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Machine Translation

Inputs

I ate an apple 

Targets

Ich habe einen Apfel 
gegessen
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Inputs

Processing Inputs

Inputs

I ate an apple 
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I ate an apple 

Tokenizer (split into individual words)

Tokenization
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I ate an apple <eos>

I ate an apple 

Tokenizer (split into individual words)

Tokenization
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I ate an apple <eos>

Embedding Layer

Generate Input Embeddings

I ate an apple 

Tokenizer (split into individual words)

Input Embeddings
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I ate an apple <eos>

Embedding Layer

Generate Input Embeddings

I ate an apple 

Tokenizer (split into individual words)

d
model

Input Embeddings
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Position Encodings

I ate an apple <eos>



14

I ate an apple <eos>

apple ate an I <eos>

Position Encodings
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Requirements for Positional Encodings???

Position Encodings
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Position Encodings

Requirements for Positional Encodings 

• Some representation of time? (like seq2seq?)

• Should be unique for each position – not cyclic
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Requirements for Positional Encodings 
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Requirements for Positional Encodings 

• Some representation of time? (like seq2seq?)

• Should be unique for each position – not cyclic

• Bounded

Possible Candidates 

P(t + t’) = Mt’ x P(t)

Position Encodings
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Requirements for Positional Encodings 

• Some representation of time? (like seq2seq?)

• Should be unique for each position – not cyclic

• Bounded

Possible Candidates 

P(t + t’) = Mt’ x P(t)

M? 

1. Should be a unitary matrix

2. Magnitudes of eigen value should be 1 -> norm preserving

3. The matrix can be learnt

4. Produces unique rotated embeddings each time

Position Encodings
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Rotary Position 
Embedding

REF: Rotary Position Embeddings 🔗

https://arxiv.org/pdf/2104.09864.pdf
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Requirements for Position Encodings 

• Some representation of time? (like seq2seq?)

• Should be unique for each position 

• Bounded

Actual Candidates

sine(g(t))

cosine(g(t))

Requirements for g(t) 

• Must have same dimensions as input embeddings

• Must produce overall unique encodings 

Position Encoding
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For each position, an embedded input is moved the same distance but 

at a different angle. Inputs that are close to each other in the sequence 

have similar perturbations, but inputs that are far apart are perturbed 

in different directions.

pos          -> idx of the token in input sentence

i               -> ith    dimension out of d

d model -> embedding dimension of each token  

Different calculations for odd and even embedding indices

Position Encoding
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Positional Encoding

Position Encoding
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I ate an apple <eos>

Embedding Layer

Input
I ate an apple 

Tokenizer

Input Embeddings

Position Encodings

Final Input Embeddings

Tokens

Position Encoding
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✔ Tokenization 

✔ Input Embeddings

✔ Position Encodings

• Query, Key, & Value

• Attention 

• Self Attention

• Multi-Head Attention

• Feed Forward 

• Add & Norm

• Encoders

• Masked Attention

• Encoder Decoder Attention

• Linear

• Softmax

• Decoders

• Encoder-Decoder Models
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I ate an apple <eos>

WHERE IS THE 

CONTEXT ?

Encoder
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Encoder

I ate an apple <eos>

BLACK BOX
OF SORTS
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I ate an apple <eos>

LEARN TO 
ADD 

CONTEXT 

BLACK BOX
OF SORTS

Encoder
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I ate an apple <eos>

CONTEXTUALLY RICH EMBEDDINGS

LEARN TO 
ADD 

CONTEXT 

BLACK BOX
OF SORTS

Encoder
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I ate an apple <eos>

CONTEXTUALLY RICH EMBEDDINGS

LEARN TO 
ADD 

CONTEXT 

BLACK BOX
OF SORTS

⍺
[ i j ]

  ?  Encoder
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From lecture 18:

⍺
[ i j ]

  ?  

Attention
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• Query

• Key

• Value

From lecture 18:

⍺
[ i j ]

  ?  

