Generative Adversarial Networks

11785 Deep Learning
Spring 2024

Chetan Chilkunda Quentin Auster

Recap and Learning Objectives

VAEs
Flow Models
Diffusion Models

Today: GANs

LoD oo

Learning Objectives

Generative vs Discriminative models
Explicit vs Implicit models
The insufficiency of Maximum Likelihood Estimation for learning GANs

(A Using a Discriminator network for losses
How GANSs train
Benefits and challenges of GANs

Learning paradigms (learning through comparison)

[Comparison by Ratios and the emergence of the Jensen Shannon Divergence
A Comparison by Differences and the use of Wasserstein distance

A Zero-sum vs Non-zero-sum

Variants of GANs

The Problem

From a large collection of images of faces, can a network
learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?

The Problem

From a large collection of images of faces, can a network
learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?

What are GANs

Generative Adversarial Networks

What are GANs

Generative| Adversarial Networks

/

Generative Model which generates data
similar to training data (like VAEs)

Discriminative vs Generative Models

Discriminative

Learn the conditional distribution P(Y [X).

Learns the decision boundary.

Limited scope. Used for classification tasks.

E.g., logistic regression, SVM, etc.

Generative

Learns joint distribution P(X, Y)

o) Can also condition on covariates

Learns the actual probability distribution of
the data.

o This is a tougher problem, since it requires a
deeper “understanding” of the distribution.

Capable of both generative and discriminative
tasks.

E.g., Naive Bayes, Gaussian Mixture Models,
VAE, Diffusion, GANs.

Generative Models

Goals and Tasks

Generation

Density Estimation

Missing Value Imputation

Structure Discovery

Latent Space Interpolation + Arithmetic

....and more

Evaluation
Sample quality
Sample diversity

Generalization

Generative Models

Goals and Tasks

Generation

Density Estimation

Missing Value Imputation

Structure Discovery

Latent Space Interpolation + Arithmetic

....and more

Evaluation
Sample quality
Sample diversity

Generalization

10

Generative Models

Diffusion
=S
Flow [Autoregressive }
-Based

Energy [GANs]
-Based

Gaussian
Graphical [- }
{ Models } Mixtures

A lot...

How can we start to distinguish
between model types?

Can we evaluate a probability density
function?

Can we sample from them (quickly)?
What training method can we use?

Does it rely on a latent variable for
generation?

What architecture should we use?

11

Generative Models

Diffusion
=S
Flow [Autoregressive }
-Based

Energy [GANs]
-Based

Gaussian
Graphical [- }
{ Models } Mixtures

A lot...

How can we start to distinguish
between model types?

Can we evaluate a probability density
function?

Can we sample from them (quickly)?
What training method can we use?

Does it rely on a latent variable for
generation?

What architecture should we use?

12

Explicit vs Implicit Models

Explicit

Direct access to probability density function
for the distribution.

Can compute the exact probability of samples.

® data
—— model density

Implicit

Ability to sample from distribution, but no
access to the density function.

® data
¢ model samples

£ 4 J @ ¢ ¢ @ © OocOOBMOO OO @ O

13

Explicit vs Implicit Models

Explicit

Direct access to probability density function
for the distribution.

Can compute the exact probability of samples.

® data
—— model density

Implicit

Ability to sample from distribution, but no
access to the density function.

VAEs and GANs are
implicit generative
models

® data
¢ model samples

£ 4 J @ ¢ ¢ @ © OocOOBMOO OO @ O

14

Poll 1

Q1: What is the difference between Discriminative models vs. Generative models?

e Discriminative models model the decision boundary between classes, whereas Generative models

model class distributions
® Generative models model the decision boundary between classes, whereas Discriminative models

model class distributions

Q2: What is the difference between Explicit and Implicit Generative models?

e Implicit models compute the probability of samples, whereas Explicit models only let you draw

samples from the distribution
e Explicit models compute the probability of samples, whereas Implicit models only let you draw

samples from the distribution

15

Poll 1

Q1: What is the difference between Discriminative models vs. Generative models?

e Discriminative models model the decision boundary between classes, whereas Generative models

model class distributions
® Generative models model the decision boundary between classes, whereas Discriminative models

model class distributions

Q2: What is the difference between Explicit and Implicit Generative models?

e Implicit models compute the probability of samples, whereas Explicit models only let you draw

samples from the distribution
e Explicit models compute the probability of samples, whereas Implicit models only let you draw

samples from the distribution

16

L0l OSNSS

Learning Objectives

Generative vs Discriminative models
Explicit vs Implicit models
The insufficiency of Maximum Likelihood Estimation for learning GANs

(A Using a Discriminator network for losses

How GANSs train
Benefits and challenges of GANs

Learning paradigms (learning through comparison)

[Comparison by Ratios and the emergence of the Jensen Shannon Divergence
A Comparison by Differences and the use of Wasserstein distance

A Zero-sum vs Non-zero-sum

Variants of GANs

17

Generative Models

Diffusion
=S
Flow [Autoregressive }
-Based

Energy [GANs]
-Based

Gaussian
Graphical [- }
{ Models } Mixtures

A lot...

How can we start to distinguish
between model types?

