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Recap and Learning Objectives

● VAEs

● Flow Models

● Diffusion Models

● Today: GANs
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Learning Objectives

❏ Generative vs Discriminative models

❏ Explicit vs Implicit models

❏ The insufficiency of Maximum Likelihood Estimation for learning GANs
❏ Using a Discriminator network for losses

❏ How GANs train

❏ Benefits and challenges of GANs

❏ Learning paradigms (learning through comparison)
❏ Comparison by Ratios and the emergence of the Jensen Shannon Divergence

❏ Comparison by Differences and the use of Wasserstein distance

❏ Zero-sum vs Non-zero-sum

❏ Variants of GANs
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The Problem

From a large collection of images of faces, can a network 
learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?
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What are GANs

Generative Adversarial Networks
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What are GANs

Generative Adversarial Networks

Generative Model which generates data 
similar to training data (like VAEs)
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Discriminative vs Generative Models

Discriminative

● Learn the conditional distribution P(Y | X).

● Learns the decision boundary.

● Limited scope. Used for classification tasks.

● E.g., logistic regression, SVM, etc.

Generative

● Learns joint distribution P(X, Y)

○ Can also condition on covariates

● Learns the actual probability distribution of 
the data. 

○ This is a tougher problem, since it requires a 
deeper “understanding” of the distribution.

● Capable of both generative and discriminative 
tasks.

● E.g., Naïve Bayes, Gaussian Mixture Models, 
VAE, Diffusion, GANs.
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Generative Models

Goals and Tasks

● Generation

● Density Estimation

● Missing Value Imputation

● Structure Discovery

● Latent Space Interpolation + Arithmetic

● … and more

Evaluation

● Sample quality

● Sample diversity

● Generalization
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Generative Models

11

A lot…

How can we start to distinguish 

between model types?

● Can we evaluate a probability density 

function?

● Can we sample from them (quickly)?

● What training method can we use?

● Does it rely on a latent variable for 

generation?

● What architecture should we use?

VAEs

Flow
-Based

Diffusion

Autoregressive

GANsEnergy
-Based

Graphical 
Models

Gaussian 
Mixtures
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Explicit vs Implicit Models

Explicit

● Direct access to probability density function 

for the distribution.

● Can compute the exact probability of samples.

Implicit

● Ability to sample from distribution, but no 

access to the density function. 

13Figures from Murphy (2023), Fig. 26.1, with code available at 
https://github.com/probml/pyprobml/blob/master/notebooks/book2/26/genmo_types_implicit_explicit.ipynb



Explicit vs Implicit Models

Explicit

● Direct access to probability density function 

for the distribution.

● Can compute the exact probability of samples.

Implicit

● Ability to sample from distribution, but no 

access to the density function. 

14Figures from Murphy (2023), Fig. 26.1, with code available at 
https://github.com/probml/pyprobml/blob/master/notebooks/book2/26/genmo_types_implicit_explicit.ipynb

VAEs and GANs are 
implicit generative 

models



Poll 1

Q1: What is the difference between Discriminative models vs. Generative models?

● Discriminative models model the decision boundary between classes, whereas Generative models 
model class distributions

● Generative models model the decision boundary between classes, whereas Discriminative models 
model class distributions

Q2: What is the difference between Explicit and Implicit Generative models?

● Implicit models compute the probability of samples, whereas Explicit models only let you draw 
samples from the distribution

● Explicit models compute the probability of samples, whereas Implicit models only let you draw 
samples from the distribution
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Learning Objectives

✓ Generative vs Discriminative models

✓ Explicit vs Implicit models

❏ The insufficiency of Maximum Likelihood Estimation for learning GANs
❏ Using a Discriminator network for losses

❏ How GANs train

❏ Benefits and challenges of GANs

❏ Learning paradigms (learning through comparison)
❏ Comparison by Ratios and the emergence of the Jensen Shannon Divergence

❏ Comparison by Differences and the use of Wasserstein distance

❏ Zero-sum vs Non-zero-sum

❏ Variants of GANs
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Generative Models
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A lot…

How can we start to distinguish 
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● Can we evaluate a probability density 

function?

● Can we sample from them (quickly)?
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generation?
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The Problem

From a large collection of images of faces, can a network 
learn to generate new portrait?

Generate samples from the distribution of “face” images

How do we even characterize this distribution?
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What we have seen: VAE

Generator is a decoder of a VAE… how did we train this?