Attention
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Query, Key & Value

Database

{Key, Value store}
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Database

{Key, Value store}

{Query: “Order details of order_104”}

OR

{Query: “Order details of order_106”}

Query, Key & Value
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{Key, Value store}

{Query: “Order details of order_104”}

OR

{Query: “Order details of order_106”}

Query, Key & Value
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{Key, Value store}

{Query: “Order details of order_104”}

OR

{Query: “Order details of order_106”}

Query, Key & Value



39

{Key, Value store}

{Query: “Order details of order_104”}

OR

{Query: “Order details of order_106”}

Query, Key & Value
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{Key, Value store}

Done at the same time !!

{Query: “Order details of order_104”}

OR

{Query: “Order details of order_106”}

Query, Key & Value
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Key
1. Interacts directly with Queries
2. Distinguishes one object from another
3. Identify which object is the most relevant 

and by how much 

Value
1. Actual details of the object
2. More fine grained

Query
1. Search for info 

{Query: “Order details of order_104”}

OR

{Query: “Order details of order_106”}

Query, Key & Value



42

Attention

Query Key ValueKey Value 
Store
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Query Key ValueKey Value 
Store

Attention
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Query Key ValueKey Value 
Store

Done at the same time !!

Attention
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Query Key ValueKey Value 
Store

Q QKT   

Parallelizable !!!

Attention
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✔ Tokenization 

✔ Input Embeddings

✔ Position Encodings

✔ Query, Key, & Value

✔ Attention 

• Self Attention

• Multi-Head Attention

• Feed Forward 

• Add & Norm

• Encoders

• Masked Attention

• Encoder Decoder Attention

• Linear

• Softmax

• Decoders

• Encoder-Decoder Models
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Which of the following are true about attention?

a. To calculate attention weights for input I
2
, you would use key k

2
, and all queries

b. To calculate attention weights for input I
2
, you would use query q

2
, and all keys

c. We scale the QKT product to bring attention weights in the range of [0,1]

d. We scale the QKT product to allow for numerical stability 

Poll 1 - @1581 
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Self Attention

From lecture 18:
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The animal didn’t cross the street because it was too wide

Self Attention
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The animal didn’t cross the street because it was too wide

?

coreference resolution?

Self Attention
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Self Attention
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Self Attention
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Self Attention
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Query Inputs Key Inputs Value Inputs= =

Self Attention

SELF 
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WQ WK
Wv

Input Embeddings

Self Attention
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WQ

WK

WV

Input Embeddings Q Projections

K Projections

V Projections

Self Attention

Input Embeddings

Input Embeddings
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QProjection KProjection

T

 

softmax

Self Attention
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T

 

softmax

O( T
2 x

 d model 
)

QProjection KProjection

Self Attention
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VProjection

 

softmax

T

O( T
2 x

 d model 
)

QProjection KProjection

Self Attention
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Attention: Z

Self Attention
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The animal didn’t cross the street because it was too wide

Coreference resolution 

Self Attention
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The animal didn’t cross the street because it was too wide

?

Coreference resolution 

Part of Speech ?Semantic relationships ?

Sentence boundaries ?

Comparisons ?

Context ? 

Self Attention
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WQ WK
Wv

Self Attention

Input Embeddings
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Multi-Head 
Attention

WQ1, WQ2, … WQH, 

                H
        ..
    2
1

                H
        ..
    2
1

WK1, WK2, … WKH, 

                H
        ..
    2
1

WV1, WV2, … WVH, 

Input Embeddings
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WQi

WKi

WVi

Inputs

Inputs

Inputs

                H
        ..
    2
1

                H
        ..
    2
1

                H
        ..
    2
1

WKi

WVi

Qi

                H
        ..
    2
1

WKi

                H
        ..
    2
1Ki

WVi
                H
        ..
    2
1

Vi

Multi-Head 
Attention
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Qi
Ki

Vi

T

 

softmax

 

Multi-Head 
Attention
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Multi Head Attention : Z

…

Z
1

Z
2

Z
h

CONCAT

Multi-Head 
Attention
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The animal didn’t cross the street because it was too wide

Coreference resolution 

Part of speech Semantic relationships 

Sentence boundaries

Comparisons 

Context  

Multi-Head 
Attention
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Feed Forward 

Feed Forward

• Non Linearity

• Complex Relationships

• Learn from each other

Residuals

Feed Forward
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Norm(Z)Input

Normalization

Mean 0, Std dev 1

Stabilizes training

Regularization effect

Add & Norm

Add Residuals

Avoid vanishing gradients

Train deeper networks
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Feed Forward 

Add & Norm 

Residuals

Add & Norm
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Encoders

Encoder    

ENCODER
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ENCODER

ENCODER

ENCODER

.