Can we evaluate a probability density
function?

Can we sample from them (quickly)?
What training method can we use?

Does it rely on a latent variable for
generation?

What architecture should we use?

18

The Problem

From a large collection of images of faces, can a network
learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?

19

What we have seen: VAE

Generated
Generator
/ ~ P(Z) > Data
G(Z) ,
X

Generator is a decoder of a VAE... how did we train this?

20

What we have seen: VAE

e

Generator

Z ~P(Z) 6z)

Aé_. X'~ P(X:6)

This is a parametric model

Generator is a decoder of a VAE... how did we train this?

21

What we have seen: VAE

e

Generator ,
Z~P(Z) 6z 0) X' ~P(X; 60)

This is a parametric model

Generator is a decoder of a VAE... how did we train this?
By maximizing the likelihood of the data (MLE)

0* = argmax, log P(X; 0)

0

22

What we have seen: VAE

e

Generator ,
Z~P(Z) 6z 0) X' ~P(X; 60)

This is a parametric model

Generator is a decoder of a VAE... how did we train this?
By maximizing the likelihood of the data (MLE)
0* = argmin, —log P(X;0)

23

What we have seen: VAE

e

Generator ,
Z~P(Z) 6z 0) X' ~P(X; 60)

This is a parametric model

Generator is a decoder of a VAE... how did we train this?

By maximizing the likelihood of the data (MLE)

0* = argmin, —log P(X;0) = Any issues here?

24

Issues with Maximum Likelihood Estimation

Likelihood can be difficult to compute

o VAEs and GANs are implicit generative models, so we don’t directly have the likelihood
o With VAEs, we were able to compute bounds on the log likelihood.

Likelihood is not related to perceptual sample quality

25

Issues with Maximum Likelihood Estimation

Likelihood can be difficult to compute

o VAEs and GANs are implicit generative models, so we don’t directly have the likelihood
o With VAEs, we were able to compute bounds on the log likelihood.

Likelihood is not related to perceptual sample quality
o High Likelihood, Bad Samples
m Consider a composite model: 0.01(Great Model) + 0.99 (Noise)
m For high dimensional (D) data, the log likelihood of the composite model will be similar to that of
the “Great Model,” but 99% of the samples will be noise.

g2(z) = 0.01go(z) + 0.99¢1 ()
log g2(x) = 1og|0.01¢o () + 0.99¢1(x)] = log[0.01¢o ()] = log go(x) — 100
log go(z)| ~ D > 100 = logga(z) ~ log go(x)

26

Issues with Maximum Likelihood Estimation

Likelihood can be difficult to compute

o VAEs and GANs are implicit generative models, so we don’t directly have the likelihood
o With VAEs, we were able to compute bounds on the log likelihood.

Likelihood is not related to perceptual sample quality
0 Low Likelihood, Good Samples
m Consider a Gaussian Mixture Model centered on training images
m There may be low noise, meaning the samples will look good, however the model may overfit to
the training data and have a poor likelihood on the test set

27

Replace the negative log likelihood with a more relevant loss

e

Z ~ P(Z)

Generator

G(Z; 0)

4{5—' X'~ P(X;) ~—

Does it look like a
face?
(“DILLAF”)

28

Poll 2

Q1: VAEs are implicit Generative models, True or False
® True
e False

Q2: Why would likelihood maximization not result in a model that produces more face-like outputs (for

a face-generating VAE)?
® The model can maximize the likelihood of training data without any assurance about what other
(non-training) samples look like
e The model is more likely to run into poor local optima
e The model only captures the mode of the distribution of faces, whereas most face-like images are in

the tail of the distribution

Q3: The face-generating model is more likely to generate face-like images if it were trained with a
differentiable loss function that explicitly evaluates if the outputs look like faces or note, True or False
® True
e False

29

Poll 2

Q1: VAEs are implicit Generative models, True or False
® True
e False

Q2: Why would likelihood maximization not result in a model that produces more face-like outputs (for

a face-generating VAE)?
e The model can maximize the likelihood of training data without any assurance about what other
(non-training) samples look like
e The model is more likely to run into poor local optima
e The model only captures the mode of the distribution of faces, whereas most face-like images are in

the tail of the distribution

Q3: The face-generating model is more likely to generate face-like images if it were trained with a
differentiable loss function that explicitly evaluates if the outputs look like faces or not, True or False
e True
e False

30

Replace the negative log likelihood with a more relevant loss

e

Z ~ P(Z)

Generator

G(Z; 0)

4{5—' X'~ P(X;) ~—

Does it look like a
face?
(DILLAF)

What is a good “DILLAF” loss?

31

Replace the negative log likelihood with a more relevant loss

e

Z ~ P(Z)

Generator

G(Z; 0)

A'é—' X'~ P(X;) ~—

Does it look like a
face?
(DILLAF)

What is a good “DILLAF” loss?

