Neural Networks Learning the network: Part 3

11-785, Spring 2024
Lecture 5

Training neural nets through Empirical Risk Minimization: Problem Setup

- Given a training set of input-output pairs

$$
\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right), \ldots,\left(X_{T}, d_{T}\right)
$$

- The divergence on the $\mathrm{i}^{\text {th }}$ instance is $\operatorname{div}\left(Y_{i}, d_{i}\right)$

$$
-Y_{i}=f\left(X_{i} ; W\right)
$$

- The loss (empirical risk)

$$
\operatorname{Loss}(W)=\frac{1}{T} \sum_{i} \operatorname{div}\left(Y_{i}, d_{i}\right)
$$

- Minimize Loss w.r.t $\left\{w_{i j}^{(k)}, b_{j}^{(k)}\right\}$ using gradient descent

Notation

- The input layer is the $0^{\text {th }}$ layer
- We will represent the output of the i -th perceptron of the k^{th} layer as $y_{i}^{(k)}$
- Input to network: $y_{i}^{(0)}=x_{i}$
- Output of network: $y_{i}=y_{i}^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k -1th layer and the jth unit of the k -th layer as $w_{i j}^{(k)}$
- The bias to the jth unit of the k-th layer is $b_{j}^{(k)}$

Recap: Gradient Descent Algorithm

- Initialize: To minimize any function Loss(W) w.r.t W

$$
\begin{aligned}
& -W^{0} \\
& -k=0
\end{aligned}
$$

- do

$$
\begin{aligned}
& -W^{k+1}=W^{k}-\eta^{k} \nabla \operatorname{Loss}\left(W^{k}\right)^{T} \\
& -k=k+1
\end{aligned}
$$

- while $\left|\operatorname{Loss}\left(W^{k}\right)-\operatorname{Loss}\left(W^{k-1}\right)\right|>\varepsilon$

Recap: Gradient Descent Algorithm

- In order to minimize $L(W)$ w.r.t. W
- Initialize:
$-W^{0}$
$-k=0$
- do
- For every component i
- $W_{i}^{k+1}=W_{i}^{k}-\eta^{k} \frac{\partial L}{\partial W_{i}} \quad$ Explicitly stating it by component
$-k=k+1$
- while $\left|L\left(W^{k}\right)-L\left(W^{k-1}\right)\right|>\varepsilon$

Training Neural Nets through Gradient Descent

Total training Loss:

$$
\operatorname{Loss}=\frac{1}{\boldsymbol{T}} \sum_{\boldsymbol{t}} \operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right)
$$

- Gradient descent algorithm:
- Initialize all weights and biases $\left\{w_{i j}^{(k)}\right\}^{\text {represented as a weight }}$
- Using the extended notation: the bias is also a weight
- Do:
- For every layer k for all i, j, update:

$$
w_{i, j}^{(k)}=w_{i, j}^{(k)}-\eta \frac{d \operatorname{Loss}}{d w_{i, j}^{(k)}}
$$

- Until Loss has converged

Training Neural Nets through Gradient Descent

Total training Loss:

$$
\operatorname{Loss}=\frac{1}{\boldsymbol{T}} \sum_{\boldsymbol{t}} \operatorname{Div}\left(\boldsymbol{Y}_{\boldsymbol{t}}, \boldsymbol{d}_{\boldsymbol{t}}\right)
$$

- Gradient descent algorithm:
- Initialize all weights and biases $\left\{w_{i j}^{(k)}\right\}^{\text {represented as a weight }}$
- Using the extended notation: the bias is also a weight
- Do:
- For every layer k for all i, j, update:

$$
w_{i, j}^{(k)}=w_{i, j}^{(k)}-\eta \frac{d L o s s}{d w_{i, j}^{(k)}}
$$

- Until Loss has converged

The derivative

Total training Loss:

$$
\operatorname{Loss}=\frac{\mathbf{1}}{\boldsymbol{T}} \sum_{\boldsymbol{t}} \operatorname{Div}\left(\boldsymbol{Y}_{\boldsymbol{t}}, \boldsymbol{d}_{\boldsymbol{t}}\right)
$$

- Computing the derivative

Total derivative:

$$
\frac{d \operatorname{Loss}}{d w_{i, j}^{(k)}}=\frac{\mathbf{1}}{\boldsymbol{T}} \sum_{\boldsymbol{t}} \frac{d \operatorname{Div}\left(\boldsymbol{Y}_{\boldsymbol{t}}, \boldsymbol{d}_{\boldsymbol{t}}\right)}{d w_{i, j}^{(k)}}
$$