Z ~ P(Z)
Generator

G(Z)

Generated 
Data

X′
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What we have seen: VAE

Generator is a decoder of a VAE… how did we train this?

Z ~ P(Z)
Generator

G(Z; 𝜃)
X′ ~ P(X; 𝜃)+

e

This is a parametric model
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What we have seen: VAE

Generator is a decoder of a VAE… how did we train this?

By maximizing the likelihood of the data (MLE)

𝜃* = argmax𝜃   log P(X; 𝜃)

Z ~ P(Z)
Generator

G(Z; 𝜃)
X′ ~ P(X; 𝜃)+

e

This is a parametric model
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What we have seen: VAE

Generator is a decoder of a VAE… how did we train this?

By maximizing the likelihood of the data (MLE)

𝜃* = argmin𝜃   −log P(X; 𝜃)

Z ~ P(Z)
Generator

G(Z; 𝜃)
X′ ~ P(X; 𝜃)+

e

This is a parametric model
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What we have seen: VAE

Generator is a decoder of a VAE… how did we train this?

By maximizing the likelihood of the data (MLE)

𝜃* = argmin𝜃   −log P(X; 𝜃)

Z ~ P(Z)
Generator

G(Z; 𝜃)
X′ ~ P(X; 𝜃)+

e

This is a parametric model

Any issues here?
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Issues with Maximum Likelihood Estimation

● Likelihood can be difficult to compute
○ VAEs and GANs are implicit generative models, so we don’t directly have the likelihood

○ With VAEs, we were able to compute bounds on the log likelihood.

● Likelihood is not related to perceptual sample quality
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Issues with Maximum Likelihood Estimation

● Likelihood can be difficult to compute
○ VAEs and GANs are implicit generative models, so we don’t directly have the likelihood

○ With VAEs, we were able to compute bounds on the log likelihood.

● Likelihood is not related to perceptual sample quality
○  High Likelihood, Bad Samples

■ Consider a composite model: 0.01(Great Model) + 0.99 (Noise)

■ For high dimensional (D) data, the log likelihood of the composite model will be similar to that of 

the “Great Model,” but 99% of the samples will be noise.

26
Example from Murphy (2023), Section 20.4.1.3 and Theis et al., “A Note on the Evaluation of Generative Models.”



Issues with Maximum Likelihood Estimation

● Likelihood can be difficult to compute
○ VAEs and GANs are implicit generative models, so we don’t directly have the likelihood

○ With VAEs, we were able to compute bounds on the log likelihood.

● Likelihood is not related to perceptual sample quality
○  Low Likelihood, Good Samples

■ Consider a Gaussian Mixture Model centered on training images

■ There may be low noise, meaning the samples will look good, however the model may overfit to 

the training data and have a poor likelihood on the test set

27
Example from Murphy (2023), Section 20.4.1.3 and Theis et al., “A Note on the Evaluation of Generative Models.”



Replace the negative log likelihood with a more relevant loss

Z ~ P(Z)
Generator

G(Z; 𝜃)
X′ ~ P(X; 𝜃)+

e

Does it look like a 
face?

(“DILLAF”)
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Poll 2

Q1: VAEs are implicit Generative models, True or False
● True
● False

Q2: Why would likelihood maximization not result in a model that produces more face-like outputs (for 
a face-generating VAE)?

● The model can maximize the likelihood of training data without any assurance about what other 
(non-training) samples look like

● The model is more likely to run into poor local optima
● The model only captures the mode of the distribution of faces, whereas most face-like images are in 

the tail of the distribution

Q3: The face-generating model is more likely to generate face-like images if it were trained with a 
differentiable loss function that explicitly evaluates if the outputs look like faces or note, True or False

● True
● False

29



Poll 2

Q1: VAEs are implicit Generative models, True or False
● True
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a face-generating VAE)?
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the tail of the distribution
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● True
● False
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Replace the negative log likelihood with a more relevant loss

Z ~ P(Z)
Generator

G(Z; 𝜃)
X′ ~ P(X; 𝜃)+

e

What is a good “DILLAF” loss?

Does it look like a 
face?

(DILLAF)

31



Replace the negative log likelihood with a more relevant loss

Z ~ P(Z)
Generator

G(Z; 𝜃)
X′ ~ P(X; 𝜃)+

e

What is a good “DILLAF” loss?

Enter: GANs

Does it look like a 
face?