Enter: GANS

32

What are GANs

Generative| Adversarial Networks

/

Generative Model which generates data
similar to training data (like VAEs for
example)

33

What are GANs

Generative|Adversarial Networks

/

Generative Model which generates data
similar to training data (like VAEs for
example)

Adversarial Training using two competing
(adversarial) networks that are trying to
beat each other

34

What are GANs

Generative|Adversarial|Networks]

/ Deep Neural Networks

Generative Model which generates data
similar to training data (like VAEs for
example)

Adversarial Training using two competing
(adversarial) networks that are trying to
beat each other

35

What are GANs

Generative|Adversarial|Networks]

\

Deep Neural Networks

Generative Model which generates data
similar to training data (like VAEs for

xampl . - . .
example) Adversarial Training using two competing

(adversarial) networks that are trying to
beat each other

Goal is to model the training
data distribution P(X) so we
can generate new samples

We use a “Generator” and a
“Discriminator” to train
(where the Discriminator is our
“DILLAF” loss!)

36

How GANs work

Z ~ P(Z)

Generator

G(Z)

Generated

Data

Discriminator

D(X)

Real Data
X

|

Real or
Fake?

37

How GANs work

—

{ Z ~ P(2)]—

Generator

G(Z)

)

/

38

How GANs work

Generated
Data

Discriminator

D(X)

|

Real or
Fake?

39

The Generator

Generator :
7 ~ P(Z) — Data
G(Z) ¥

e The generator produces realistic looking X’ = G(z) from the latent vector Z

o Generator input X can be sampled from a known prior (e.g., a standard Gaussian)
® Goal: We want the generated distribution P_(X) to match the true data distribution P (X)

o P_(X)is]ust easier notation for P,,(X), which is the probability that a generated
sample takes on the value X

40

The Discriminator

Generated Discriminator
Data —» . Ree:(l (;r
: Fake:
Real Data
X

The Discriminator D(X) is trained to distinguish between the real and generated (fake) data

o Specifically, data produced by the generator

o If a perfect discriminator is fooled, the real and generated data cannot be distinguished

41

Training GANs

Both Generator and Discriminator need to

be trained together

Z ~ P(Z)

Generator

G(2)

Data

Generated

—>

Discriminator

D(X)

Real Data
X

|

Real or
Fake?

42

But first, some notation

b’ Data sample

Z Latent input noise vector

P, Distribution of real data

| Distribution of generated data

P, Distribution of latent input noise vector
Gz 4,) Generator (the function itself)
D(x; 6,) Discriminator (the function itself)
G(z) or x’ Generator output

D(x) or D(G(z)) Discriminator output

43

Training the Discriminator

Generated Discriminator
: Data _» L Real c;r
v : D(X) Fake~
Real Data T
X

e Fed real and synthetic examples
® Aims to minimize classification loss — Minimize error between actual and predicted

e D(x) = 1for real faces, D(x) = 0 for synthetic faces

44

Training the Discriminator

Generated
' Data —>

Discriminator

DX)

Real Data

|

X

Fed real and synthetic examples

Real or
Fake?

Aims to minimize classification loss — Minimize error between actual and predicted

D(x) = 1 for real faces, D(x) = 0 for synthetic faces

o Maximize log (D(X)) for real faces

o Maximize log (1 — D(X")) for synthetic faces

45

Training the Generator

Generator

Z ~P(Z) .

Generated

Data <:

® The discriminator loss is propagated back to the generator

® Aims to maximize the discriminator loss (we want to “fool” the discriminator)

e Trained suchthat D(G(Z)) =1 (i.e., 1 —D(G(Z)) = 0)

o Minimize log (1 — D(G(Z))

46

The GAN formulation

Generator Generated Discriminator Real or
6(2) e D(X) Fake?

............................... vy

Real Data
X

® Discriminator

o Forreal data X, maximize log (D(X))

o For synthetic data, maximize log (1 — D(X))

® Generator

o Minimize log (1 — D(X’))

The GAN formulation

. Generated e
Z~P@) Generator Bk Discriminator Real or
e e - B

...................... l

Real Data
X

The original GAN formulation is therefore a min-max optimization

Optimize: mcgn mgx E;~py log D(X) + E..p,log(1 — D(G(2)))

Objectives
o D:D(X)=1and D(G(Z) =0

o G D(G(2) =1

48

Training GANs

L |

Discriminator Generator
D(X) G(Z)
Step 1: b Step 2:

Train D using G Train G using D

Optimize: mei:n mDa‘X EIL‘NPX log D(X) + EZNPZ 10g(1 _ D(G(Z)))

If the discriminator is undertrained, it provides sub-optimal feedback to the generator

If discriminator is overtrained, there is no local feedback for marginal improvements

49

Training GANs

L |

Discriminator Generator
D(X) G(Z)
Step 1: b Step 2:

Train D using G Train G using D
optimize: TN Max Ko p, log D(X) + E..p, log(1 — D(G(2)))

The discriminator is not needed after convergence

Training GANs

for num epochs do:
- Hyperparameter.
Goodfellow et al. use k=1

{z®).. z®™} ~ P, (Sample m noise vectors)
{(x)., xm™} ~ P, (Sample m data points)

Lo o 230 [togD(x©) + log (1~ D (6(=)))

9o, < Vo, Lp
GD <_6D +aggD

for k steps do:

end for

{z®) .. z™} ~ P, (Sample m noise vectors)

1 .
Le < ;Z?L log (1 —D (G (Z(l)))) In practice, this saturates early in
9o, < Vo, Lg training. We can instead maximize log
0; < 0c—a- go, (D(G(z2))) for better gradients.
end for

51

Poll 3

Q1: When training a GAN, which component must you train first

® The discriminator
® The generator

Q2: Which component is updated more frequently

® The discriminator
e The generator

52

Poll 3

Q1: When training a GAN, which component must you train first

e The discriminator
® The generator

Q2: Which component is updated more frequently

e The discriminator
e The generator

The discriminator is the “DILLAF” loss. Training the loss is more important,
since this is what guides the training!