.

.

Encoder    

Encoders

Output from Encoder
i

Input to Encoder
i+1
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Transformers

✔ Tokenization 

✔ Input Embeddings

✔ Position Encodings

✔ Query, Key, & Value

✔ Attention

✔ Self Attention

✔ Multi-Head Attention

✔ Feed Forward 

✔ Add & Norm

✔ Encoders

• Masked Attention

• Encoder Decoder Attention

• Linear

• Softmax

• Decoders

• Encoder-Decoder Models
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Machine Translation

Inputs

I ate an apple 

Targets

Ich habe einen Apfel 
gegessen
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Targets

Targets

Ich habe einen Apfel 
gegessen
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Ich habe einen Apfel gegessen

Embedding Layer + Positional Encoding

Generate Target Embeddings

Ich habe einen Apfel gegessen

Tokenizer

<eos><sos>

Targets
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Masked Multi Head Attention

Ich habe einen Apfel gegessen <eos><sos>
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Decoding step by step (using Teacher Forcing)

Ich habe<sos>

Ich habe einen<sos>

Ich habe einen Apfel<sos>

Ich habe einen Apfel gegessen<sos>

<sos>

Ich<sos>

Ich habe einen Apfel gegessen <eos><sos>

1

2

3

4

5

6

7

Inference

Masked Multi Head Attention
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Decoding step by step (using Teacher Forcing)

Ich habe<sos>

Ich habe einen<sos>

Ich habe einen Apfel<sos>

Ich habe einen Apfel gegessen<sos>

<sos>

Ich<sos>

Ich habe einen Apfel gegessen <eos><sos>

1

2

3

4

5

6

7

Inference

Masked Multi Head Attention

Parallelized 

?
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<sos> Ich habe einen Apfel gegessen <eos>

Training

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)
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<sos> Ich einen gegessen <eos>

Outputs at time T should only pay attention to outputs 

until time T-1

Training

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)

habe Apfel
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Ich habe<sos>

Ich habe einen<sos>

Ich habe einen Apfel<sos>

Ich habe einen Apfel gegessen<sos>

<sos>

Ich<sos>

Ich habe einen Apfel gegessen <eos><sos>

1

2

3

4

5

6

7

Ich habe einen Apfel gegessen <eos>

habe einen Apfel gegessen <eos>

einen Apfel gegessen <eos>

Apfel gegessen <eos>

gegessen <eos>

<eos>

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)
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Ich habe<sos>

Ich habe einen<sos>

Ich habe einen Apfel<sos>

Ich habe einen Apfel gegessen<sos>

<sos>

Ich<sos>

Ich habe einen Apfel gegessen <eos><sos>

1

2

3

4

5

6

7

Ich habe einen Apfel gegessen <eos>

habe einen Apfel gegessen <eos>

einen Apfel gegessen <eos>

Apfel gegessen <eos>

gegessen <eos>

<eos>

Mask the available attention values ?

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)
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Ich habe<sos>

Ich habe einen<sos>

Ich habe einen<sos>

Ich einenhabe gegessenApfel

Apfel

<sos>

<sos>

Ich<sos>

Ich habe einen Apfel gegessen <eos><sos>

1

2

3

4

5

6

7

- - - - - - 

- - - - - 

- - - - 

- - - 

- - 

- 

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)
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Ich habe<sos>

Ich habe einen<sos>

Ich habe einen Apfel<sos>

Ich habe einen Apfel gegessen<sos>

<sos>

Ich<sos>

Ich habe einen Apfel gegessen <eos><sos>

1

2

3

4

5

6

7

Softmax                 -> 0

- - - - - - 

- - - - - 

- - - - 

- - - 

- - 

- 

- 

Masked Multi Head Attention

Decoding step by step (using Teacher Forcing)
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Masked Multi Head Attention

Masked Multi Head Attention : Z’

QKT Attention Mask: M

=

Masked Attention

Masked Multi Head Attention
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Masked Multi Head Attention

Masked Multi Head Attention : Z’

Masked Attention Values

Masked Multi Head Attention
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Encoder Decoder Attention ?