(DILLAF)
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What are GANs

Generative Adversarial Networks

Generative Model which generates data 
similar to training data (like VAEs for 

example)
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Adversarial Training using two competing 
(adversarial) networks that are trying to 

beat each other

What are GANs

Generative Adversarial Networks

Generative Model which generates data 
similar to training data (like VAEs for 

example)
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Adversarial Training using two competing 
(adversarial) networks that are trying to 

beat each other

What are GANs

Generative Adversarial Networks

Generative Model which generates data 
similar to training data (like VAEs for 

example)

Deep Neural Networks
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Adversarial Training using two competing 
(adversarial) networks that are trying to 

beat each other

What are GANs

Generative Adversarial Networks

Generative Model which generates data 
similar to training data (like VAEs for 

example)

Deep Neural Networks

Goal is to model the training 
data distribution P(X) so we 

can generate new samples
We use a “Generator” and a 

“Discriminator” to train 
(where the Discriminator is our 

“DILLAF” loss!)
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How GANs work

Z ~ P(Z)
Generator

G(Z)

Generated 
Data

X′

Discriminator

D(X)

Real Data

X

Real or 
Fake?
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How GANs work

Z ~ P(Z)
Generator

G(Z)

Generated 
Data

X′
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D(X)

Real Data

X

Real or 
Fake?

39

Discriminator

D(X)



The Generator

● The generator produces realistic looking X’ = G(z) from the latent vector Z
○ Generator input X can be sampled from a known prior (e.g., a standard Gaussian)

● Goal: We want the generated distribution PG(X) to match the true data distribution PX(X)

○ PG(X) is just easier notation for PX’ (X), which is the probability that a generated 
sample takes on the value X

Z ~ P(Z)
Generator

G(Z)

Generated 
Data

X’
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The Discriminator

● The Discriminator D(X) is trained to distinguish between the real and generated (fake) data

○ Specifically, data produced by the generator

○ If a perfect discriminator is fooled, the real and generated data cannot be distinguished

Generated 
Data

X′

Discriminator

D(X)

Real Data

X

Real or 
Fake?
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Training GANs

Both Generator and Discriminator need to 
be trained together

Z ~ P(Z)
Generator

G(Z)

Generated 
Data

X′

Discriminator

D(X)

Real Data

X

Real or 
Fake?
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But first, some notation

x Data sample

z Latent input noise vector

PX Distribution of real data

PG Distribution of generated data

PZ Distribution of latent input noise vector

G(z; 𝜃G) Generator (the function itself)

D(x; 𝜃D) Discriminator (the function itself)

G(z) or x′ Generator output

D(x) or D(G(z)) Discriminator output
43



Training the Discriminator

● Fed real and synthetic examples

● Aims to minimize classification loss → Minimize error between actual and predicted

● D(x) = 1 for real faces, D(x) = 0 for synthetic faces

Generated 
Data

X′

Discriminator

D(X)

Real Data

X

Real or 
Fake?
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Training the Discriminator

● Fed real and synthetic examples

● Aims to minimize classification loss → Minimize error between actual and predicted

● D(x) = 1 for real faces, D(x) = 0 for synthetic faces

○ Maximize log (D(X)) for real faces

○ Maximize log (1 − D(X′)) for synthetic faces

Generated 
Data

X′

Discriminator

D(X)

Real Data

X

Real or 
Fake?
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Training the Generator

● The discriminator loss is propagated back to the generator

● Aims to maximize the discriminator loss (we want to “fool” the discriminator)

● Trained such that D(G(Z)) = 1 (i.e., 1 − D(G(Z)) = 0)

○ Minimize log (1 − D(G(Z))

Z ~ P(Z)
Generator

G(Z)

Generated 
Data

X′
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The GAN formulation

● Discriminator

○ For real data X, maximize log (D(X))

○ For synthetic data, maximize log (1 − D(X′))

● Generator

○ Minimize log (1 − D(X′))

47



● The original GAN formulation is therefore a min-max optimization

● Objectives

○ D: D(X) = 1 and D(G(Z)) = 0

○ G: D(G(Z)) = 1

The GAN formulation

Optimize: 

48



Training GANs

If the discriminator is undertrained, it provides sub-optimal feedback to the generator

If discriminator is overtrained, there is no local feedback for marginal improvements

Generator

G(Z)

Discriminator

D(X)

Step 1:
Train D using G

Step 2:
Train G using D

Optimize: 
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Training GANs

The discriminator is not needed after convergence

Generator

G(Z)

Discriminator

D(X)

Step 1:
Train D using G

Step 2:
Train G using D

Optimize: 

50



Training GANs

 

Goodfellow et al. (2014), Generative Adversarial Networks.