53

Ll SN SS

Learning Objectives

Generative vs Discriminative models
Explicit vs Implicit models
The insufficiency of Maximum Likelihood Estimation for learning GANs

v Using a Discriminator network for losses

How GANSs train
Benefits and challenges of GANs

Learning paradigms (learning through comparison)

[Comparison by Ratios and the emergence of the Jensen Shannon Divergence
A Comparison by Differences and the use of Wasserstein distance

A Zero-sum vs Non-zero-sum

Variants of GANs

54

The GAN formulation

Generator
Z~ P(Z) 62)

. Generated L.
: : Discriminator
e Data —
: X/ D(X)
...................... x
Real Data
X

e How does this work when each piece is optimized?

o We will consider the optimal Discriminator first...

o Then the optimal Generator

Real or
Fake?

55

The optimal discriminator (binary classification)

P(m7y1) P(m7y2)

The
distributions

The posterior probability of the P(|X) _ P(X,y;)
classes for any instance x = X is: Yi P(X,y1)+P(X,y2)

56

The optimal discriminator (binary classification)

P(m7y1) P(m7y2)

The
distributions

The posterior - /_
P(ys|z) / 05
<< >

The posterior probability of the P(|X) _ P(X,y;)
classes for any instance x = X is: Yi P(X,y1)+P(X,y2)

The optimal discriminator (binary classification)

Pg(X)

The

distributions
— >

The posterior
P(y2|x) 0o
- P

Assuming a uniform prior, the

optimal discriminator in our case D(X) — Px(X)+Pg(X)

will be a Bayesian Classifier s

Iterative Training

Recall our training procedure:

P;(X;67) Px(X)

Discriminator Generator

D(X) G(2)

Step 1: ~ Step 2:

Train D using G Train G using D

mcin max E;~p,log D(X) + E..p,log(1 — D(G(2))) - >

Optimize:

e Start with a training distribution and a generator distribution that is untrained
e Fit a discriminator
e Update the generator to “fool” the discriminator

Iterative Training

Recall our training procedure:

Pg(X; 6, Px(X)

Discriminator Generator

D(X) G(2)

Step 1: ~ Step 2:

Train D using G Train G using D

mcin max E;~p,log D(X) + E..p,log(1 — D(G(2))) -

>

Optimize:

D(X; 0’2))

e Start with a training distribution and a generator distribution that is untrained
e Fit a discriminator
e Update the generator to “fool” the discriminator

Recall our training procedure:

Optimize:

Discriminator

D(X)

Step 1:
Train D using G

X |
|

Generator

G(2)

Step 2:
Train G using D

Iterative Training

Pq(X;005™)

mcin max E;~p,log D(X) + E..p,log(1 — D(G(2))) -

Start with a training distribution and a generator distribution that is untrained

Fit a discriminator
Update the generator to “fool” the discriminator

61

Recall our training procedure:

Optimize:

Discriminator

D(X)

Step 1:
Train D using G

X |
|

Generator

G(2)

Step 2:
Train G using D

Iterative Training

Pg(X; 6,

Pg(X; 9’2;1)

/

mcin max E;~p,log D(X) + E..p,log(1 — D(G(2))) -

Start with a training distribution and a generator distribution that is untrained

Fit a discriminator
Update the generator to “fool” the discriminator

D(X;05)

62

Iterative Training

Recall our training procedure:

Pg(X;0%,) Px(X)

Discriminator Generator

D(X) G(2)

Step 1: ~ Step 2:

Train D using G Train G using D

mcin max E;~p,log D(X) + E..p,log(1 — D(G(2))) -

Optimize:

D(X; 0’2’))

e Start with a training distribution and a generator distribution that is untrained
e Fit a discriminator
e Update the generator to “fool” the discriminator

Iterative Training

PG X; 0k+1
Recall our training procedure: (L)
Po(X; 6%
s | c(X; G) PX(X)
Discriminator Generator
D(X) G(2)

Optimize: ~ Minmax Ez~py log D(X) + E..p, log(1 — D(G(2))) < >

o D(X;0%)

e Start with a training distribution and a generator distribution that is untrained
e Fit a discriminator
e Update the generator to “fool” the discriminator

Iterative Training

PG X; 0k+1
Recall our training procedure: (G)
Po(X; 6%
- a(X;0¢) Px(X)
Discriminator Generator
D(X) G(2)
Optimize: mcin max E;~p,log D(X) + E..p,log(1 — D(G(2))) - T >
. pk+1
D(X;07)

e Start with a training distribution and a generator distribution that is untrained
e Fit a discriminator
e Update the generator to “fool” the discriminator