Encoder Decoder Attention

Add & Norm 
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Encoder Decoder Attention ?

Encoder Decoder Attention
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Encoder Self Attention 

1. Queries from Encoder Inputs
2. Keys from Encoder Inputs
3. Values from Encoder Inputs

Decoder Masked Self Attention 

1. Queries from Decoder Inputs
2. Keys from Decoder Inputs
3. Values from Decoder Inputs

Encoder Decoder Attention
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Attention

{Key, Value store}

{Query: “Order details of order_104”}

{Query: “Order details of order_106”}
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Encoder

Keys from Encoder Outputs
Values from Encoder Outputs

Decoder

Queries from Decoder Inputs

NOTE: Every decoder block receives the same FINAL encoder output

Encoder Decoder Attention
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Feed Forward 

• Non Linearity

• Complex Relationships

• Learn from each other

Residuals

Add n Norm Decoder Self Attn

Encoder Decoder Attention
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Decoder

DECODER
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DECODER

DECODER

DECODER

.

.

.

Decoder

Decoder output
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Linear

Final Decoder Output

…

Linear 

softmax

Linear weights are often tied with
 input embedding matrix
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Softmax

…

T
d

V 

Output Probabilities



Which of the following are true about transformers?

a. Transformers can always be run in parallel

b. Transformer decoders can only be parallelized during training

c. Queries, keys, and values are obtained by splitting the input into 3 equal segments

d. Multihead attention might help transformers find different kinds of relations between tokens

e. Decoder outputs provide attention queries and keys, while the values come from the encoder

Poll 2 - @1580
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Poll 2 - @1580
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Transformers

Inputs

I ate an apple 

Targets

Ich habe einen Apfel 
gegessen

Machine Translation
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Transformers

✔ Tokenization 

✔ Input Embeddings

✔ Position Encodings

✔ Query, Key, & Value

✔ Attention

✔ Self Attention

✔ Multi-Head Attention

✔ Feed Forward 

✔ Add & Norm

✔ Encoders

✔ Masked Attention

✔ Encoder Decoder Attention

✔ Linear

✔ Softmax

✔ Decoders

• Encoder-Decoder Models



115

Transformers



116

Transformers

Representation Generation



117

Transformers

Representation Generation

Input – input tokens
Output – hidden states

Input – output tokens and hidden 
states*
Output – output tokens



118

Transformers

Representation Generation

Input – input tokens
Output – hidden states

Model can see all timesteps

Input – output tokens and hidden 
states*
Output – output tokens

Model can only see previous 
timesteps



119

Transformers

Representation Generation

Input – input tokens
Output – hidden states

Model can see all timesteps

Does not usually output tokens, so 
no inherent auto-regressivity

Input – output tokens and hidden 
states*
Output – output tokens

Model can only see previous 
timesteps

Model is auto-regressive with 
previous timesteps’ outputs



120

Transformers

Representation Generation

Input – input tokens
Output – hidden states

Model can see all timesteps

Does not usually output tokens, so 
no inherent auto-regressivity

Can also be adapted to generate 
tokens by appending a module that 
maps hidden state dimensionality to 
vocab size

Input – output tokens and hidden 
states*
Output – output tokens

Model can only see previous 
timesteps

Model is auto-regressive with 
previous timesteps’ outputs

Can also be adapted to generate 
hidden states by looking before token 
outputs
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Transformers

✔ Tokenization 

✔ Input Embeddings

✔ Position Encodings

✔ Query, Key, & Value

✔ Attention

✔ Self Attention

✔ Multi-Head Attention

✔ Feed Forward 

✔ Add & Norm

✔ Encoders

✔ Masked Attention

✔ Encoder Decoder Attention

✔ Linear

✔ Softmax

✔ Decoders

✔ Encoder-Decoder Models
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1. Pre-training

How to train and fine-tune transformers 
2. Fine-tuning 

3. Inference

Larger general 
dataset 

Supervised 
training

Pre-trained 
transformer 
model

Smaller task-specific 
dataset

Task-specific 
training

Fine-tuned 
transformer 
model

Lot’s of data, learn general things. May 
serve as a parameter initialization. 