51

Hyperparameter. 
Goodfellow et al. use k = 1

In practice, this saturates early in 
training. We can instead maximize log 
(D(G(z))) for better gradients. 



Poll 3

Q1: When training a GAN, which component must you train first

● The discriminator

● The generator

Q2: Which component is updated more frequently

● The discriminator

● The generator
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Poll 3

Q1: When training a GAN, which component must you train first

● The discriminator

● The generator

Q2: Which component is updated more frequently

● The discriminator

● The generator

The discriminator is the “DILLAF” loss. Training the loss is more important, 
since this is what guides the training!
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Learning Objectives

✓ Generative vs Discriminative models

✓ Explicit vs Implicit models

✓ The insufficiency of Maximum Likelihood Estimation for learning GANs
✓ Using a Discriminator network for losses

❏ How GANs train

❏ Benefits and challenges of GANs

❏ Learning paradigms (learning through comparison)
❏ Comparison by Ratios and the emergence of the Jensen Shannon Divergence

❏ Comparison by Differences and the use of Wasserstein distance

❏ Zero-sum vs Non-zero-sum

❏ Variants of GANs
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The GAN formulation

● How does this work when each piece is optimized?

○ We will consider the optimal Discriminator first…

○ Then the optimal Generator

55



The optimal discriminator (binary classification)

The 
distributions

The posterior probability of the 
classes for any instance 𝑥 = 𝑋  is:
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The optimal discriminator (binary classification)

The 
distributions

The posterior

The posterior probability of the 
classes for any instance 𝑥 = 𝑋  is:

0.5
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The optimal discriminator (binary classification)

The 
distributions

The posterior
0.5

Assuming a uniform prior, the 
optimal discriminator in our case 

will be a Bayesian Classifier
58



Iterative Training

Recall our training procedure:

● Start with a training distribution and a generator distribution that is untrained
● Fit a discriminator
● Update the generator to “fool” the discriminator
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Iterative Training

Recall our training procedure:

● Start with a training distribution and a generator distribution that is untrained
● Fit a discriminator
● Update the generator to “fool” the discriminator
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Iterative Training

Recall our training procedure:

● In the limit, the Generator’s distribution will sit perfectly on the true 
distribution, and the Discriminator will be random.

● The derivative of D(X) wrt X will be zero → No further updates
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Min-Max Stationary Point

● There exists a stationary point…
○ If the generated data exactly matches the real data (discriminator outputs 0.5 for all inputs)

○ If the discriminator outputs 0.5, the gradients for the generator are flat, so the generator does not 

learn

○ This is true of a perfect discriminator paired with a very good generator. However, it is also true of a 

random discriminator. 

● Stationary points need not be stable. 
○ Depends on the exact GAN formulation

○ The generator may overshoot or oscillate around the optimum

○ A discriminator with unlimited capacity can still assign an arbitrarily large distance to 2 similar 

distributions.
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Benefits and Challenges

● GANs produce clear crisp results for many 
problems

● However, they have stability issues and are 
difficult to train

○ Mode Collapse or Mode Hopping

■ Improvements can be made by using larger 
batch sizes, increasing discriminator 
expressivity, regularizing the discriminator 
and generator, and other optimization 
methods.

○ Low variability/diversity in outputs

○ Poor gradients
71



Benefits and Challenges

● GANs produce clear crisp results for many 
problems

● However, they have stability issues and are 
difficult to train

○ Mode Collapse or Mode Hopping

■ Improvements can be made by using larger 
batch sizes, increasing discriminator 
expressivity, regularizing the discriminator 
and generator, and other optimization 
methods.

○ Low variability/diversity in outputs

○ Poor gradients
72



Benefits and Challenges

● GANs produce clear crisp results for many 
problems

● However, they have stability issues and are 
difficult to train

○ Mode Collapse or Mode Hopping

■ Improvements can be made by using larger 
batch sizes, increasing discriminator 
expressivity, regularizing the discriminator 
and generator, and other optimization 
methods.

○ Low variability/diversity in outputs

○ Poor gradients

Illustration of Mode Collapse from Murphy (2023), Fig. 26.6, with code available at 
https://github.com/probml/pyprobml/blob/master/notebooks/book2/26/gan_mixture_of_
gaussians.ipynb.
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Benefits and Challenges

● GANs produce clear crisp results for many 
problems

● However, they have stability issues and are 
difficult to train

○ Mode Collapse or Mode Hopping

■ Improvements can be made by using larger 
batch sizes, increasing discriminator 
expressivity, regularizing the discriminator 
and generator, and other optimization 
methods.