Iterative Training

Recall our training procedure:

Pg(X;0¢,) Px(X)

Discriminator Generator

D(X) G(2)

Step 1: ~ Step 2:

Train D using G Train G using D
mcin mS,XIEINPX log D(X) + E,.p,log(1 — D(G(z))) - >

D(X; 0’1"))

Optimize:

e Start with a training distribution and a generator distribution that is untrained
e Fit a discriminator
e Update the generator to “fool” the discriminator

Recall our training procedure:

Optimize:

Discriminator

D(X)

Step 1:
Train D using G

X |
|

Generator

G(2)

Step 2:
Train G using D

Iterative Training

Pq(X; 0%

P (X;05™)

Px(X)

mcin max E;~p,log D(X) + E..p,log(1 — D(G(2))) -

Start with a training distribution and a generator distribution that is untrained

Fit a discriminator
Update the generator to “fool” the discriminator

D(X; 0’1"))

67

Iterative Training

k+1
Recall our training procedure: p PG(X; 0G+)
Po(X; 0%
P a(X;0¢) Px(X)
Discriminator Generator
D(X) G(2)
Optimize: mcin mS,XIEINPX log D(X) + E,.p,log(1 — D(G(z))) - T >
. pk+1
D(X;07)

e Start with a training distribution and a generator distribution that is untrained
e Fit a discriminator
e Update the generator to “fool” the discriminator

68

Iterative Training

Recall our training procedure: Pg (X 9k)
G

Discriminator Generator

D(X) G(2)

Step 1: ~ Step 2:

Train D using G Train G using D
mcin mS,XIEINPX log D(X) + E,.p,log(1 — D(G(z))) - >

D(X; 9%)

Optimize:

e In the limit, the Generator’s distribution will sit perfectly on the true
distribution, and the Discriminator will be random.
® The derivative of D(X) wrt X will be zero — No further updates

69

Min-Max Stationary Point

® There exists a stationary point...

(@)

(@)

If the generated data exactly matches the real data (discriminator outputs 0.5 for all inputs)
If the discriminator outputs 0.5, the gradients for the generator are flat, so the generator does not

learn
This is true of a perfect discriminator paired with a very good generator. However, it is also true of a

random discriminator.

e Stationary points need not be stable.

(@)

@)

(@)

Depends on the exact GAN formulation
The generator may overshoot or oscillate around the optimum
A discriminator with unlimited capacity can still assign an arbitrarily large distance to 2 similar

distributions.

70

Benefits and Challenges

GANSs produce clear crisp results for many
problems

However, they have stability issues and are
difficult to train

o Mode Collapse or Mode Hopping

m Improvements can be made by using larger
batch sizes, increasing discriminator
expressivity, regularizing the discriminator
and generator, and other optimization
methods.

o Low variability/diversity in outputs

o Poor gradients

71

Benefits and Challenges

GANSs produce clear crisp results for many
problems

However, they have stability issues and are
difficult to train

o Mode Collapse or Mode Hopping

m Improvements can be made by using larger
batch sizes, increasing discriminator
expressivity, regularizing the discriminator
and generator, and other optimization
methods.

o Low variability/diversity in outputs

o Poor gradients

72

Benefits and Challenges

GANSs produce clear crisp results for many
problems

However, they have stability issues and are
difficult to train

o Mode Collapse or Mode Hopping

m Improvements can be made by using larger
batch sizes, increasing discriminator
expressivity, regularizing the discriminator
and generator, and other optimization
methods.

o Low variability/diversity in outputs

o Poor gradients

Data

Samples at Iteration 0

Samples at Iteration 2000

’

Samples at Iteration 4000

Disc Loss: 1.399 | Gen Loss: 0.715
Samples at Iteration 6000

Disc Loss: 1.253 | Gen Loss: 0.756
Samples at Iteration 8000

y

L X
\

N

Disc Loss: 1.187 | Gen Loss: 0.656

Disc Loss: 1.037 | Gen Loss: 1.480

Disc Loss: 0.996 | Gen Loss: 2.473

Illustration of Mode Collapse from Murphy (2023), Fig. 26.6, with code available at
https://github.com/probml/pyprobml/blob/master/notebooks/book2/26/gan_mixture_of

gaussians.ipynb.

73

Benefits and Challenges

GANSs produce clear crisp results for many

problems

However, they have stability issues and are
difficult to train

o Mode Collapse or Mode Hopping

Improvements can be made by using larger
batch sizes, increasing discriminator
expressivity, regularizing the discriminator
and generator, and other optimization
methods.

o Low variability/diversity in outputs

o Poor gradients as Discriminator gets better

1.0

0.8

0.6

0.4

0.2

0.0

0.6

0.4

0.2 1

0.0

Posteriors

T
Yy

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Gradients

- Uncertain
Certain

-10.0 ~7.5 -5.0 =25 0.0 2.5 5.0 7.5 10.0

74

Poll 4

Identify potential reasons a GAN could fail

Generator always generates the same face that fools the discriminator
The divergence may have poor derivatives preventing the model from learning
The discriminator may be random resulting in no derivatives

