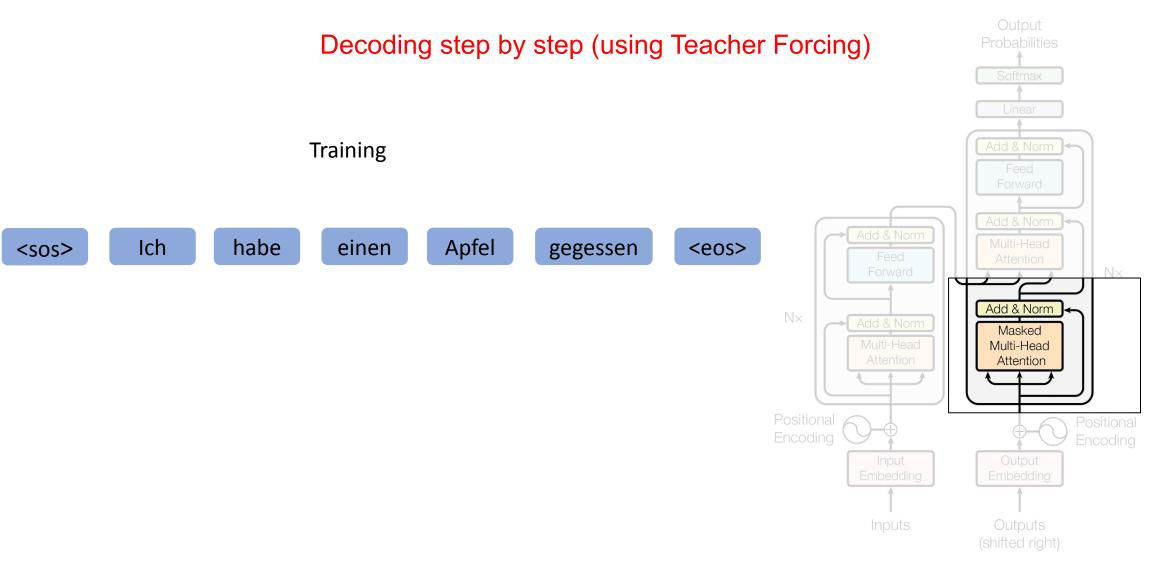
Targets

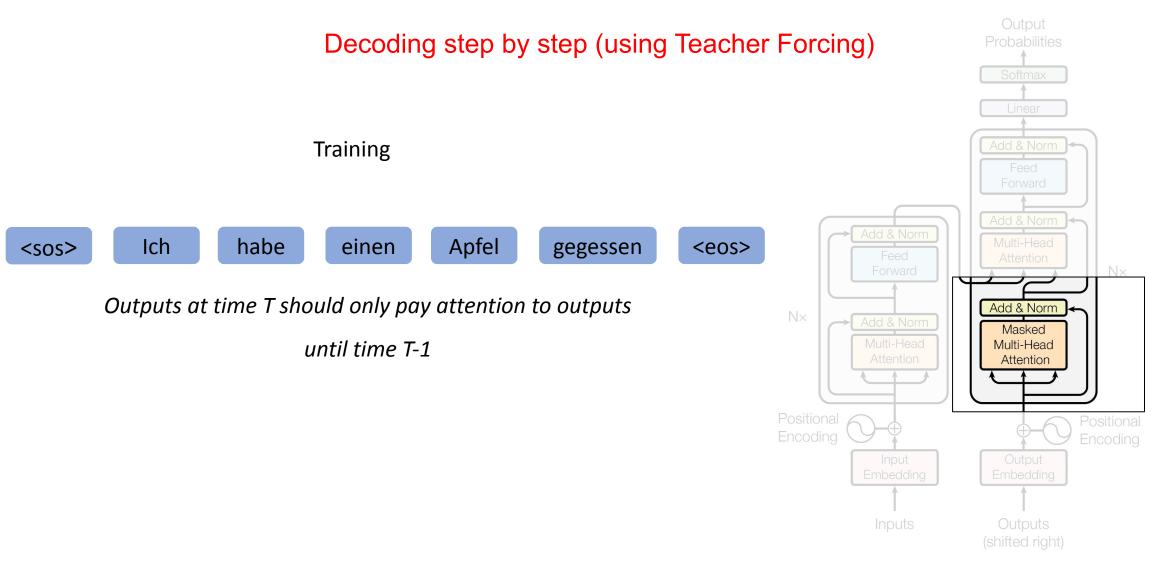


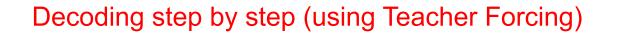


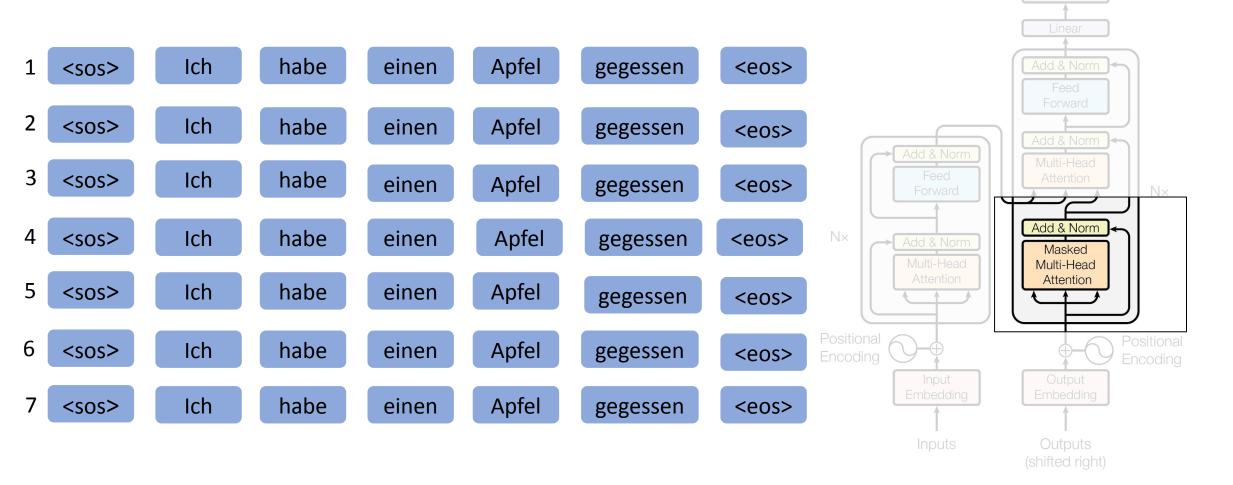


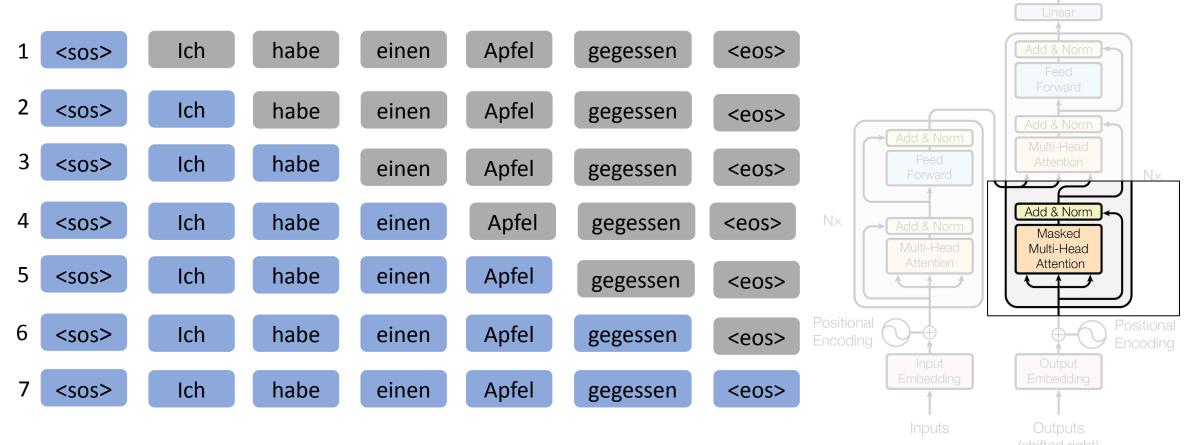




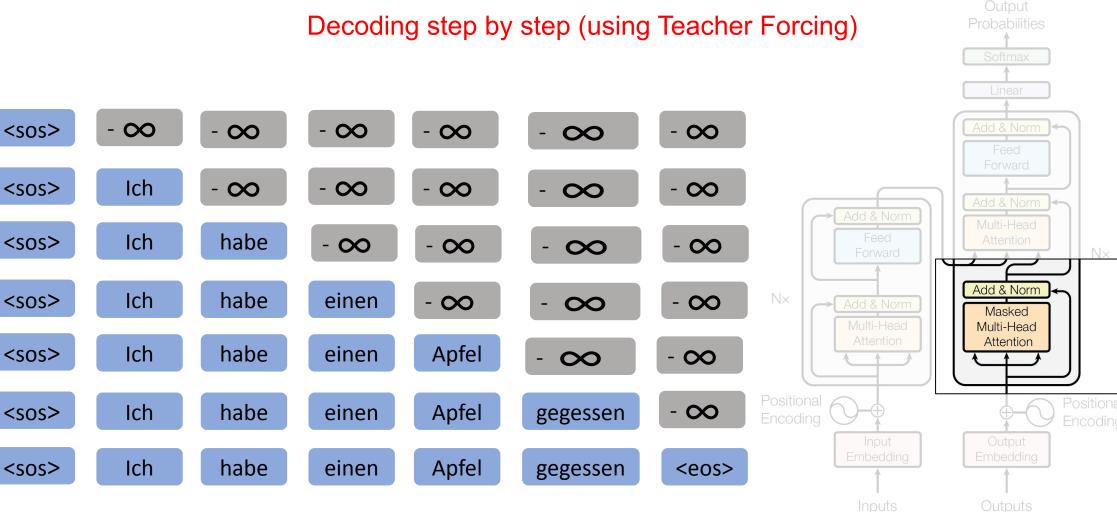




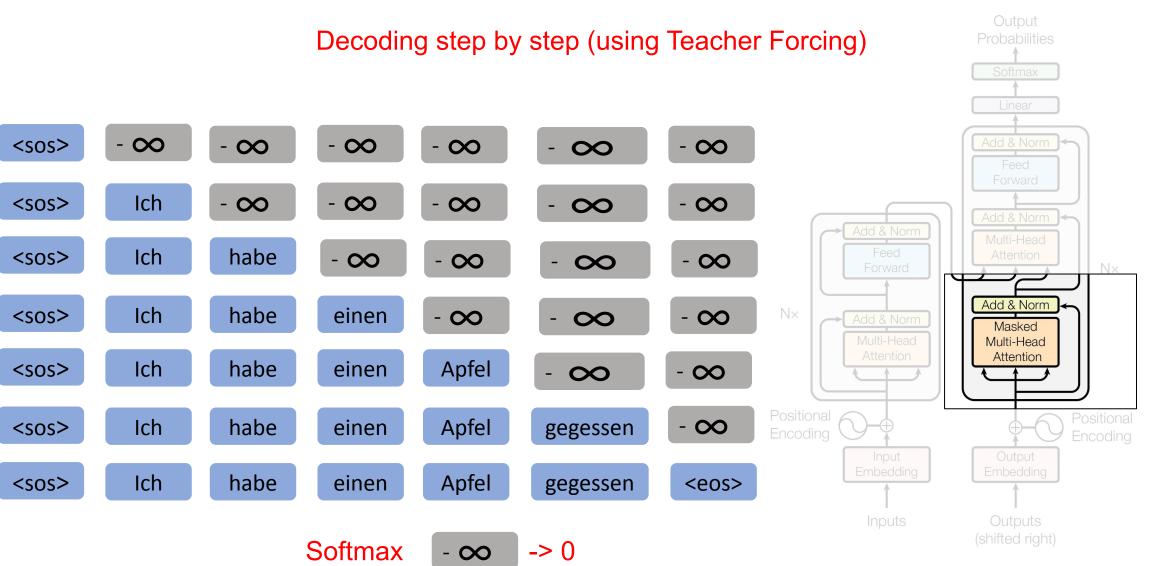


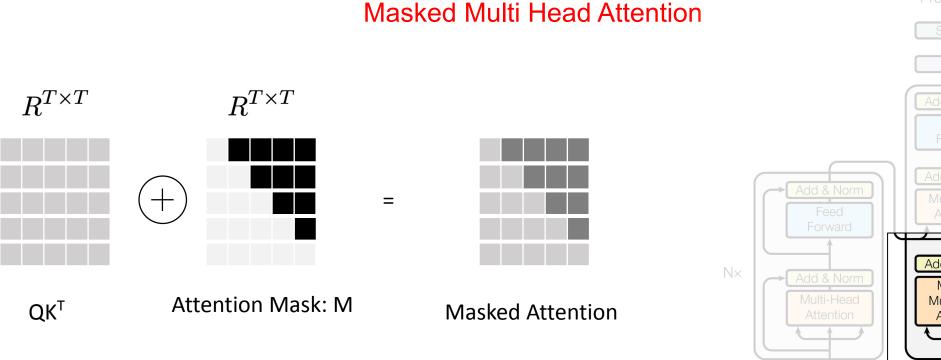


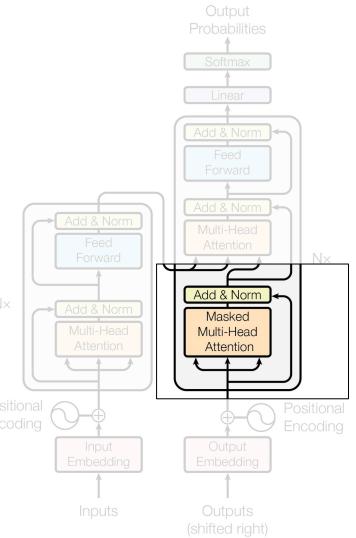
Mask the available attention values ?