○ Low variability/diversity in outputs

○ Poor gradients as Discriminator gets better
74



Poll 4

Identify potential reasons a GAN could fail

● Generator always generates the same face that fools the discriminator

● The divergence may have poor derivatives preventing the model from learning

● The discriminator may be random resulting in no derivatives

● The discriminator may be too certain, resulting in no derivatives
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Learning Objectives

✓ Generative vs Discriminative models

✓ Explicit vs Implicit models

✓ The insufficiency of Maximum Likelihood Estimation for learning GANs
✓ Using a Discriminator network for losses

✓ How GANs train

✓ Benefits and challenges of GANs

❏ Learning paradigms (learning through comparison)
❏ Comparison by Ratios and the emergence of the Jensen Shannon Divergence

❏ Comparison by Differences and the use of Wasserstein distance

❏ Zero-sum vs Non-zero-sum

❏ Variants of GANs
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What is the learning paradigm?

78

What loss are we propagating back?



What loss are we actually using?

● KL Divergence?

● Are there any problems with this?
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What loss are we actually using?

● KL Divergence?

● Are there any problems with this?

(1) KL is not symmetric
(a) One sacrifices image quality
(b) One sacrifices image diversity

(2) We run into issues if either P or Q become zero

80



Jensen Shannon Divergence

● Symmetric alternate to KL Divergence that removes issues with P or Q of 0.

● Does not exaggerate instances where one of the distributions assigns 0 probability 
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Jensen Shannon Divergence

● Symmetric alternate to KL Divergence that removes issues with P or Q of 0.

● Does not exaggerate instances where one of the distributions assigns 0 probability 

82

Distributions KL Divergence JS Divergence

Jonathan Hui, “GAN — Why it is so hard to train Generative Adversarial Networks!” https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b



Jensen Shannon Divergence

● Symmetric alternate to KL Divergence that removes issues with P or Q of 0.

● Does not exaggerate instances where one of the distributions assigns 0 probability 

● This isn’t simply a convenience we take. It emerges as a natural consequence if we 

want to compare the distributions of our generator and our true data using the ratio 

of their density functions!

83



Jensen Shannon Divergence

● Symmetric alternate to KL Divergence that removes issues with P or Q of 0.

● Does not exaggerate instances where one of the distributions assigns 0 probability 

● This isn’t simply a convenience we take. It emerges as a natural consequence if we 

want to compare the distributions of our generator and our true data using the ratio 

of their density functions!
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Jensen Shannon Divergence

● Recall we converted the ratio of density functions into a binary classification problem
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Jensen Shannon Divergence

● Recall we converted the ratio of density functions into a binary classification problem

● Using a binary cross entropy loss for the parameterized discriminator, we have

● Substituting in the optimal discriminator, we get an objective with the JSD in it!
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Jensen Shannon Divergence

● Recall we converted the ratio of density functions into a binary classification problem

● Using a binary cross entropy loss for the parameterized discriminator, we have

● Substituting in the optimal discriminator, we get an objective with the JSD in it!

This is a consequence of making a comparison 
of the ratios between distributions

88



Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

● Learning by comparison (pretty inherent). However…

○ We have focused on a comparison through ratios

○ What about a comparison through differences?

● We have assumed a “zero-sum” adversarial structure…

○ This need not be the case (and we have actually already seen a variation)

89
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Learning by Comparison

Ratios

● E.g., density ratios (we just did this) or 

f-divergence
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and true distribution do not have overlapping 
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○ When the true distribution assigns a non-zero 

probability but the generator assigns a zero 

probability, the ratios in KL blow up, and the 

JSD becomes log 2 no matter what.
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Learning by Comparison

Ratios

● E.g., density ratios (we just did this) or 

f-divergence

● Poor behavior when the generator distribution 

and true distribution do not have overlapping 

support

○ When the true distribution assigns a non-zero 

probability but the generator assigns a zero 

probability, the ratios in KL blow up, and the 

JSD becomes log 2 no matter what.

Differences

● E.g., integral probability metrics (IPM) or 

moment matching

● Wasserstein GANs (example of IPM)

● Introduces “smoothness” 
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Wasserstein GAN
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Earth Mover’s 
Distance or 

Optimal Transport

How much distance 
you need to cover to 
move all the parts of 
one distribution to 

the other?