The discriminator may be too certain, resulting in no derivatives

75

Poll 4

Identify potential reasons a GAN could fail

Generator always generates the same face that fools the discriminator

The divergence may have poor derivatives preventing the model from learning
The discriminator may be random resulting in no derivatives

The discriminator may be too certain, resulting in no derivatives

76

LSS SN

Learning Objectives

Generative vs Discriminative models
Explicit vs Implicit models
The insufficiency of Maximum Likelihood Estimation for learning GANs

v Using a Discriminator network for losses
How GANSs train
Benefits and challenges of GANs

Learning paradigms (learning through comparison)

[Comparison by Ratios and the emergence of the Jensen Shannon Divergence
A Comparison by Differences and the use of Wasserstein distance

A Zero-sum vs Non-zero-sum

Variants of GANs

77

What is the learning paradigm?

Generator

G(2)

Generated
Data

—>

Discriminator

D(X)

Real Data
X

A

Real or
Fake?

What loss are we propagating back?

78

What loss are we actually using?

e KL Divergence?
P(X
KL(P,Q) = X x P(X)log (557)
Q(

KL(Q,P) = X5 Q(X)log (42

® Are there any problems with this?

79

What loss are we actually using?

KL Divergence?

KL(P,Q) = > x P(X)log (%)
KL(Q,P) =3 xQ(X)log (%)

Are there any problems with this?

(1) KLis not symmetric
(a) One sacrifices image quality
(b) One sacrifices image diversity
(2) We run into issues if either P or Q become zero

80

Jensen Shannon Divergence

Symmetric alternate to KL Divergence that removes issues with P or Q of 0.
Does not exaggerate instances where one of the distributions assigns 0 probability

JSD(P,Q) = $KL(P, %) + $ KL(Q, =5%)

81

Jensen Shannon Divergence

Symmetric alternate to KL Divergence that removes issues with P or Q of 0.

Does not exaggerate instances where one of the distributions assigns 0 probability

P
LKL(Q, Z2)

JSD(P,Q) = + KL(P,

0.4
0.3 4
0.2
0.1 4

0.0 A

—4-3-2-101 2 3 4
Distributions

1.00 A

0.75 A

0.50 4

0.25 A

0.00 4

P
2

l

\ — Dx(Pli@)
i\ — Du(QllP)

-4 -3-2-10 1 2
KL Divergence

3 4

0.08

0.06 +

0.04 4

0.02 4

0.00 +

— Dys(Pl|Q)

—-3'=3=2<=10 1 2 3 4§

JS Divergence

82

Jensen Shannon Divergence

Symmetric alternate to KL Divergence that removes issues with P or Q of 0.
Does not exaggerate instances where one of the distributions assigns 0 probability

JSD(P,Q) = $KL(P, %) + $ KL(Q, =5%)

This isn’t simply a convenience we take. It emerges as a natural consequence if we
want to compare the distributions of our generator and our true data using the ratio
of their density functions!

83

Jensen Shannon Divergence

Symmetric alternate to KL Divergence that removes issues with P or Q of 0.
Does not exaggerate instances where one of the distributions assigns 0 probability

JSD(P,Q) = 3KL(P, %) + 3 KL(Q, %)

This isn’t simply a convenience we take. It emerges as a natural consequence if we
want to compare the distributions of our generator and our true data using the ratio

SEEE

of their density functions!

84

Jensen Shannon Divergence

Recall we converted the ratio of density functions into a binary classification problem

Py(X) _ _D(X) L P
Pz(X) -~ 1-D(X) » Dle) = Px(X) + Pg(X)

85

Jensen Shannon Divergence

Recall we converted the ratio of density functions into a binary classification problem

Py(X) _ D(X) L Py
o) o AEROEE s s

P;(X) = 1-D(X)
Using a binary cross entropy loss for the parameterized discriminator, we have

Div=E |ylog D(X;60p) + (1 —y)log(l — D(X;6p))]

_ %EPX llog D(X;0p)] + %JEPG log(1 — D(X;0p))]

86

Jensen Shannon Divergence

Recall we converted the ratio of density functions into a binary classification problem

Py(x) D) R
X — o ™ PO mms am

Using a binary cross entropy loss for the parameterized discriminator, we have

Div =E [ylog D(X;60p) + (1 — y)log(1 — D(X;0p))]
= %EPX log D(X;6p)] + %]EPG log(1 — D(X;0p))]

Substituting in the optimal discriminator, we get an objective with the JSD in it!

Div =2JSD(Px, Pg) — log4

87

Jensen Shannon Divergence

Recall we converted the ratio of density functions into a binary classification problem

Px(X) _ D(X) L P
5 — T ™ PO mmamm

Using a binary cross entropy loss for the parameterized discriminator, we have

Div=E |ylog D(X;60p) + (1 —y)log(l — D(X;6p))]

— %EPX llog D(X;6p)] + %]EPG log(1 — D(X;6p))]

Substituting in the optimal discriminator, we get an objective with the JSD in it!
Div =2JSD(Px, Pg) — log4

This is a consequence of making a comparison
of the ratios between distributions

88

Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

® Learning by comparison (pretty inherent). However...

o We have focused on a comparison through ratios

o What about a comparison through differences?