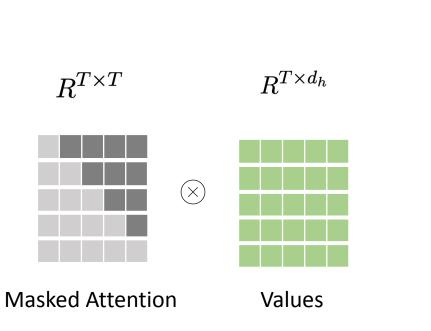
(shifted rid

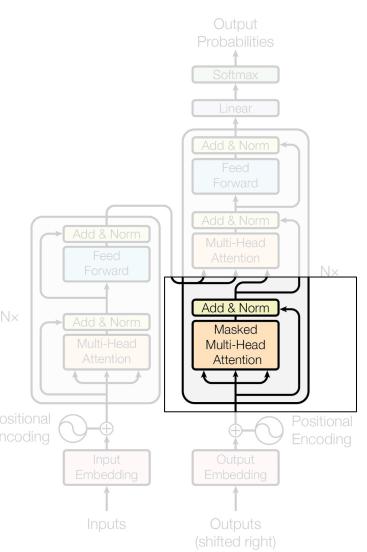


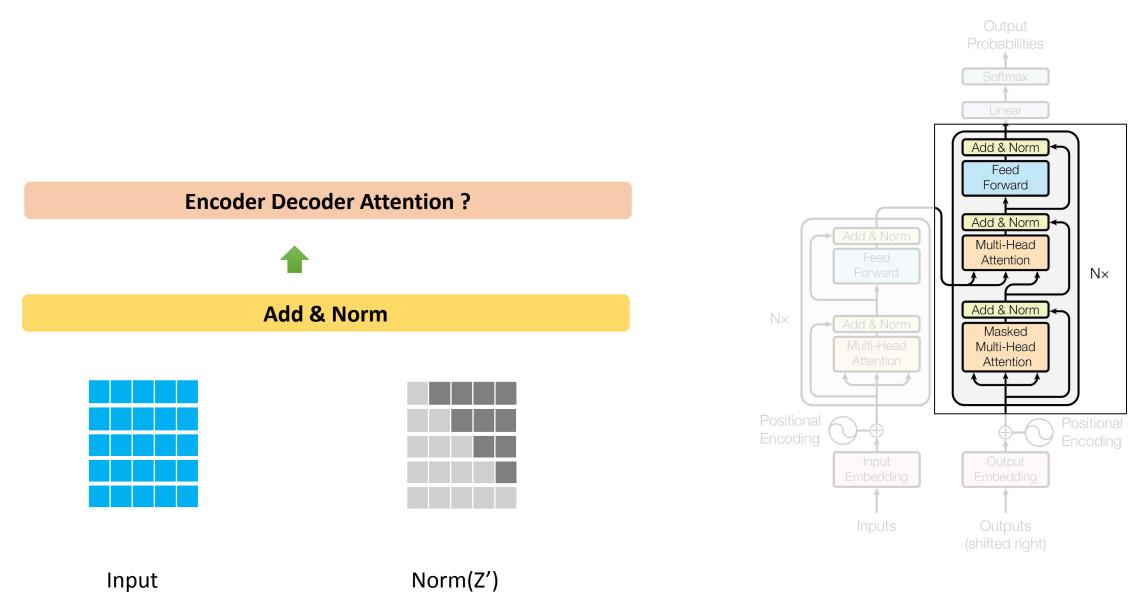




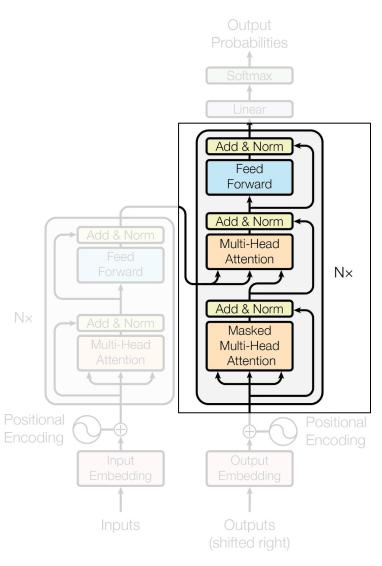
Masked Multi Head Attention







Encoder Decoder Attention ?

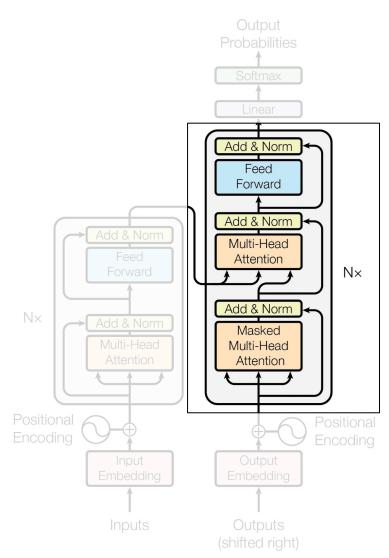


Encoder Self Attention

- 1. Queries from Encoder Inputs
- 2. Keys from Encoder Inputs
- 3. Values from Encoder Inputs

Decoder Masked Self Attention

- 1. Queries from Decoder Inputs
- 2. Keys from Decoder Inputs
- 3. Values from Decoder Inputs



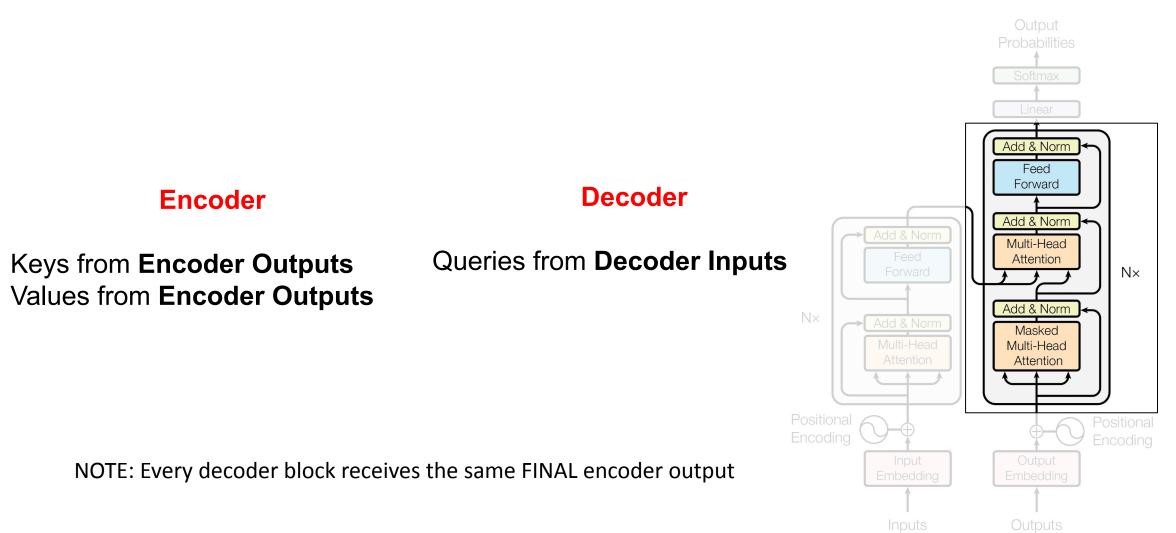
Attention

{Key, Value store}

{Query: "Order details of order_104"}

{Query: "Order details of order_106"}

{"order_100": {"items":"a1", "delivery_date":"a2",}},
{"order_101": {"items":"b1", "delivery_date":"b2",}},
{"order_102": {"items":"c1", "delivery_date":"c2",}},
{"order_103": {"items":"d1", "delivery_date":"d2",}},
{"order_104": {"items":"e1", "delivery_date":"e2",}},
{"order_105": {"items":"f1", "delivery_date":"f2",}},
{"order_106": {"items":"g1", "delivery_date":"g2",}},
{"order_107": {"items":"h1", "delivery_date":"h2",}},
{"order_108": {"items":"i1", "delivery_date":"i2",}},
{"order_109": {"items":"j1", "delivery_date":"i2",}},
{"order_109": {"items":"j1", "delivery_date":"i2",}},



Non Linearity

Complex Relationships

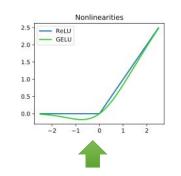
Learn from each other

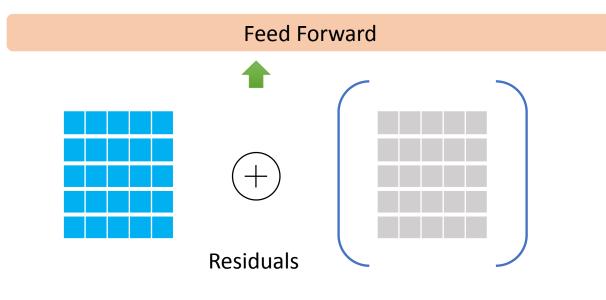
٠

•

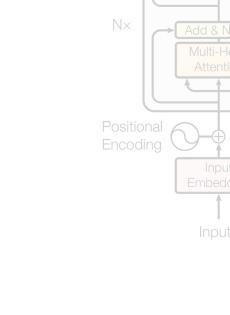
•

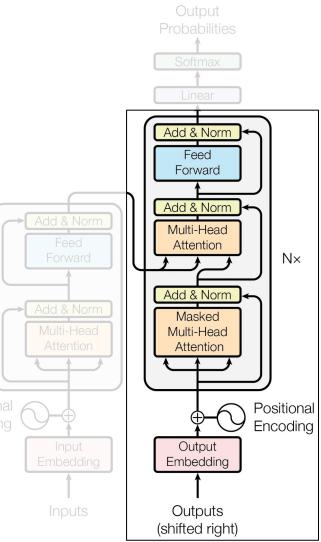
Norm(Z'')