Jonathan Hui, “GAN — Wasserstein GAN & WGAN-GP”; Arjovsky et al. (2017), “Wasserstein GAN.
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one distribution to 

the other?

 

Mapping of  which x goes to which y Distance between the points

Inf (Topic for real analysis):
Infimum, the closest thing to a lower bound you can get. (alt to a min)

Jonathan Hui, “GAN — Wasserstein GAN & WGAN-GP”; Arjovsky et al. (2017), “Wasserstein GAN.
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Earth Mover’s 
Distance or 

Optimal Transport

How much distance 
you need to cover to 
move all the parts of 
one distribution to 
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Mapping of  which x goes to which y Distance between the points

Inf (Topic for real analysis):
Infimum, the closest thing to a lower bound you can get. (alt to a min)

Jonathan Hui, “GAN — Wasserstein GAN & WGAN-GP”; Arjovsky et al. (2017), “Wasserstein GAN.

Tends to be 
intractable



Wasserstein GAN

Dealing with the intractable…

(for reference, don’t worry about the details here; a nice resource is here)

● Simplify with Kantorovich-Rubinstein inequality

● Find a 1-Lipschitz function using a network similar to a Discriminator (a “Critic”)

● Enforce the Lipschitz constraint
○ Authors use clipping, but acknowledge that “Weight clipping is a clearly terrible way to enforce a 

Lipschitz constraint”

100

https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490


Wasserstein GAN

101Arjovsky et al. (2017), “Wasserstein GAN.”



Let’s take a quick step back

What are the “decisions” we are making here vs what are the “inherent” elements?

● Learning by comparison (pretty inherent). However…

○ We have focused on a comparison through ratios

○ What about a comparison through differences?

● We have assumed a “zero-sum” adversarial structure…

○ This need not be the case (and we have actually already seen a variation)
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Non-Zero-Sum Losses

● Recall our min-max (zero-sum) learning objective:

● Rather than have the generator minimize the probability of the discriminator labeling 

its examples as fake, why not have it maximize the probability of the discriminator 

classifying its examples as real (recall note on slide 51)
○ Known as “non-saturating loss”

○ Subtle difference, but enjoys better gradients early in training (when the generator is performing 

poorly). 

○ Can still recover the zero-sum formulation if we want
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Optimize: 



Training GANs

 

Goodfellow et al. (2014), Generative Adversarial Networks.
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Hyperparameter. 
Goodfellow et al. use k = 1

In practice, this saturates early in 
training. We can instead maximize log 
(D(G(z))) for better gradients. 



Learning Objectives

✓ Generative vs Discriminative models

✓ Explicit vs Implicit models

✓ The insufficiency of Maximum Likelihood Estimation for learning GANs
✓ Using a Discriminator network for losses

✓ How GANs train

✓ Benefits and challenges of GANs

✓ Learning paradigms (learning through comparison)
✓ Comparison by Ratios and the emergence of the Jensen Shannon Divergence

✓ Comparison by Differences and the use of Wasserstein distance

✓ Zero-sum vs Non-zero-sum

❏ Variants of GANs
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GANs in the wild

● Cycle GAN

● StarGAN

● Conditional GANs

● BiGAN

● …and many(!) more
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Image “translation.” While a vanilla GAN will not retain information about the 
original image, Cycle GAN incorporates a reconstruction loss so that enough of 

the original is kept (such that it can be retrieved using a second generator).

Zhu et al. (2017), “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.”



GANs in the wild

● Cycle GAN

● StarGAN

● Conditional GANs

● BiGAN

● …and many(!) more
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Image “translation.” Ability to learn mappings across multiple domains with a 
single generator. 

Choi et al. (2017), “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation.”



GANs in the wild

● Cycle GAN

● StarGAN

● Conditional GANs

● BiGAN

● …and many(!) more
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Given paired data (x with some corresponding y, such as a class label or set of 
attributes), we can learn a conditional distribution.

Mirza & Osindero (2014), “Conditional Generative Adversarial Nets.”



GANs in the wild

● Cycle GAN

● StarGAN

● Conditional GANs

● BiGAN

● …and many(!) more
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Instead of mapping from latent space to feature space, we can map from the 
feature space to the latent space. The authors find the learned feature 

representations are useful for discriminative tasks among others.

Donahue et al. (2017), “Adversarial Feature Learning.”
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