Usually requires significant computational 
resources and time. 

Adaptation to the specific task.

Potentially less computationally intensive. 

Transformer 
architecture
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Parameter-Efficient Fine-Tuning Techniques

LoRA (Lower-Rank Adaptation) BitFit

LoRA: https://arxiv.org/abs/2106.09685 
BitFit: https://arxiv.org/abs/2106.10199 

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.10199
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Transformers

Representation / 
Encoder

Generation / 
Decoder



● Language (see Part 4 of the lecture)

● Vision 

● Audio

● … and many other modalities (e.g., biological/physiological signals, etc.)

● Multimodal (>2 data modalities)

Data Modalities



1. In computer vision convolutional architectures remain largely dominant. 

2. Inspired by NLP successes, multiple works try introducing combining CNN-like architectures 
with self-attention or replacing the convolutions entirely. 

3. However, they faced challenges with performance and scaling.

4. Key breakthrough - Vision Transformer (ViT) released in 2020

Computer Vision

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://arxiv.org/abs/2010.11929v2


Computer Vision - Tokenization

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://arxiv.org/abs/2010.11929v2


1. Split an image into fixed-size patches 
(16x16 pixels). 

2. Tokenize each path (linear projection of 
flattened patches). 

3. Add position embedding. 

4. Feed the resulting sequence of vectors 
to a standard Transformer encoder. 

5. For classification, add an extra 
learnable“classification token” to the 
sequence. 

Vision Transformer (ViT) Model Architecture 

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://arxiv.org/abs/2010.11929v2


● ViT learns the grid like structure of the image patches via its position embeddings. 
● The lower layers contain both global and local features, the higher layers contain only global features.

ViT - Learning Patterns  

Transformers for Image Recognition at Scale

https://blog.research.google/2020/12/transformers-for-image-recognition-at.html


ViT Performance 

Transformers for Image Recognition at Scale

● ViT model attains state-of-the-art performance on multiple popular benchmarks, including 88.55% 
top-1 accuracy on ImageNet and 99.50% on CIFAR-10

https://blog.research.google/2020/12/transformers-for-image-recognition-at.html


Audio

● Similar to the computer vision but with spectrograms instead of images.

● Exists as encoder-decoder variants or as an encoder-only variant with CTC loss. 

● Could be augmented with the CNN. 

Conformer: Convolution-augmented Transformer for Speech Recognition

AST: Audio Spectrogram Transformer

https://arxiv.org/abs/2005.08100
https://arxiv.org/abs/2104.01778


Multimodal Transformer - UniT 

UniT: Multimodal Multitask Learning with a Unified Transformer

1. UniT handles 7 tasks ranging from 
object detection to vision-and language 
reasoning and natural language 
understanding. 

2. Components:

○ An image encoder to encode the 
visual inputs.

○ A text encoder to encode the 
language inputs.

○ A joint decoder with per-task 
query embedding.

○ Task-specific heads to make the 
final outputs for each task.

https://arxiv.org/abs/2102.10772


Multimodal Transformer - LLaVA 

Visual Instruction Tuning (LLaVA - Large Language and Vision Assistant)

https://arxiv.org/abs/2304.08485


Multimodal Transformer - LLaVA 

Visual Instruction Tuning (LLaVA - Large Language and Vision Assistant)

https://arxiv.org/abs/2304.08485
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Large Language Models
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Transformers, mid-2017

Representation Generation



144

2018 – Inception of the LLM Era

Representation Generation

BERT
Oct 2018

GPT
June 2018



BERT - Bidirectional Encoder Representations
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• One of the biggest challenges in LM-building used 
to be the lack of task-specific training data.