® We have assumed a “zero-sum” adversarial structure...

o This need not be the case (and we have actually already seen a variation)

89

Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

® Learning by comparison (pretty inherent). However...

o We have focused on a comparison through ratios

o What about a comparison through differences?

® We have assumed a “zero-sum” adversarial structure...

o This need not be the case (and we have actually already seen a variation)

90

Learning by Comparison

Ratios

E.g., density ratios (we just did this) or
f-divergence

91

Learning by Comparison

Ratios

E.g., density ratios (we just did this) or
f-divergence

Poor behavior when the generator distribution
and true distribution do not have overlapping
support

o When the true distribution assigns a non-zero
probability but the generator assigns a zero
probability, the ratios in KL blow up, and the
JSD becomes log 2 no matter what.

92

Learning by Comparison

Ratios

E.g., density ratios (we just did this) or
f-divergence

Poor behavior when the generator distribution
and true distribution do not have overlapping
support

0 When the true distribution assigns a non-zero
probability but the generator assigns a zero
probability, the ratios in KL blow up, and the
JSD becomes log 2 no matter what.

JSD = 0.702 (base 2)

JSD = 1.000 (base 2)

JSD = 1.000 (base 2)

Generator Distribution

Learning by Comparison

Ratios

E.g., density ratios (we just did this) or
f-divergence

Poor behavior when the generator distribution
and true distribution do not have overlapping
support

o When the true distribution assigns a non-zero
probability but the generator assigns a zero
probability, the ratios in KL blow up, and the
JSD becomes log 2 no matter what.

94

Learning by Comparison

Ratios Differences
E.g., density ratios (we just did this) or e E.g., integral probability metrics (IPM) or
f-divergence moment matching
Poor behavior when the generator distribution e Wasserstein GANs (example of IPM)

and true distribution do not have overlapping Y .,
e Introduces “smoothness
support

o When the true distribution assigns a non-zero
probability but the generator assigns a zero
probability, the ratios in KL blow up, and the
JSD becomes log 2 no matter what.

95

Earth Mover’s
Distance or
Optimal Transport

How much distance
you need to cover to
move all the parts of
one distribution to
the other?

Wasserstein GAN

96

Earth Mover’s
Distance or
Optimal Transport

How much distance
you need to cover to
move all the parts of
one distribution to
the other?

Wasserstein GAN

Inf (Topic for real analysis):

Infimum, the closest thing to a lower bound you can get. (alt to a min)

/

W(Px,Pe) =__ inf Egy)~yaplllx =]

Yy € T'(Px,Pg)

/

T~

Mapping of which x goes to whichy

Distance between the points

97

Earth Mover’s
Distance or
Optimal Transport

How much distance
you need to cover to
move all the parts of

one distribution to

the other?

Wasserstein GAN

Inf (Topic for real analysis):
Infimum, the closest thing to a lower bound you can get. (alt to a min)

/

W (P, Pg) = ye ri(rllag,PG)]E(x,y)ﬂ'(x,y)[“x - y||]

_— T~

Mapping of which x goes to whichy Distance between the points

3 (6+6+6+6+2x9=42) 7igi9i10
L 2 6 | 6|3 1]1i0i0i2
e Teleleli et e

1 2 3 7 8 9 10 | oiol2: o

98

Earth Mover’s
Distance or
Optimal Transport

How much distance
you need to cover to
move all the parts of

one distribution to

the other?

Wasserstein GAN

Inf (Topic for real analysis):
Infimum, the closest thing to a lower bound you can get. (alt to a min)

/
W (Py,Pg) = ye I‘l(IIIJI;,PG) E(xy)~yeen [|1x = 1]
T \
Mapping of which x Tends to be Distance between the points
intractable
r3 B6+6+o+0+cxy=4g) 7 8 9 i10
R SR S . R
2 6 ! 6| 3 1[1i0i0i2
1i4i5 1|4|5]2 Yil2|oirioin
1 2 8 7 8 9 10 3l oioiz2io

99

Wasserstein GAN

Dealing with the intractable...
(for reference, don’t worry about the details here; a nice resource is here)

e Simplify with Kantorovich-Rubinstein inequality
® Find a 1-Lipschitz function using a network similar to a Discriminator (a “Critic”)
® Enforce the Lipschitz constraint

o Authors use clipping, but acknowledge that “Weight clipping is a clearly terrible way to enforce a
Lipschitz constraint”

100

https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Wasserstein GAN

1.0

— Density of real

—— Density of fake

—— GAN Discriminator
WGAN Critic

= 1
0.2} Vanishing gradients]
g in regular GAN

-8 -6 -4 -2 0 2 4 6 8

Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the discriminator of a minimax GAN saturates and results in vanishing
gradients. Our WGAN critic provides very clean gradients on all parts of the space.

Arjovsky et al. (2017), “Wasserstein GAN.” 101

Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

® Learning by comparison (pretty inherent). However...

o We have focused on a comparison through ratios

o What about a comparison through differences?