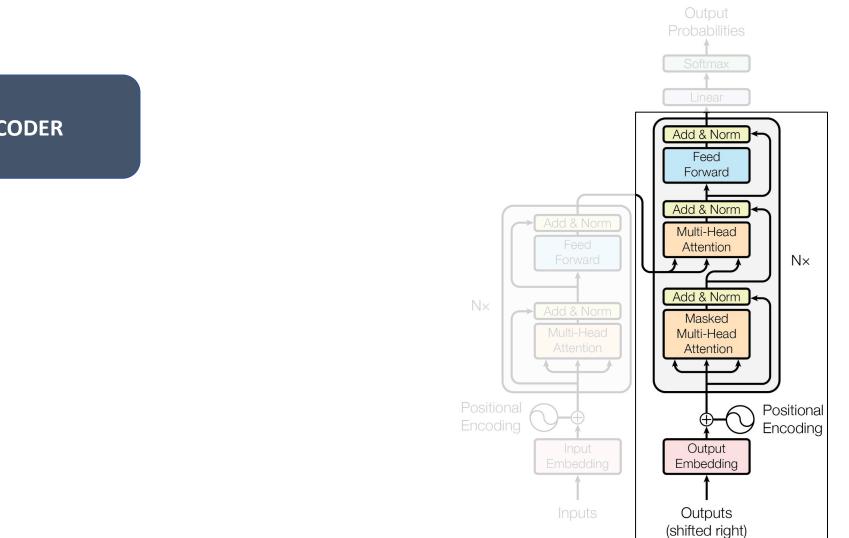


Add n Norm Decoder Self Attn



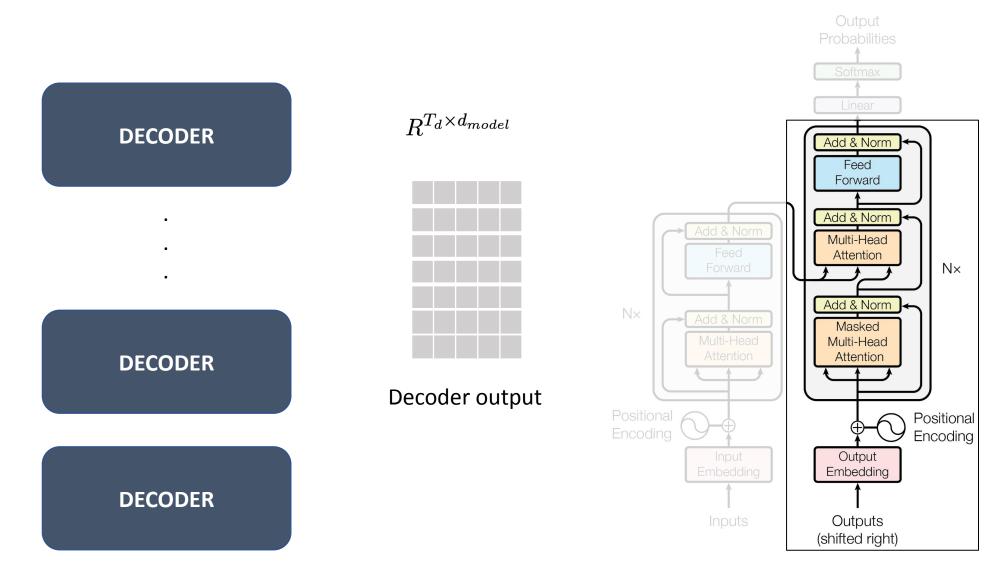


Decoder

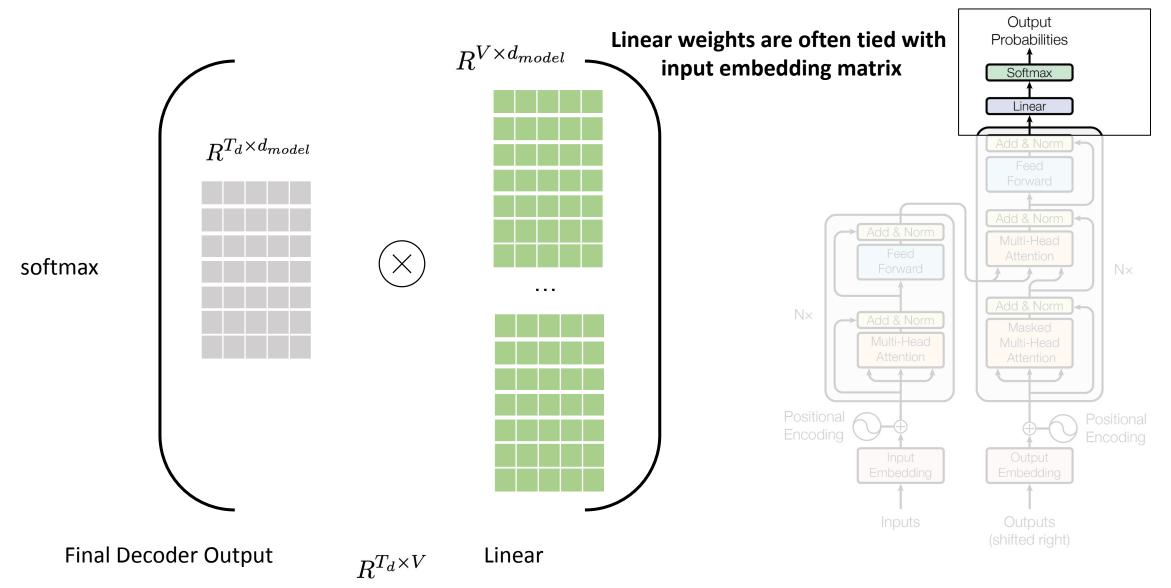


DECODER

Decoder

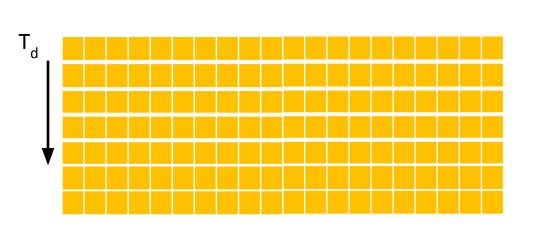


Linear

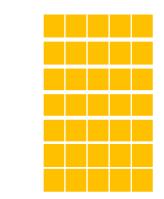


Softmax

Output Probabilities

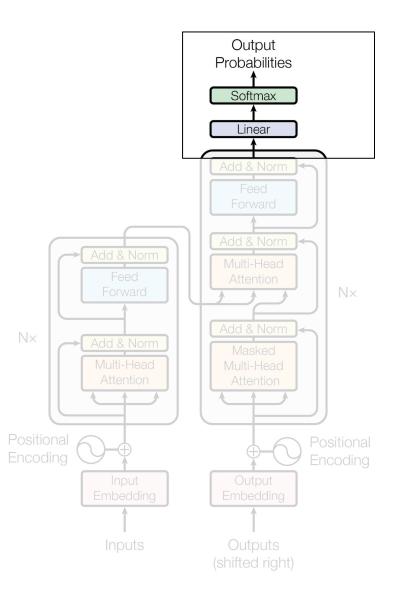


V



. . .

 $R^{T_d \times V}$

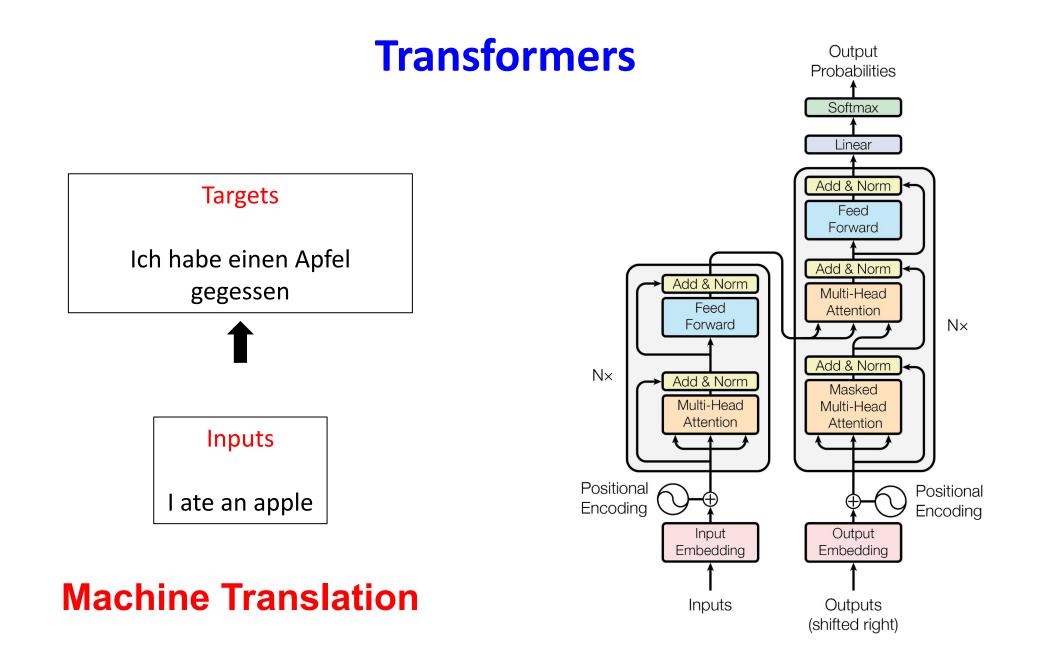


Which of the following are true about transformers?

- a. Transformers can always be run in parallel
- b. Transformer decoders can only be parallelized during training
- c. Queries, keys, and values are obtained by splitting the input into 3 equal segments
- d. Multihead attention might help transformers find different kinds of relations between tokens
- e. Decoder outputs provide attention queries and keys, while the values come from the encoder

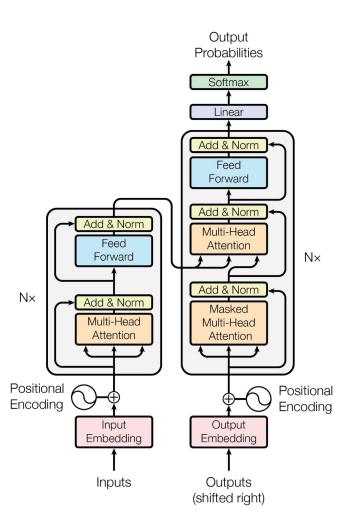
Which of the following are true about transformers?

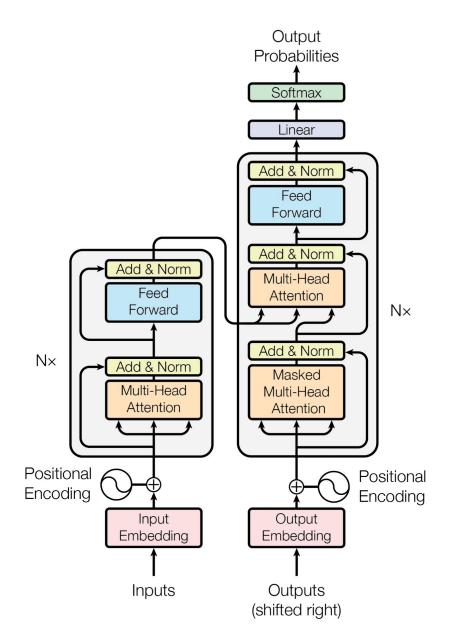
- a. Transformers can always be run in parallel
- b. Transformer decoders can only be parallelized during training
- c. Queries, keys, and values are obtained by splitting the input into 3 equal segments
- d. Multihead attention might help transformers find different kinds of relations between tokens
- e. Decoder outputs provide attention queries and keys, while the values come from the encoder

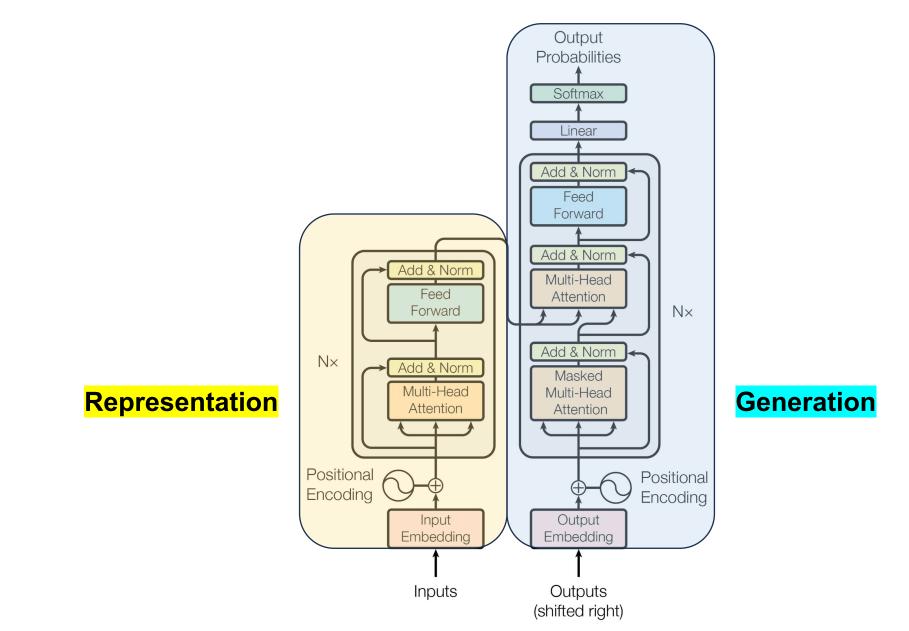


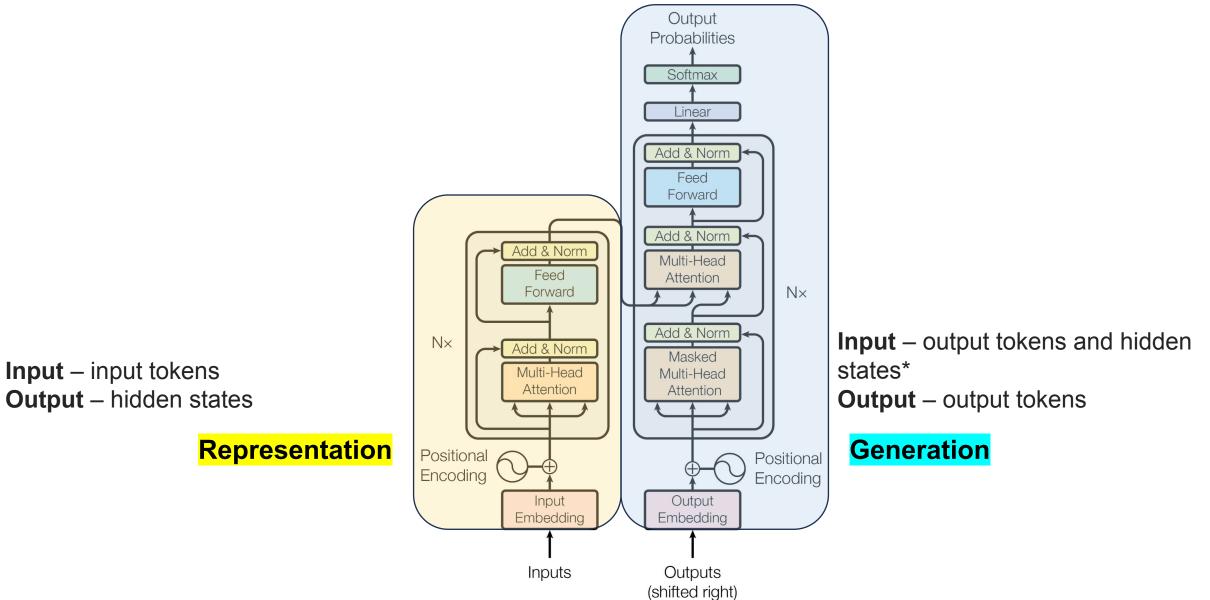
- ✔ Tokenization
- Input Embeddings
- Position Encodings
- ✔ Query, Key, & Value
- Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