The derivative

Total training Loss:

$$
\operatorname{Loss}=\frac{\mathbf{1}}{\boldsymbol{T}} \sum_{\boldsymbol{t}} \operatorname{Div}\left(\boldsymbol{Y}_{\boldsymbol{t}}, \boldsymbol{d}_{\boldsymbol{t}}\right)
$$

- Computing the derivative

Total derivative:

$$
\left.\frac{d \operatorname{Loss}}{d w_{i, j}^{(k)}}=\frac{\mathbf{1}}{\boldsymbol{T}} \sum_{\boldsymbol{t}} \frac{d \operatorname{Div}\left(\boldsymbol{Y}_{\boldsymbol{t}}, \boldsymbol{d}_{\boldsymbol{t}}\right)}{d w_{i, j}^{(k)}}\right)
$$

- So we must first figure out how to compute the derivative of divergences of individual training inputs

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$
y=f(x)
$$

with derivative
$\frac{d y}{d x}$
the following must hold for sufficiently small Δx

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$
y=f(x)
$$

with derivative
$\frac{d y}{d x}$
the following must hold for sufficiently small Δx

Introducing the "influence" diagram: x influences y

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$
y=f(x)
$$

with derivative
$\frac{d y}{d x}$
the following must hold for sufficiently small Δx

Introducing the "influence" diagram: x influences y

The derivative graph: The edge carries the derivative.

Node and edge weights multiply

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{M}\right)
$$

What is the influence diagram relating $x_{1}, x_{2}, \ldots, x_{M}$ and y ?

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{M}\right)
$$

The derivative diagram?

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{M}\right)
$$

with partial derivatives

$$
\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \ldots, \frac{\partial y}{\partial x_{M}}
$$

Calculus Refresher: Basic rules of calculus

For any differentiable function

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{M}\right)
$$

with partial derivatives

$$
\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \ldots, \frac{\partial y}{\partial x_{M}}
$$

the following must hold for sufficiently small $\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{M}$

$$
\Delta y \approx \frac{\partial y}{\partial x_{1}} \Delta x_{1}+\frac{\partial y}{\partial x_{2}} \Delta x_{2}+\cdots+\frac{\partial y}{\partial x_{M}} \Delta x_{M}
$$

Calculus Refresher: Chain rule

For any nested function $y=f(g(x))$

Calculus Refresher: Chain rule

For any nested function $y=f(g(x))$

$$
\frac{d y}{d x}=\frac{d y}{d g(x)} \frac{d g(x)}{d x}
$$

$$
x \longrightarrow g \longrightarrow y
$$

$$
\Delta x \xrightarrow{\frac{d g}{d x}} \Delta g \xrightarrow{\frac{d y}{d g}} \Delta y
$$

$$
\Delta y=\frac{d y}{d g(x)} \frac{d g(x)}{d x} \Delta x
$$

Distributed Chain Rule: Influence Diagram

$$
y=f\left(g_{1}(x), g_{1}(x), \ldots, g_{M}(x)\right)
$$

Shorthand: $\quad z_{i}=g_{i}(x)$

Distributed Chain Rule: Influence Diagram

- x affects y through each of $g_{1} \ldots g_{M}$

Distributed Chain Rule: Influence Diagram

$$
y=f\left(g_{1}(x), g_{1}(x), \ldots, g_{M}(x)\right)
$$

Calculus Refresher: Chain rule

summary

$$
\begin{array}{r}
\text { For } y=f\left(z_{1}, z_{2}, \ldots, z_{M}\right) \\
\quad \text { where } z_{i}=g_{i}(x)
\end{array}
$$

$$
\Delta y=\sum_{i} \frac{\partial y}{\partial z_{i}} \Delta z_{i} \quad \Delta z_{i}=\frac{d z_{i}}{d x} \Delta x
$$

$$
\frac{d y}{d x}=\frac{\partial y}{\partial z_{1}} \frac{d z_{1}}{d x}+\frac{\partial y}{\partial z_{2}} \frac{d z_{2}}{d x}+\cdots+\frac{\partial y}{\partial z_{M}} \frac{d z_{M}}{d x}
$$