• What if we learn an effective representation that 
can be applied to a variety of downstream tasks?
• Word2vec (2013)
• GloVe (2014)



BERT - Bidirectional Encoder Representations
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BERT Pre-Training Corpus:
• English Wikipedia - 2,500 million words
• Book Corpus - 800 million words
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BERT Pre-Training Corpus:
• English Wikipedia - 2,500 million words
• Book Corpus - 800 million words

BERT Pre-Training Tasks:
• MLM (Masked Language Modeling)
• NSP (Next Sentence Prediction)

BERT Pre-Training Results:
• BERT-Base – 110M Params
• BERT-Large – 340M Params



BERT - Bidirectional Encoder Representations
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MLM (Masked Language Modeling)

How are <MASK> doing today <SEP><CLS>

BERT

How are <MASK> doing today <SEP><CLS>

you

they

…

60%

20%

…
Prediction 

head



BERT - Bidirectional Encoder Representations
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NSP (Next Sentence Prediction)

… … <SEP> … … <SEP><CLS>

BERT

… … <SEP> … … <SEP><CLS>

is_next

not_next

95%

5%Prediction 
head



BERT - Bidirectional Encoder Representations

151

BERT Fine-Tuning:

• Simply add a task-specific module after the last 
encoder layer to map it to the desired dimension.

• Classification Tasks:
• Add a feed-forward layer on top of the 

encoder output for the [CLS] token
• Question Answering Tasks:

• Train two extra vectors to mark the 
beginning and end of answer from 
paragraph

• …



BERT - Bidirectional Encoder Representations
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BERT Evaluation:

• General Language Understanding Evaluation 
(GLUE)
• Sentence pair tasks
• Single sentence classification

• Stanford Question Answering Dataset (SQuAD)



BERT - Bidirectional Encoder Representations
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BERT Evaluation:



BERT - Bidirectional Encoder Representations
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What is our takeaway from BERT?

• Pre-training tasks can be invented flexibly…
• Effective representations can be derived from 

a flexible regime of pre-training tasks.
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What is our takeaway from BERT?

• Pre-training tasks can be invented flexibly…
• Effective representations can be derived from 

a flexible regime of pre-training tasks.

• Different NLP tasks seem to be highly 
transferable with each other...
• As long as we have effective representations, 

that seems to form a general model which can 
serve as the backbone for many specialized 
models.

• And scaling works!!!
• 340M was considered large in 2018
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2018 – Inception of the LLM Era

Representation Generation

BERT
Oct 2018

GPT
June 2018



GPT – Generative Pretrained Transformer
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• Similarly motivated as BERT, though differently 
designed

• Can we leverage large amounts of unlabeled 
data to pretrain an LM that understands general 
patterns?



GPT – Generative Pretrained Transformer
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GPT Pre-Training Corpus:
• Similarly, BooksCorpus and English Wikipedia

GPT Pre-Training Tasks:
• Predict the next token, given the previous tokens

• More learning signals than MLM

GPT Pre-Training Results:
• GPT – 117M Params

• Similarly competitive on GLUE and SQuAD
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GPT – Generative Pretrained Transformer

GPT Fine-Tuning:
• Prompt-format task-specific text as a continuous 

stream for the model to fit

Summarize this article:

The summary is:

Summarization
Answer the question based on the context.

Question:

QA

Context:

Answer:



GPT – Generative Pretrained Transformer
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What is our takeaway from GPT?

• The Effectiveness of Self-Supervised Learning
• Specifically, the model seems to be able to 

learn from generating the language itself, 
rather than from any specific task we might 
cook up.
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What is our takeaway from GPT?

• The Effectiveness of Self-Supervised Learning
• Specifically, the model seems to be able to 

learn from generating the language itself, 
rather than from any specific task we might 
cook up.

• Language Model as a Knowledge Base
• Specifically, a generatively pretrained model 

seems to have a decent zero-shot 
performance on a range of NLP tasks.

• And scaling works!!!