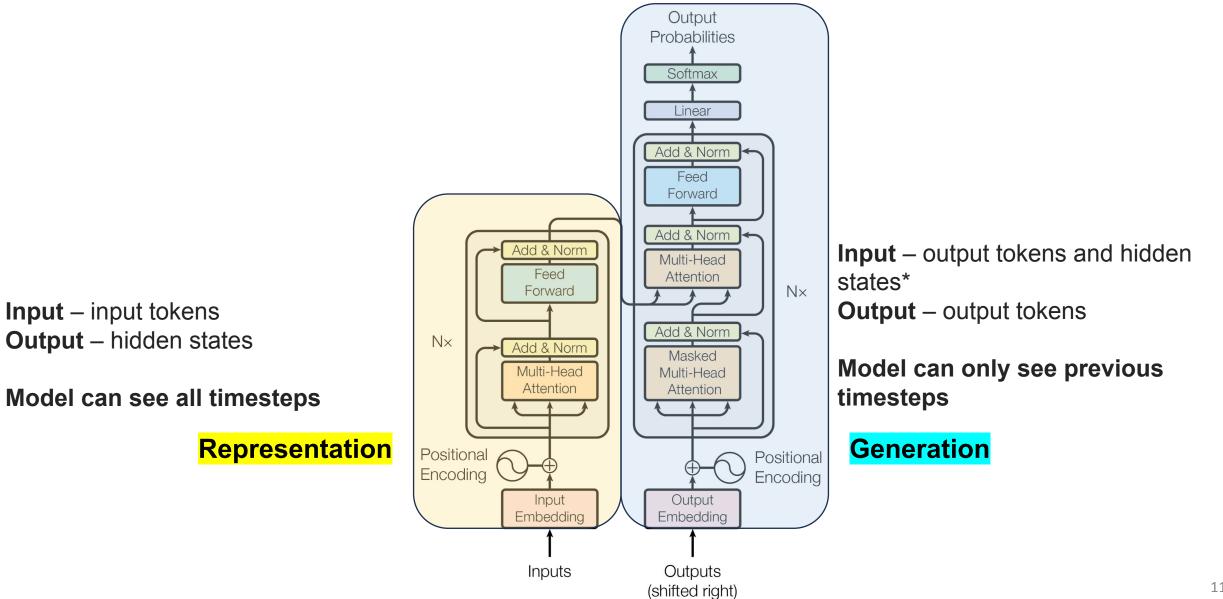
- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models











Output

Softmax

Linear

Feed

Forward

Attention

Masked

Attention

Output

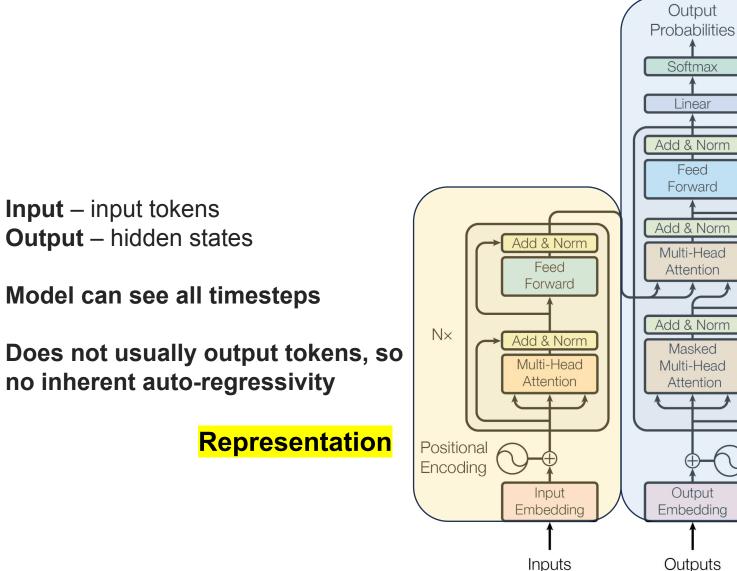
Outputs

(shifted right)

N×

Positional

Encoding



Input – output tokens and hidden states* **Output** – output tokens

Model can only see previous timesteps

Model is auto-regressive with previous timesteps' outputs

Generation

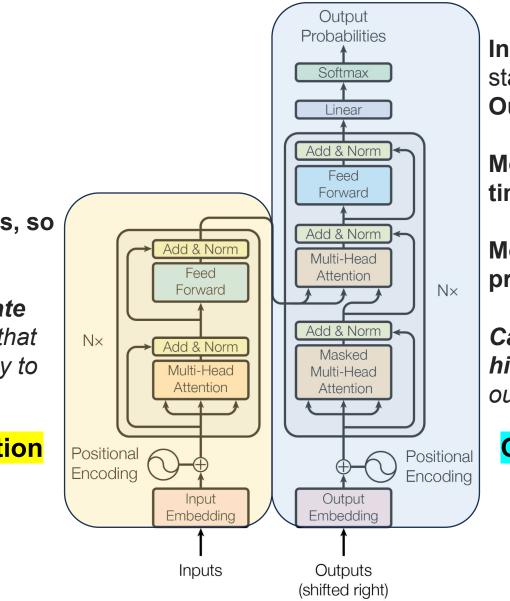
Input – input tokens Output – hidden states

Model can see all timesteps

Does not usually output tokens, so no inherent auto-regressivity

Can also be adapted to generate tokens by appending a module that maps hidden state dimensionality to vocab size

Representation



Input – output tokens and hidden states* Output – output tokens

Model can only see previous timesteps

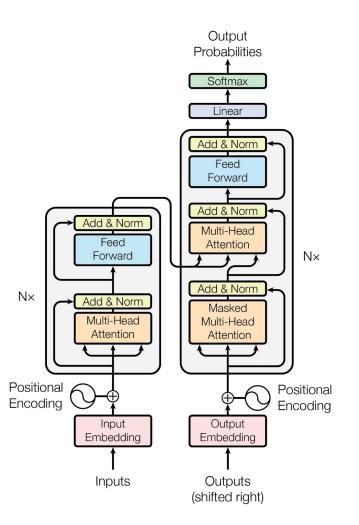
Model is auto-regressive with previous timesteps' outputs

Can also be adapted to generate hidden states by looking before token outputs

Generation

- ✔ Tokenization
- Input Embeddings
- Position Encodings
- ✔ Query, Key, & Value
- Attention
- Self Attention
- Multi-Head Attention
- Feed Forward
- Add & Norm
- Encoders

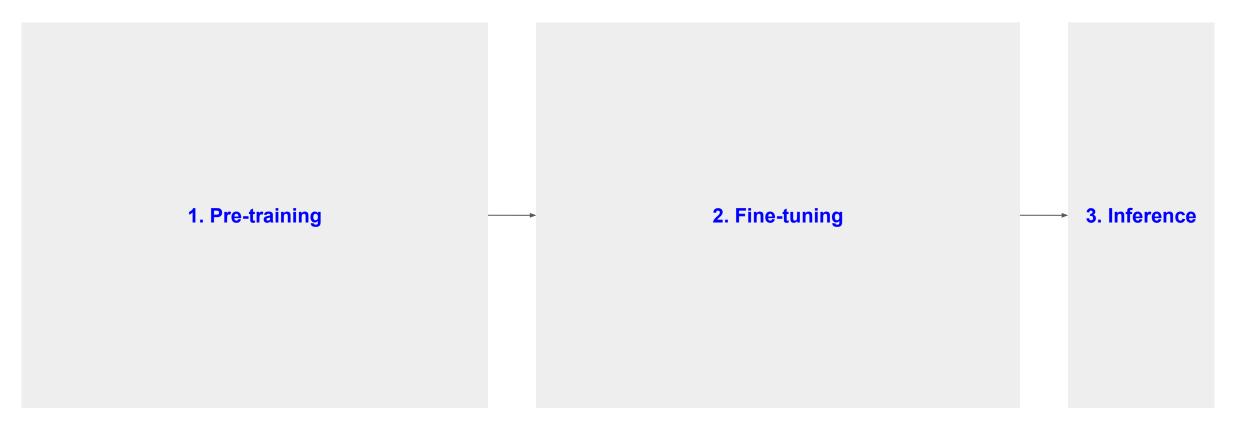
- Masked Attention
- Encoder Decoder Attention
- Linear
- Softmax
- Decoders
- Encoder-Decoder Models

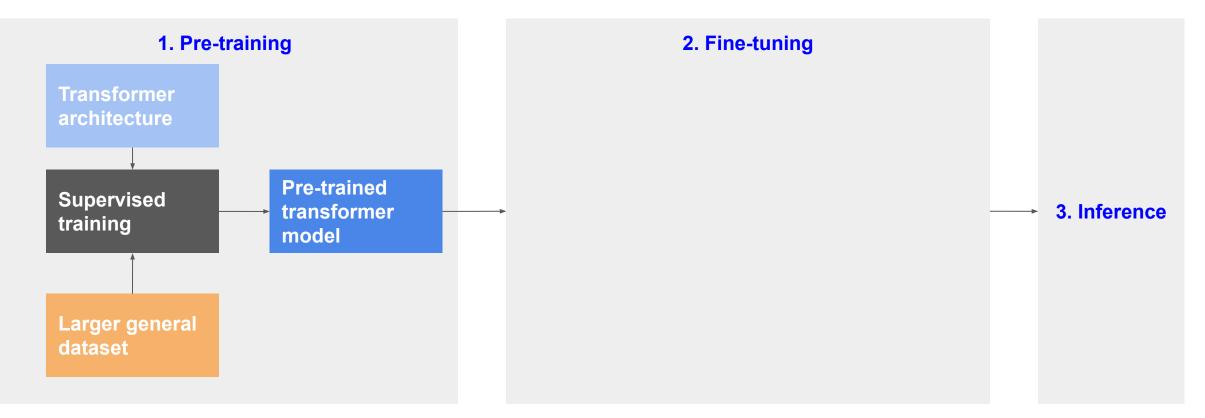


Part 2

Pre-training and Fine-tuning

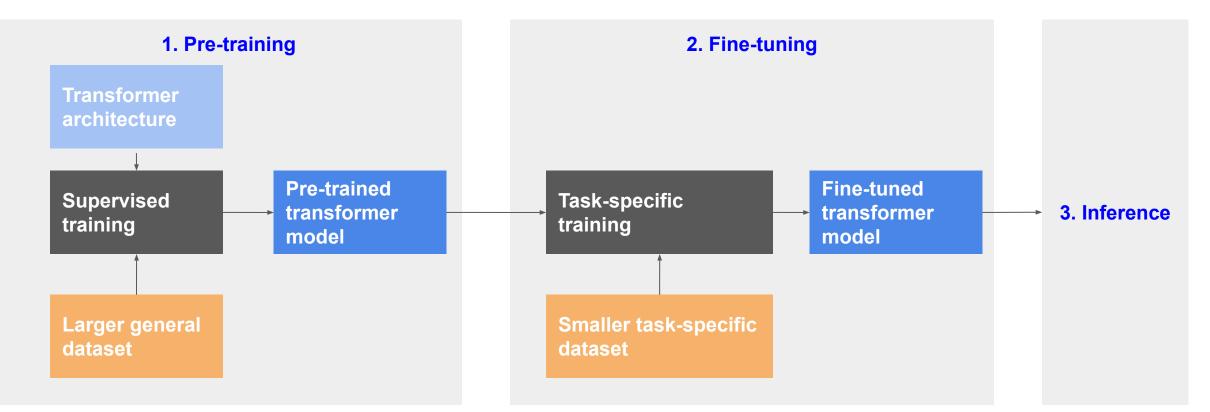
2. Inference





Lot's of data, learn general things. May serve as a parameter initialization.

Usually requires significant computational resources and time.