® We have assumed a “zero-sum” adversarial structure...

o This need not be the case (and we have actually already seen a variation)

102

Non-Zero-Sum Losses

Recall our min-max (zero-sum) learning objective:

Optimize: mén OS2 Eypy log D(X) + E..p,log(1 — D(G(2)))
Rather than have the generator minimize the probability of the discriminator labeling
its examples as fake, why not have it maximize the probability of the discriminator
classifying its examples as real (recall note on slide 51)

o Known as “non-saturating loss”
o Subtle difference, but enjoys better gradients early in training (when the generator is performing

poorly).
o Can still recover the zero-sum formulation if we want

103

Training GANs

for num epochs do:
- Hyperparameter.
Goodfellow et al. use k=1

{z®).. z®™} ~ P, (Sample m noise vectors)
{(x)., xm™} ~ P, (Sample m data points)

Lo o 230 [togD(x©) + log (1~ D (6(=)))

9o, < Vo, Lp
9D <_6D +aggD

for k steps do:

end for

~ P, (Sample m noise vectors)

{zM) .. zm@}
1 .
Le < ;Z?L log (1 -D (G (Z(l)))) In practice, this saturates early in
training. We can instead maximize log

gea « vec LG .
8 < 6 —a- go, (D(G(z2))) for better gradients.

end for

104

NSNS SSNS

Learning Objectives

Generative vs Discriminative models
Explicit vs Implicit models
The insufficiency of Maximum Likelihood Estimation for learning GANs

v Using a Discriminator network for losses
How GANSs train
Benefits and challenges of GANs

Learning paradigms (learning through comparison)

v/ Comparison by Ratios and the emergence of the Jensen Shannon Divergence
v' Comparison by Differences and the use of Wasserstein distance

v’ Zero-sum vs Non-zero-sum

Variants of GANs

105

Cycle GAN

StarGAN
Conditional GANs
BiGAN

...and many(!) more

GANSs in the wild

106

GANSs in the wild

Monet 7_ Photos Zebras T Horses Summer T Winter

§W//rﬂxd‘ 7/ '*‘

zebra —) horse summer — winter

Cycle GAN
StarGAN
Conditional GANs photo —?Monet
BiGAN

...and many(!) more

horse —» zebra

S

Van Gogh Cezanne B kiyo-e

Photograph

Image “translation.” While a vanilla GAN will not retain information about the
original image, Cycle GAN incorporates a reconstruction loss so that enough of
the original is kept (such that it can be retrieved using a second generator).

107

Zhu et al. (2017), “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.”

GANSs in the wild

(a) Cross-domain models (b) StarGAN

e Cycle GAN
e StarGAN
e Conditional GANs
. Figure 2. Comparison between cross-domain models and our pro-
[B|GAN posed model, StarGAN. (a) To handle multiple domains, cross-
domain models should be built for every pair of image domains.
[J ...dn d ma ny(!) more (b) StarGAN is capable of learning mappings among multiple do-

mains using a single generator. The figure represents a star topol-
ogy connecting multi-domains.

Image “translation.” Ability to learn mappings across multiple domains with a
single generator.

108

Choi et al. (2017), “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.”

GANSs in the wild

F(— Dixly) @ R
90000
\
Cycle GAN [00000® 0000
StarGAN o ™~
Conditional GANs “0000®
BIGAN (XX XX
...and many(!) more
([OOOOO] [OOOOO})

Given paired data (x with some corresponding y, such as a class label or set of
attributes), we can learn a conditional distribution.

109

Cycle GAN

StarGAN
Conditional GANs
BiGAN

...and many(!) more

@.,_@h

GANSs in the wild

features data

o)
T

Figure 1: The structure of Bidirectional Generative Adversarial Networks (BiGAN).

D)
@

Instead of mapping from latent space to feature space, we can map from the
feature space to the latent space. The authors find the learned feature
representations are useful for discriminative tasks among others.

110

NSNS SSNS

Learning Objectives

Generative vs Discriminative models
Explicit vs Implicit models
The insufficiency of Maximum Likelihood Estimation for learning GANs

v Using a Discriminator network for losses
How GANSs train
Benefits and challenges of GANs

Learning paradigms (learning through comparison)

v/ Comparison by Ratios and the emergence of the Jensen Shannon Divergence
v' Comparison by Differences and the use of Wasserstein distance

v’ Zero-sum vs Non-zero-sum

Variants of GANs

111

Sources

Arjovsky et al. (2017), “Wasserstein GAN,” Proceedings of Machine Learning Research.

Choi et al. (2017), “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.”
Donahue et al. (2017), “Adversarial Feature Learning,” ICLR.

Goodfellow et al. (2014), “Generative Adversarial Nets,” NeurlPS.

Hui, Jonathan, “GAN — Wasserstein GAN & WGAN-GP,” available at
https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6ala2aalb490.

Hui, Jonathan, “GAN — Why it is so hard to train Generative Adversarial Networks,” available at
https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b.
Mirza & Osindero (2014), “Conditional Generative Adversarial Nets.”

Murphy (2023), Probabilistic Machine Learning: Advanced Topics, MIT Press.

Theis et al. (2016), “A Note on the Evaluation of Generative Models,” NeurlPS.

Zhu et al. (2017), “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.”

112