The original GPT’s parameter count is closest to…

A. 117
B. 117K
C. 117M
D. 117B

Poll 3 - @1579
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The original GPT’s parameter count is closest to…

A. 117
B. 117K
C. 117M
D. 117B
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Representation Generation

BERT
Oct 2018

GPT
June 2018

The LLM Era – Paradigm Shift in Machine Learning
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The LLM Era – Paradigm Shift in Machine Learning

Representation Generation

BERT – 2018
DistilBERT – 2019
RoBERTa – 2019
ALBERT – 2019

ELECTRA – 2020
DeBERTa – 2020

…

GPT – 2018
GPT-2 – 2019
GPT-3 – 2020

GPT-Neo – 2021
GPT-3.5 (ChatGPT) – 2022

LLaMA – 2023 
GPT-4 – 2023

…
T5 – 2019

BART – 2019
mT5 – 2021

…
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From both BERT and GPT, we learn that…
• Transformers seem to provide a new class of generalist models that are capable 

of capturing knowledge which is more fundamental than task-specific abilities.

The LLM Era – Paradigm Shift in Machine Learning

Before LLMs Since LLMs

• Feature Engineering
• How do we design or select the best 

features for a task?
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The LLM Era – Paradigm Shift in Machine Learning

Before LLMs Since LLMs

• Feature Engineering
• How do we design or select the best 

features for a task?
• Model Selection

• Which model is best for which type of 
task?

• Transfer Learning
• Given scarce labeled data, how do we 

transfer knowledge from other domains?
• Overfitting vs Generalization

• How do we balance complexity and 
capacity to prevent overfitting while 
maintaining good performance?

• Pre-training and Fine-tuning
• How do we leverage large scales of 

unlabeled data out there previously 
under-leveraged?

• Zero-shot and Few-shot learning
• How can we make models perform on tasks 

they are not trained on?
• Prompting

• How do we make models understand their 
task simply by describing it in natural 
language?
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From both BERT and GPT, we learn that…
• Transformers seem to provide a new class of generalist models that are capable 

of capturing knowledge which is more fundamental than task-specific abilities.

The LLM Era – Paradigm Shift in Machine Learning

Before LLMs Since LLMs

• Feature Engineering
• How do we design or select the best 

features for a task?
• Model Selection

• Which model is best for which type of 
task?

• Transfer Learning
• Given scarce labeled data, how do we 

transfer knowledge from other domains?
• Overfitting vs Generalization

• How do we balance complexity and 
capacity to prevent overfitting while 
maintaining good performance?

• Pre-training and Fine-tuning
• How do we leverage large scales of 

unlabeled data out there previously 
under-leveraged?

• Zero-shot and Few-shot learning
• How can we make models perform on tasks 

they are not trained on?
• Prompting

• How do we make models understand their 
task simply by describing it in natural 
language?

• Interpretability and Explainability
• How can we understand the inner workings 

of our own models?
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• What has caused this paradigm shift?

The LLM Era – Paradigm Shift in Machine Learning
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• What has caused this paradigm shift?

• Recall: Problem in recurrent networks
• Information is effectively lost during encoding of long sequences
• Sequential nature disables parallel training and favors late timestep inputs

The LLM Era – Paradigm Shift in Machine Learning
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• What has caused this paradigm shift?

• Recall: Problem in recurrent networks
• Information is effectively lost during encoding of long sequences
• Sequential nature disables parallel training and favors late timestep inputs

• Solution: Attention is all you need!!!
• Handling long-range dependencies
• Parallel training
• Dynamic attention weights based on inputs

The LLM Era – Paradigm Shift in Machine Learning
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• Attention and Transformer – is this the end?

The LLM Era – Paradigm Shift in Machine Learning
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• Problem in current Transformer-based LLMs??
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• Attention and Transformer – is this the end?

• Problem in current Transformer-based LLMs??
• True understanding the material vs. memorization and pattern-matching
• Cannot reliably follow rules – factual hallucination e.g. inability in 

arithmetic

The LLM Era – Paradigm Shift in Machine Learning
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• Attention and Transformer – is this the end?

• Problem in current Transformer-based LLMs??
• True understanding the material vs. memorization and pattern-matching
• Cannot reliably follow rules – factual hallucination e.g. inability in 

arithmetic

• Solution: ???

The LLM Era – Paradigm Shift in Machine Learning
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Looking Back

It is true that language models are just programmed to predict the next token…

In fact, all animals, including us, are just programmed to survive and reproduce, 
and yet amazingly complex and beautiful stuff comes from it.

- Sam Altman*
*Paraphrased