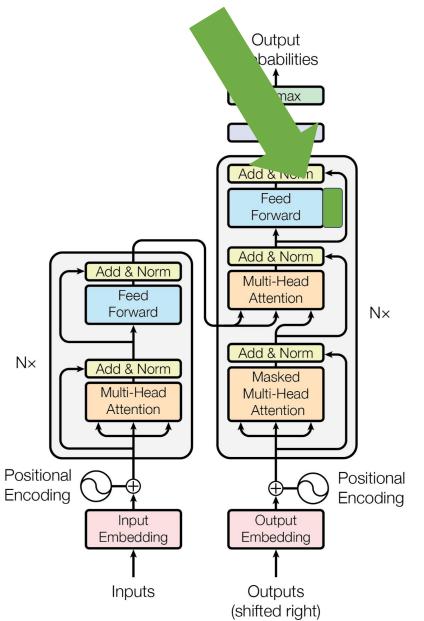
Lot's of data, learn general things. May serve as a parameter initialization.

Usually requires significant computational resources and time.

Adaptation to the specific task.

Potentially less computationally intensive.

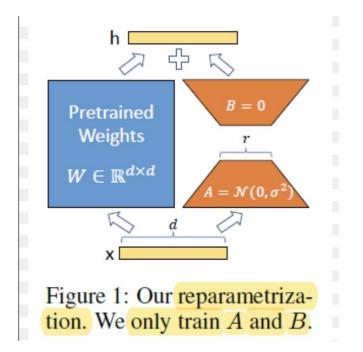
Parameter-Efficient Fine-Tuning Techniques



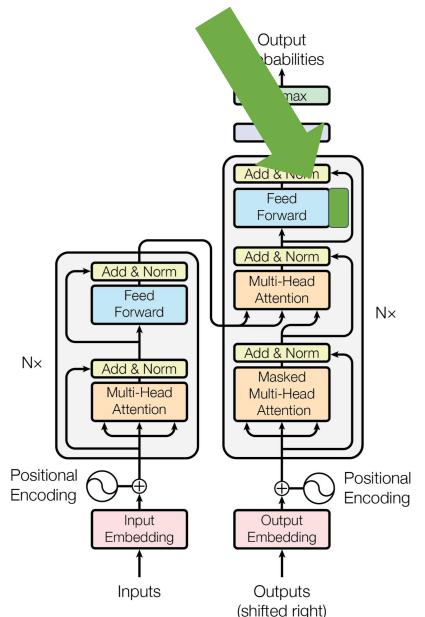
LoRA: https://arxiv.org/abs/2106.09685 BitFit: https://arxiv.org/abs/2106.10199

Parameter-Efficient Fine-Tuning Techniques

LoRA (Lower-Rank Adaptation)



LoRA: https://arxiv.org/abs/2106.09685 BitFit: https://arxiv.org/abs/2106.10199



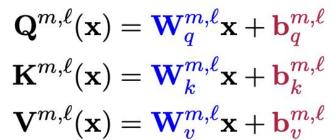
Parameter-Efficient Fine-Tuning Techniques

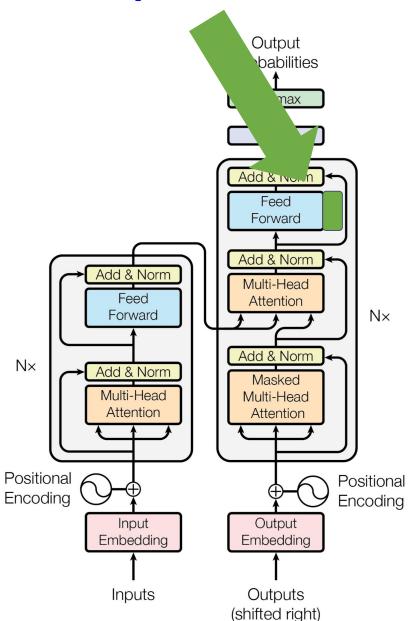
BitFit

LoRA (Lower-Rank Adaptation)

h

口 中 $\mathbf{Q}^{m,\ell}(\mathbf{x})$



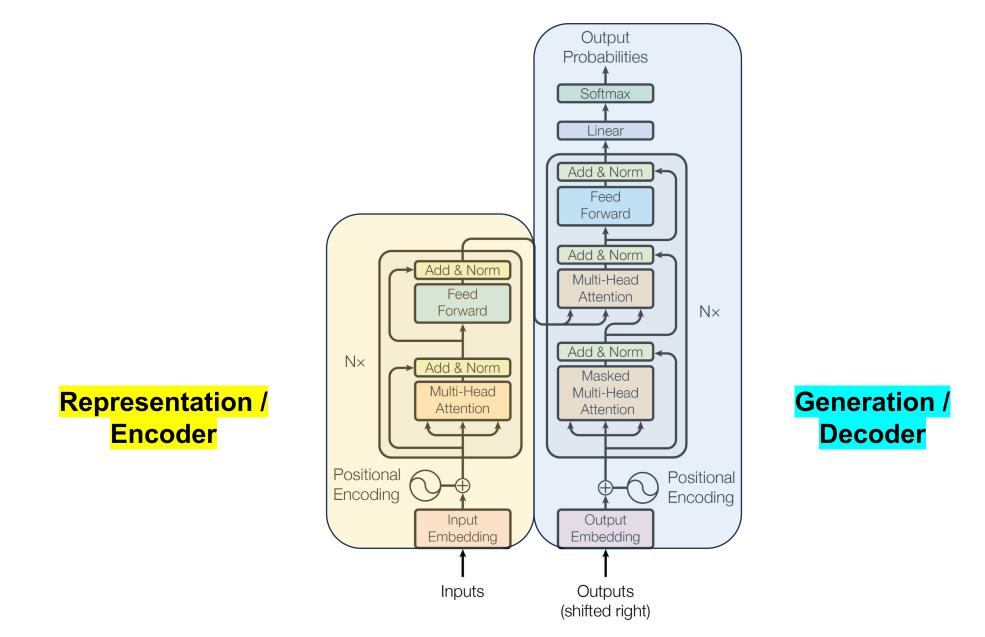


Pretrained Weights $W \in \mathbb{R}^{d \times d}$ xFigure 1: Our reparametrization. We only train A and B.

LoRA: <u>https://arxiv.org/abs/2106.09685</u> BitFit: <u>https://arxiv.org/abs/2106.10199</u>

Part 3

Transformer Applications



Data Modalities

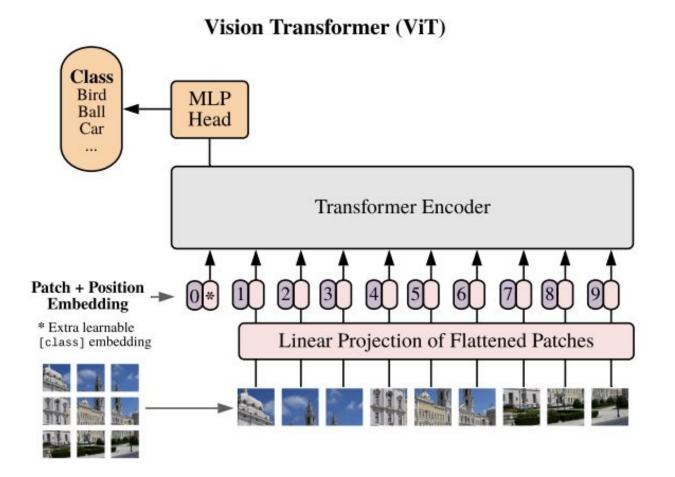
- Language (see Part 4 of the lecture)
- Vision
- Audio
- ... and many other modalities (e.g., biological/physiological signals, etc.)
- Multimodal (>2 data modalities)

Computer Vision

- 1. In computer vision convolutional architectures remain largely dominant.
- 2. Inspired by NLP successes, multiple works try introducing combining CNN-like architectures with self-attention or replacing the convolutions entirely.
- 3. However, they faced challenges with performance and scaling.
- 4. Key breakthrough Vision Transformer (ViT) released in 2020

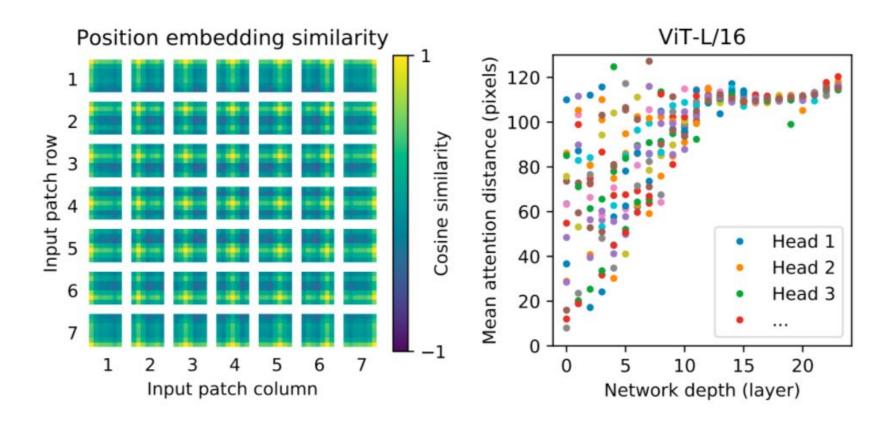
Computer Vision - Tokenization

Vision Transformer (ViT) Model Architecture



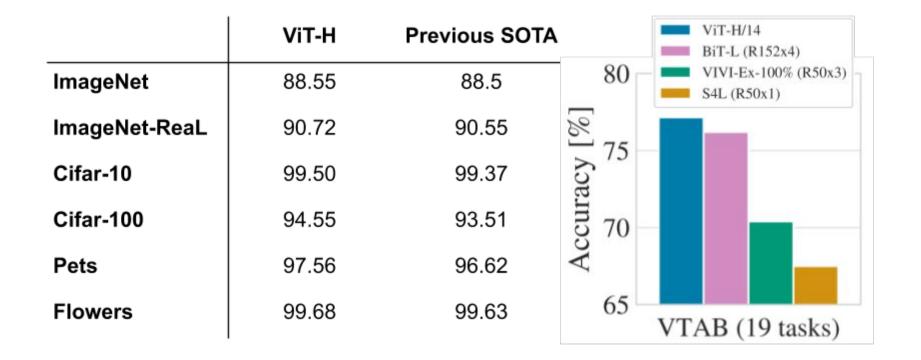
- Split an image into fixed-size patches (16x16 pixels).
- 2. Tokenize each path (linear projection of flattened patches).
- 3. Add position embedding.
- 4. Feed the resulting sequence of vectors to a standard Transformer encoder.
- 5. For classification, add an extra learnable"classification token" to the sequence.

ViT - Learning Patterns



- ViT learns the grid like structure of the image patches via its position embeddings.
- The lower layers contain both global and local features, the higher layers contain only global features.

ViT Performance



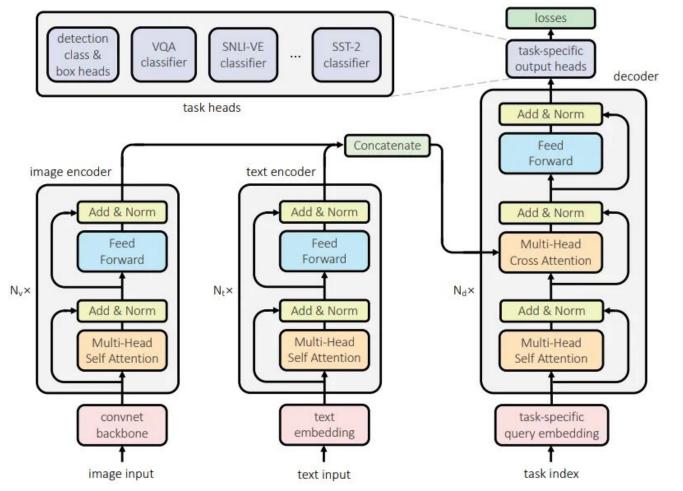
• ViT model attains state-of-the-art performance on multiple popular benchmarks, including 88.55% top-1 accuracy on ImageNet and 99.50% on CIFAR-10

Audio

- Similar to the computer vision but with spectrograms instead of images.
- Exists as encoder-decoder variants or as an encoder-only variant with CTC loss.
- Could be augmented with the CNN.

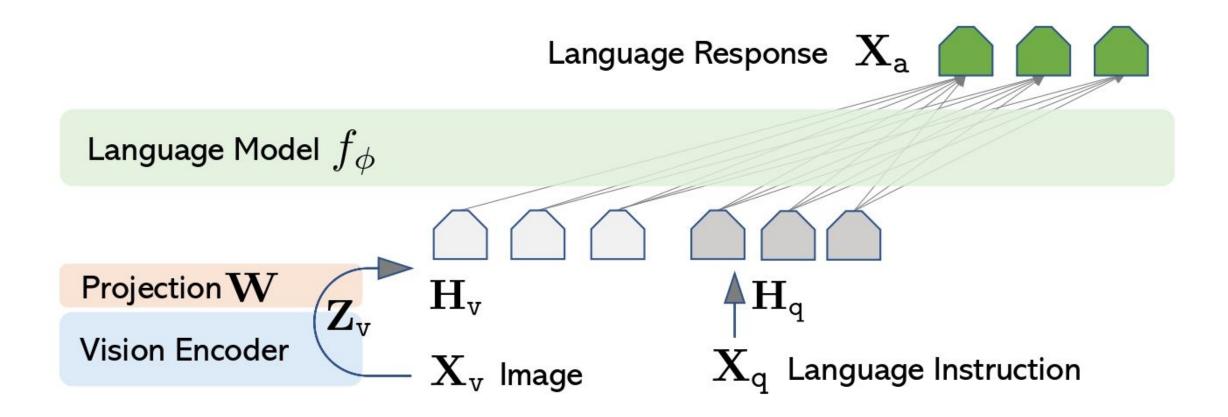
Conformer: Convolution-augmented Transformer for Speech Recognition

Multimodal Transformer - UniT



- UniT handles 7 tasks ranging from object detection to vision-and language reasoning and natural language understanding.
- 2. Components:
 - An image encoder to encode the visual inputs.
 - A text encoder to encode the language inputs.
 - A joint decoder with per-task query embedding.
 - Task-specific heads to make the final outputs for each task.

Multimodal Transformer - LLaVA



Visual Instruction Tuning (LLaVA - Large Language and Vision Assistant)

Multimodal Transformer - LLaVA

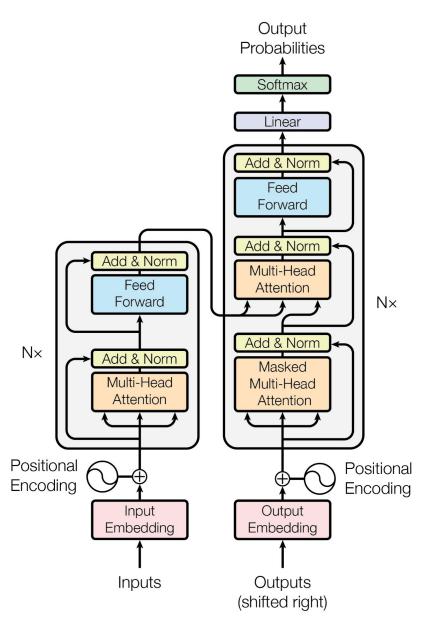
Start a new conversation, and the history is cleared.

Do you know who drew this painting?

The painting depicts a dog in a humorous situation, where it appears to be wearing a woman's dress and standing in front of a landscape. Although the artist of the painting is not explicitly identified, it could be a reference to the famous artist Da Vinci, known for his artistic works, including the Mona Lisa. The painting is likely a creative and comical take on the traditional portrait style, replacing a human figure with a dog dressed in a woman's clothing, making it an interesting and amusing visual piece.

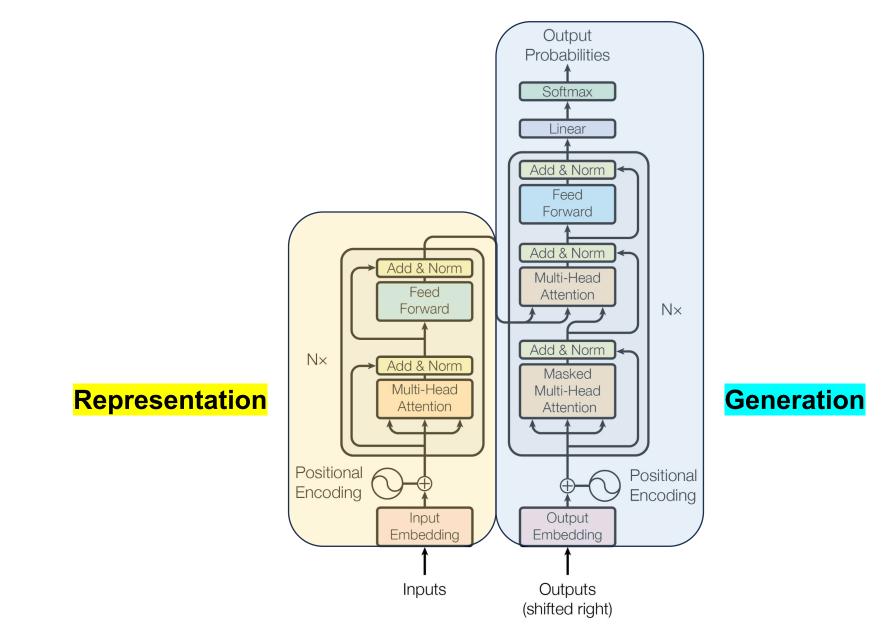
Large Language Models

Part 4

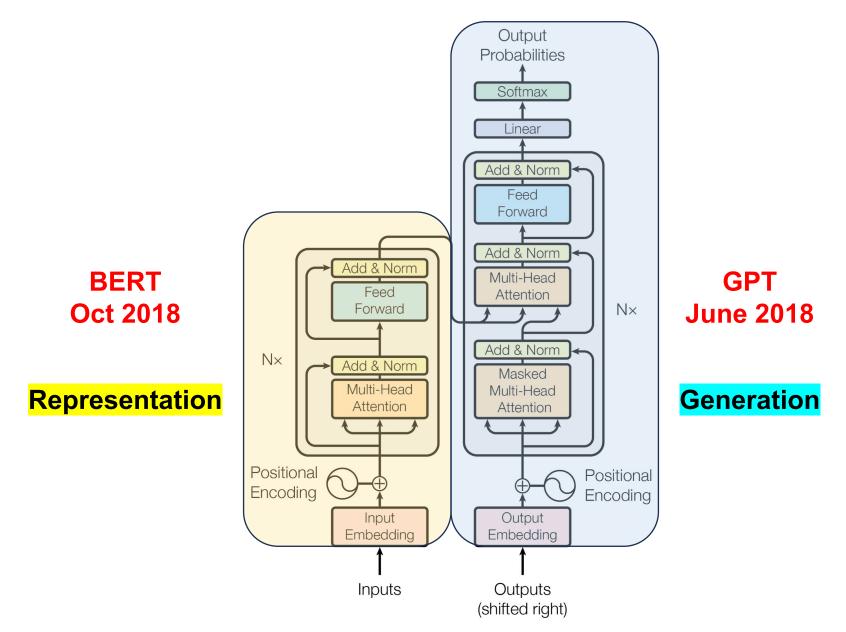


142

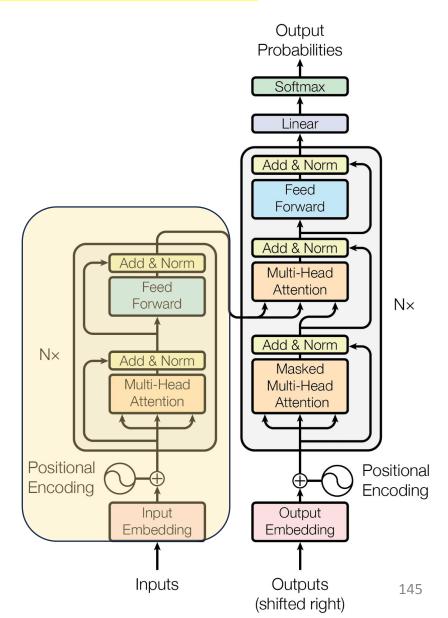
Transformers, mid-2017



2018 – Inception of the LLM Era

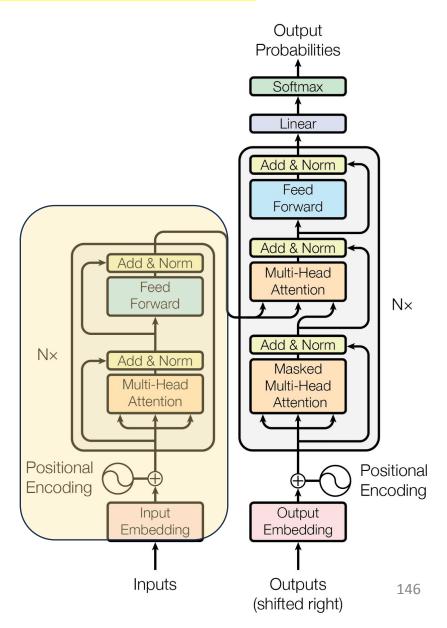


- One of the biggest challenges in LM-building used to be the lack of task-specific training data.
- What if we learn an effective representation that can be applied to a variety of downstream tasks?
 - Word2vec (2013)
 - GloVe (2014)



BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

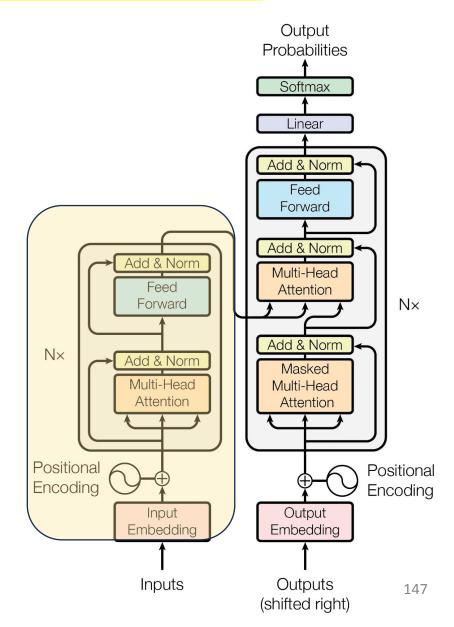


BERT Pre-Training Corpus:

- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Tasks:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)



BERT Pre-Training Corpus:

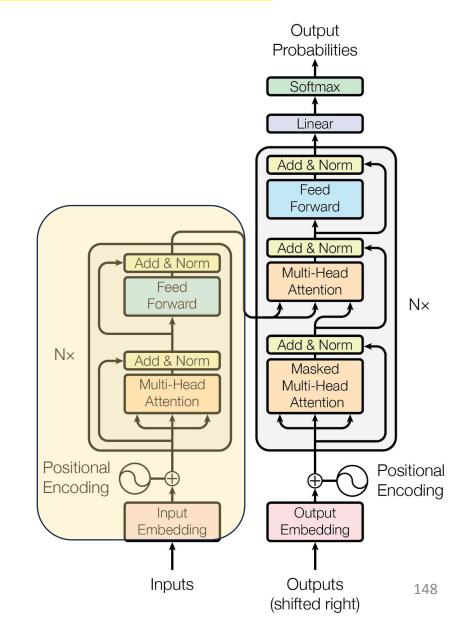
- English Wikipedia 2,500 million words
- Book Corpus 800 million words

BERT Pre-Training Tasks:

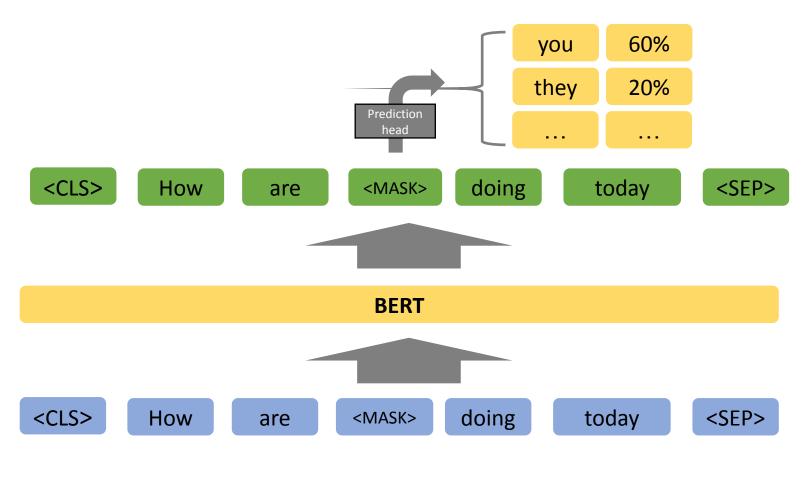
- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)

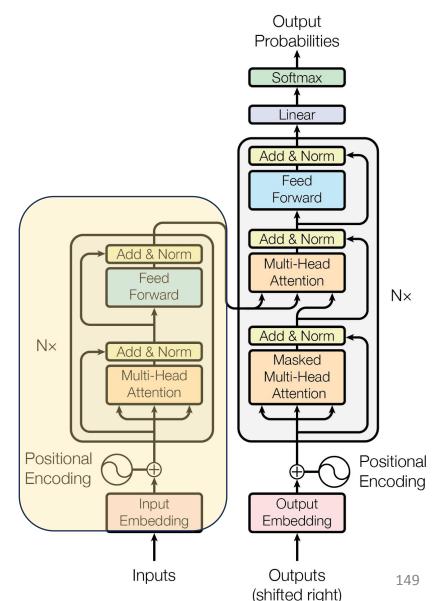
BERT Pre-Training Results:

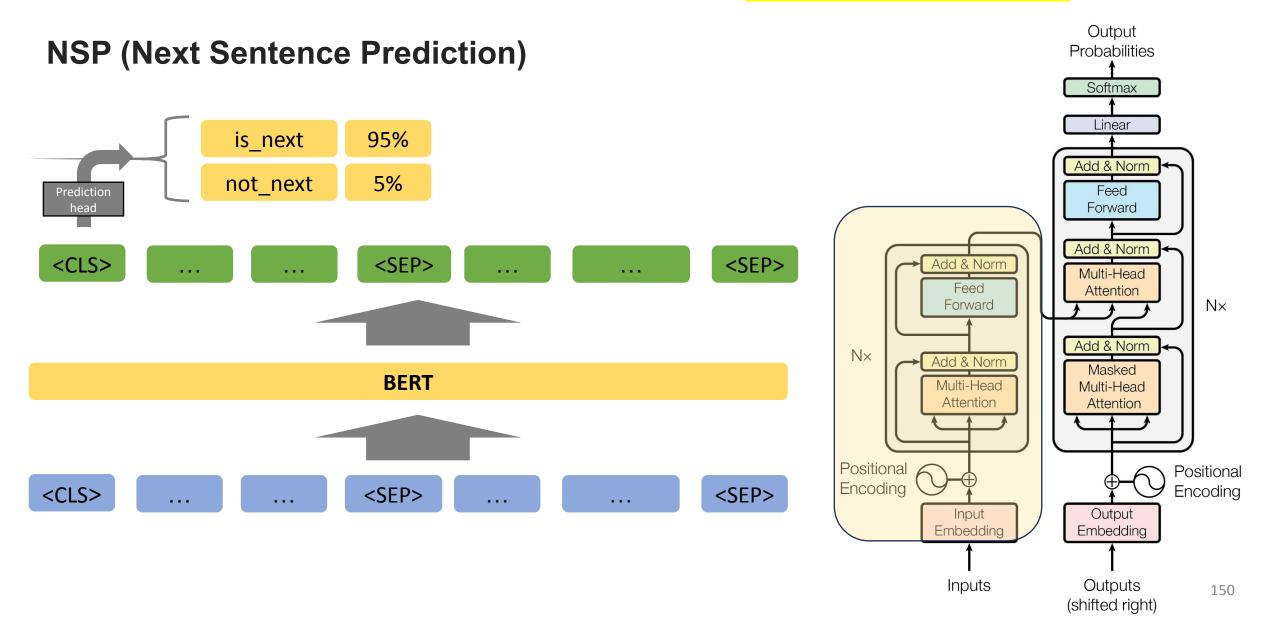
- BERT-Base 110M Params
- BERT-Large 340M Params



MLM (Masked Language Modeling)

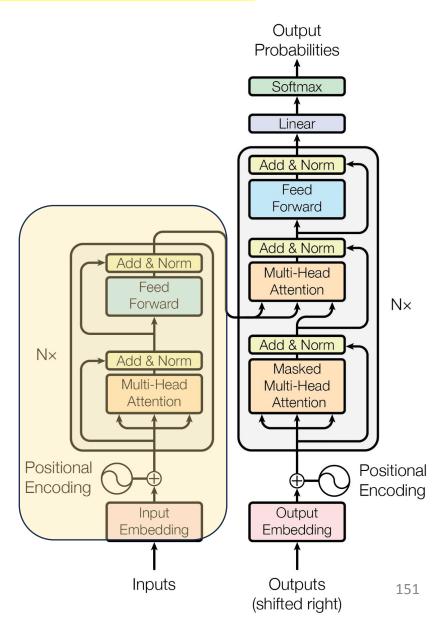






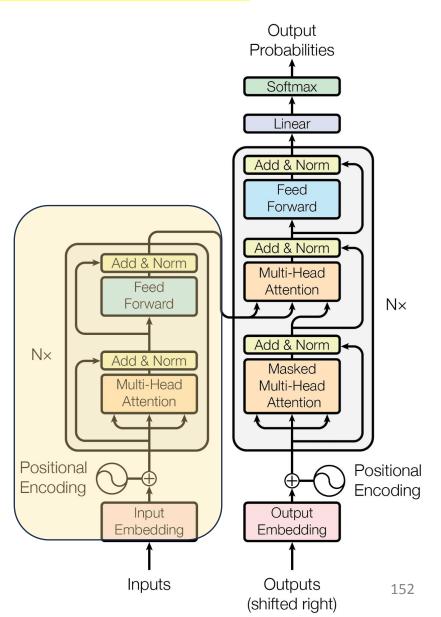
BERT Fine-Tuning:

- Simply add a task-specific module after the last encoder layer to map it to the desired dimension.
 - <u>Classification Tasks:</u>
 - Add a feed-forward layer on top of the encoder output for the [CLS] token
 - **Question Answering Tasks:**
 - Train two extra vectors to mark the beginning and end of answer from paragraph



BERT Evaluation:

- General Language Understanding Evaluation (GLUE)
 - Sentence pair tasks
 - Single sentence classification
- Stanford Question Answering Dataset (SQuAD)

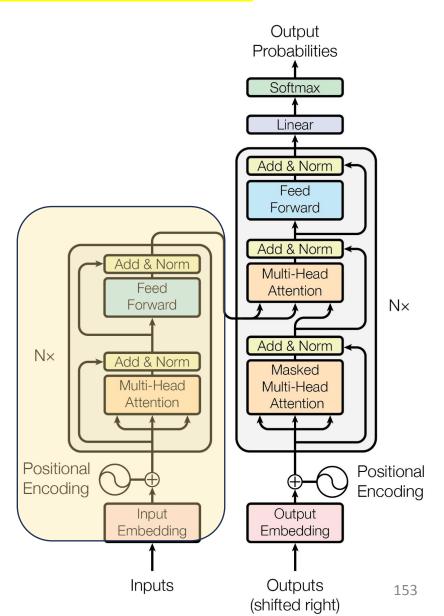


BERT Evaluation:

System	MNLI-(m/mm) 392k	QQP 363k	QNLI 108k	SST-2 67k	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k	RTE 2.5k	Average -
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

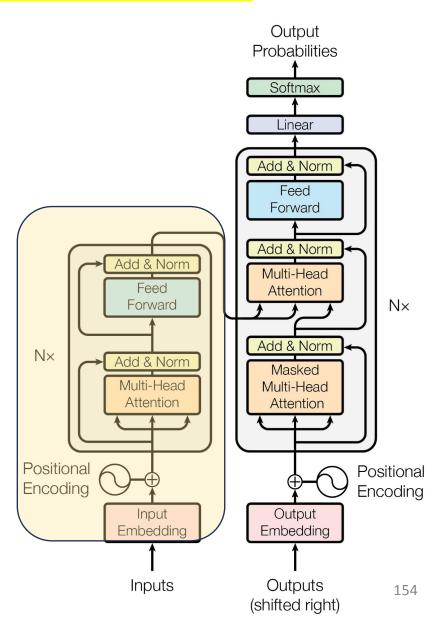
System	D	ev	Test		
150	EM	F1	EM	F1	
Leaderboard (Oct	8th, 2	(018)			
Human	-	-	82.3	91.2	
#1 Ensemble - nlnet		-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
#1 Single - nlnet		-	83.5	90.1	
#2 Single - QANet	-	-	82.5	89.3	
Publishe	d	1			
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	78.9	86.3	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERTLARGE (Single)	84.1	90.9	-	-	
BERTLARGE (Ensemble)	85.8	91.8	-	-	
BERTLARGE (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERTLARGE (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.



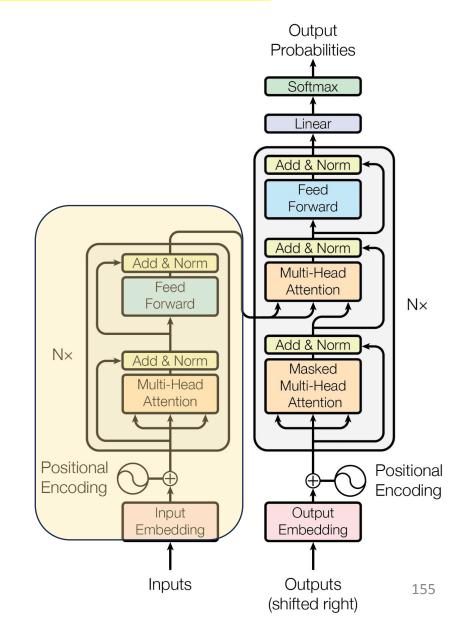
What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.



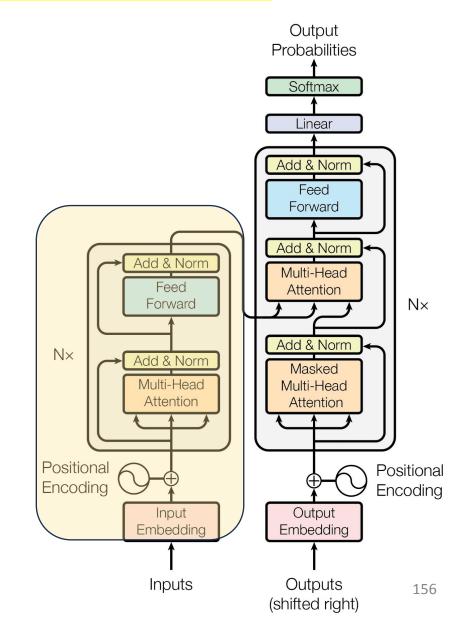
What is our takeaway from BERT?

- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
 - As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.

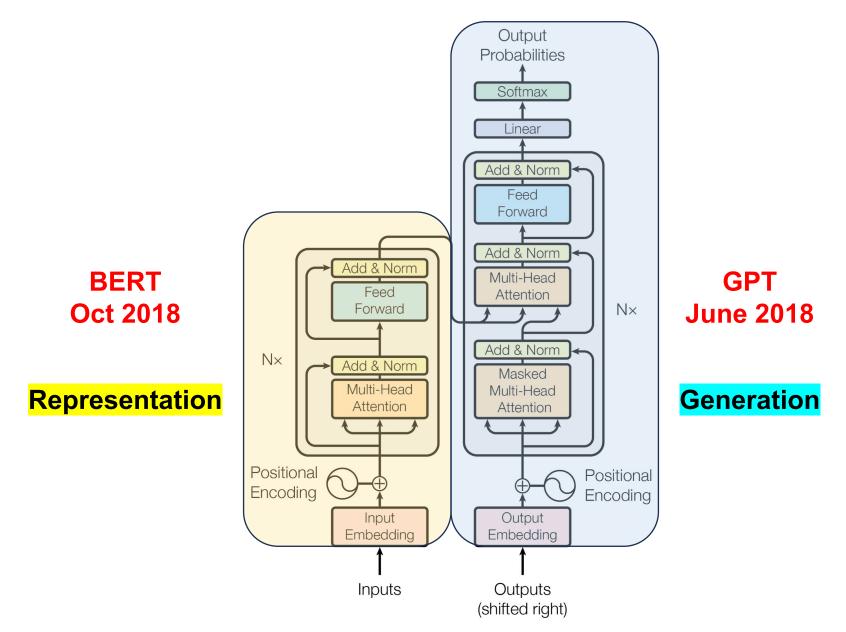


What is our takeaway from BERT?

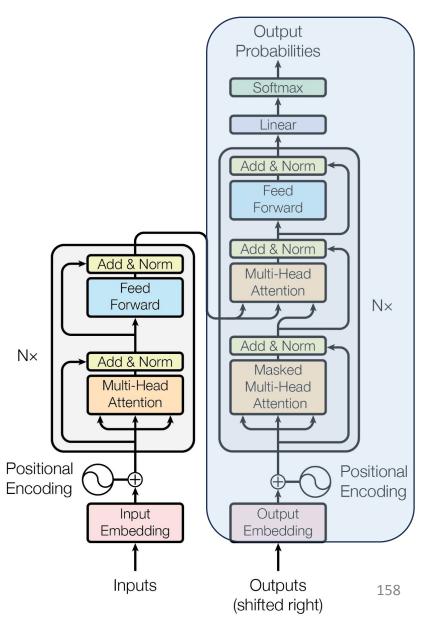
- Pre-training tasks can be invented flexibly...
 - Effective representations can be derived from a flexible regime of pre-training tasks.
- Different NLP tasks seem to be highly transferable with each other...
 - As long as we have effective representations, that seems to form a general model which can serve as the backbone for many specialized models.
- And scaling works!!!
 - 340M was considered large in 2018



2018 – Inception of the LLM Era



- Similarly motivated as BERT, though differently designed
 - Can we leverage large amounts of unlabeled data to pretrain an LM that understands general patterns?



GPT Pre-Training Corpus:

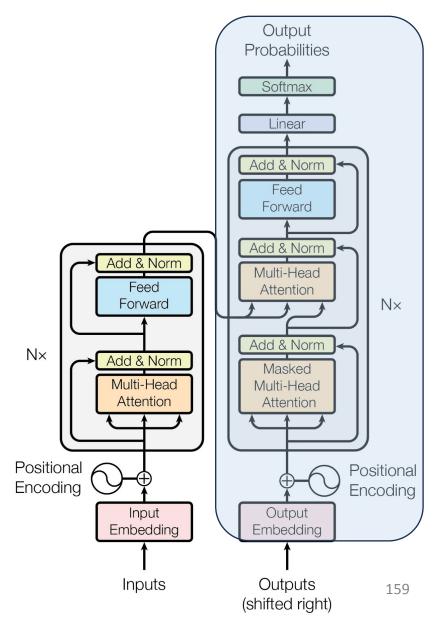
• Similarly, BooksCorpus and English Wikipedia

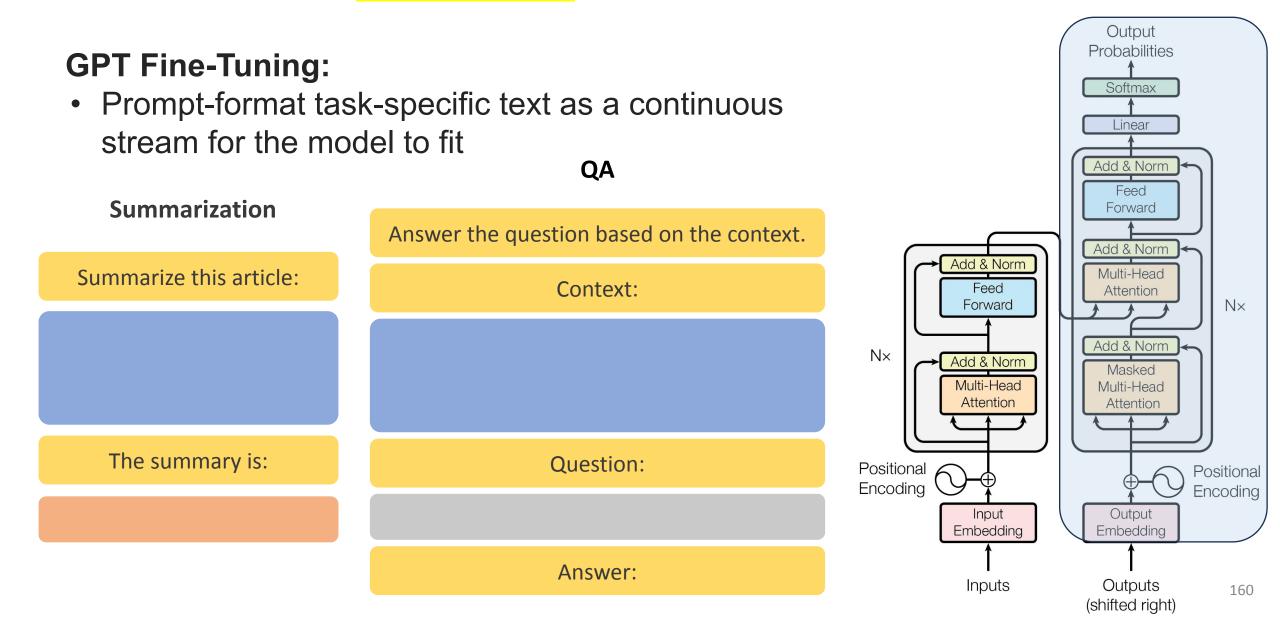
GPT Pre-Training Tasks:

- Predict the next token, given the previous tokens
 - More learning signals than MLM

GPT Pre-Training Results:

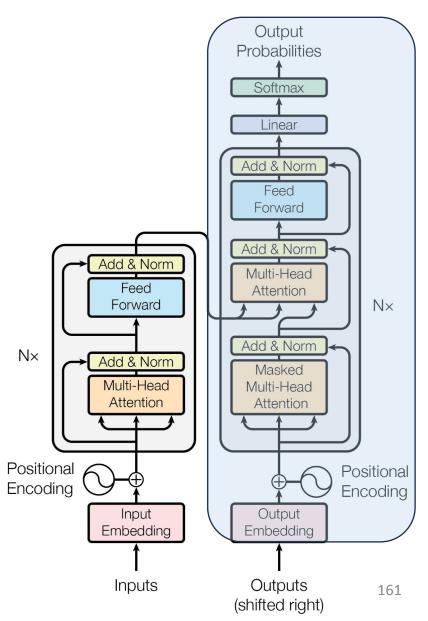
- GPT 117M Params
 - Similarly competitive on GLUE and SQuAD





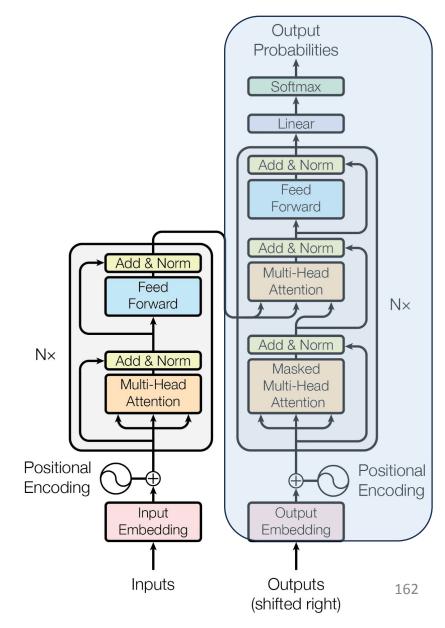
What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language *itself*, rather than from any specific task we might cook up.



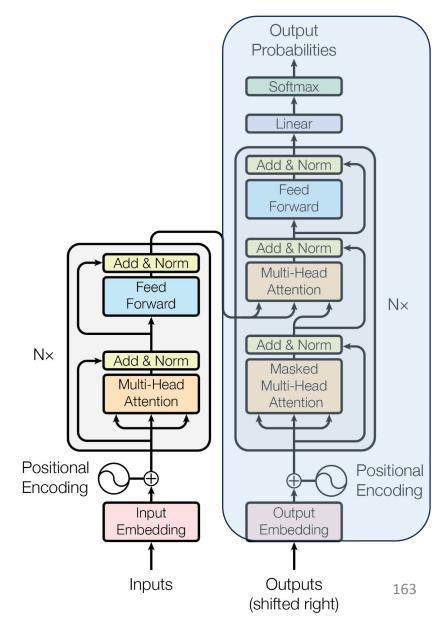
What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language *itself*, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
 - Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.



What is our takeaway from GPT?

- The Effectiveness of Self-Supervised Learning
 - Specifically, the model seems to be able to learn from generating the language *itself*, rather than from any specific task we might cook up.
- Language Model as a Knowledge Base
 - Specifically, a generatively pretrained model seems to have a decent zero-shot performance on a range of NLP tasks.
- And scaling works!!!



Poll 3 - @1579

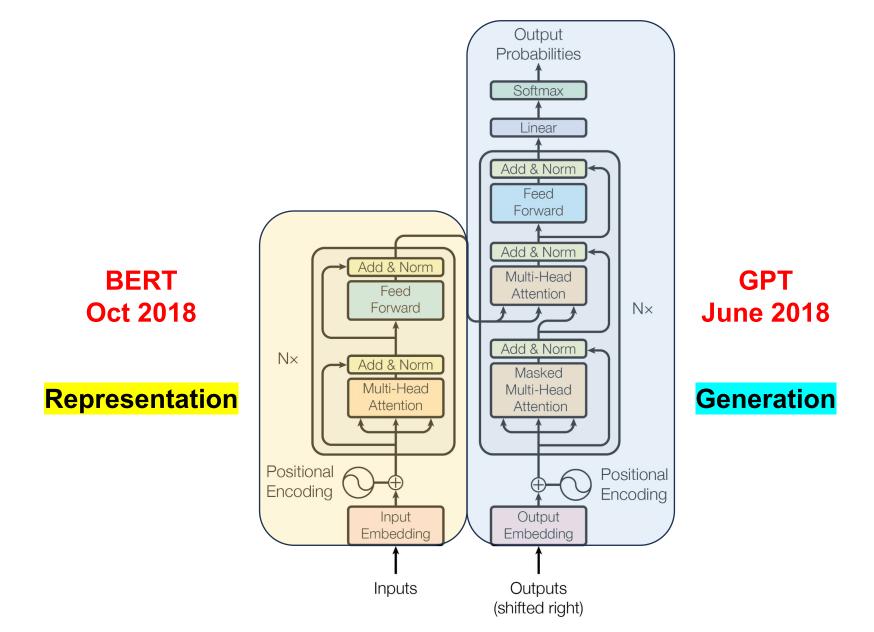
The original GPT's parameter count is closest to...

A. 117B. 117KC. 117MD. 117B

Poll 3 - @1579

The original GPT's parameter count is closest to...

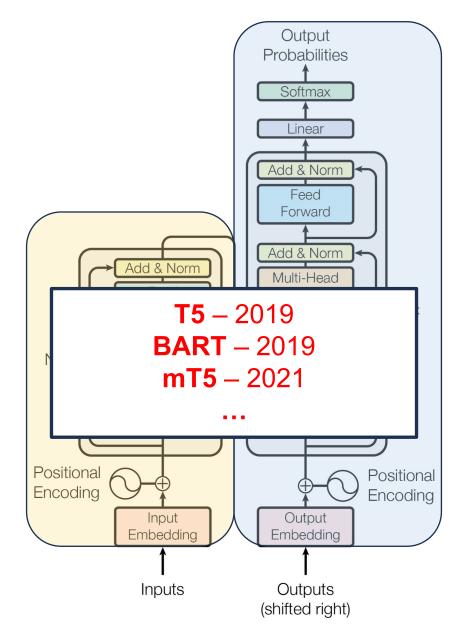
A. 117
B. 117K
C. 117M
D. 117B



BERT – 2018 DistilBERT – 2019 RoBERTa – 2019 ALBERT – 2019 ELECTRA – 2020 DeBERTa – 2020

Representation

. . .



GPT – 2018 GPT-2 – 2019 GPT-3 – 2020 GPT-Neo – 2021 GPT-3.5 (ChatGPT) – 2022 LLaMA – 2023 GPT-4 – 2023

Generation

A 44 A

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
 - How can we make models perform on tasks they are <u>not</u> trained on?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?
- Zero-shot and Few-shot learning
 - How can we make models perform on tasks they are *not* trained on?
- Prompting
 - How do we make models understand their task simply by describing it in natural language?

From both BERT and GPT, we learn that...

• Transformers seem to provide a new class of generalist models that are capable of capturing knowledge which is more fundamental than task-specific abilities.

Before LLMs

- Feature Engineering
 - How do we design or select the best features for a task?
- Model Selection
 - Which model is best for which type of task?
- Transfer Learning
 - Given scarce labeled data, how do we transfer knowledge from other domains?
- Overfitting vs Generalization
 - How do we balance complexity and capacity to prevent overfitting while maintaining good performance?

Since LLMs

- Pre-training and Fine-tuning
 - How do we leverage large scales of unlabeled data out there previously under-leveraged?

• Zero-shot and Few-shot learning

- How can we make models perform on tasks they are <u>not</u> trained on?
- Prompting
 - How do we make models understand their task simply by describing it in natural language?

Interpretability and Explainability

 How can we <u>understand</u> the inner workings of our own models?

• What has caused this paradigm shift?

- What has caused this paradigm shift?
 - Recall: Problem in recurrent networks
 - Information is effectively lost during encoding of long sequences
 - Sequential nature disables parallel training and favors late timestep inputs

- What has caused this paradigm shift?
 - Recall: Problem in recurrent networks
 - Information is effectively lost during encoding of long sequences
 - Sequential nature disables parallel training and favors late timestep inputs
 - Solution: Attention is all you need!!!
 - Handling long-range dependencies
 - Parallel training
 - Dynamic attention weights based on inputs

• Attention and Transformer – is this the end?

- Attention and Transformer is this the end?
 - Problem in current Transformer-based LLMs??

- Attention and Transformer is this the end?
 - Problem in current Transformer-based LLMs??
 - True understanding the material vs. memorization and pattern-matching
 - Cannot reliably follow rules factual hallucination e.g. inability in arithmetic

- Attention and Transformer is this the end?
 - Problem in current Transformer-based LLMs??
 - True understanding the material vs. memorization and pattern-matching
 - Cannot reliably follow rules factual hallucination e.g. inability in arithmetic
 - Solution: ???

Looking Back

It is true that language models are just programmed to predict the next token...

In fact, all animals, including us, are just programmed to survive and reproduce, and yet amazingly complex and beautiful stuff comes from it.

- Sam Altman*

*Paraphrased