Calculus Refresher: Chain rule summary

For any nested function $l=f(y)$ where $y=g(z)$

$$
\frac{d l}{d z}=\frac{d l}{d y} \frac{d y}{d z}
$$

For $l=f\left(z_{1}, z_{2}, \ldots, z_{M}\right)$ where $z_{i}=g_{i}(x)$

$$
\frac{d l}{d x}=\frac{\partial l}{\partial z_{1}} \frac{d z_{1}}{d x}+\frac{\partial l}{\partial z_{2}} \frac{d z_{2}}{d x}+\cdots+\frac{\partial l}{\partial z_{M}} \frac{d z_{M}}{d x}
$$

Our problem for today

- How to compute $\frac{d \operatorname{Div}(Y, \boldsymbol{d})}{d w_{i, j}^{(k)}}$ for a single data instance

Poll 1 (@338, @339)

1. The chain rule of derivatives can be derived from the basic definition of derivatives, $d y=$ derivative

* dx , true or false
- True
- False

2. Which of the following is true of the "influence diagram"

- It graphically shows all paths (and variables) through which one variable influences the other
- The derivative of the influenced (outcome) variable with respect to the influencer (input) variable must be summed over all outgoing paths from the influencer variable

Poll 1

1. The chain rule of derivatives can be derived from the basic definition of derivatives, $d y=$ derivative * dx , true or false

- True (correct)
- False

2. Which of the following is true of the "influence diagram"

- It graphically shows all paths (and variables) through which one variable influences the other (true)
- The derivative of the influenced (outcome) variable with respect to the influencer (input) variable must be summed over all outgoing paths from the influencer variable (true)

A first closer look at the network

- Showing a tiny 2-input network for illustration
- Actual network would have many more neurons and inputs

A first closer look at the network

- Showing a tiny 2-input network for illustration
- Actual network would have many more neurons and inputs
- Explicitly separating the affine function of inputs from the activation

A first closer look at the network

- Showing a tiny 2-input network for illustration
- Actual network would have many more neurons and inputs
- Expanded with all weights shown
- Let's label the other variables too...

Computing the derivative for a single input

Computing the derivative for a single input

Computing the gradient

- Note: computation of the derivative $\frac{\boldsymbol{d D i v}(Y, \boldsymbol{d})}{\boldsymbol{d} w_{i, j}^{(k)}}$ requires intermediate and final output values of the network in response to the input

The "forward pass"

$$
y^{(0)}=x
$$

We will refer to the process of computing the output from an input as the forward pass

We will illustrate the forward pass in the following slides

The "forward pass"

$$
y^{(0)}=x
$$

Setting $y_{i}^{(0)}=x_{i}$ for notational convenience
Assuming $w_{0 j}^{(k)}=b_{j}^{(k)}$ and $y_{0}^{(k)}=1$-- assuming the bias is a weight and extending the output of every layer by a constant 1 , to account for the biases

The "forward pass"
 \section*{$$
y^{(0)}=x
$$

}
...

$$
Z_{1}^{(1)}=\sum_{i} w_{i 1}^{(1)} y_{i}^{(0)}
$$

$$
y_{j}^{(N-1)}=f_{N-1}\left(z_{j}^{(N-1)}\right) z_{j}^{(N)}=\sum_{i} w_{i j}^{(N)} y_{i}^{(N-1)}
$$

$$
\boldsymbol{y}^{(N)}=f_{N}\left(\mathbf{z}^{(N)}\right)
$$

$y^{(0)}=x \quad$ Forward Computation

ITERATE FOR $\mathrm{k}=1: \mathrm{N}$ for $\mathrm{j}=1$:layer-width

$$
y_{i}^{(0)}=x_{i}
$$

$$
\begin{aligned}
& z_{j}^{(k)}=\sum_{i} w_{i j}^{(k)} y_{i}^{(k-1)} \\
& y_{j}^{(k)}=f_{k}\left(z_{j}^{(k)}\right)
\end{aligned}
$$

Forward "Pass"

- Input: D dimensional vector $\mathbf{x}=\left[x_{j}, j=1 \ldots D\right]$
- Set:
- $D_{0}=D$, is the width of the $0^{\text {th }}$ (input) layer
$-y_{j}^{(0)}=x_{j}, j=1 \ldots D ; \quad y_{0}^{(k=1 \ldots N)}=x_{0}=1$
- For layer $k=1 \ldots N$
- For $j=1 \ldots D_{k} \quad D_{k}$ is the size of the k th layer
- $z_{j}^{(k)}=\sum_{i=0}^{D_{k-1}} w_{i, j}^{(k)} y_{i}^{(k-1)}$
- $y_{j}^{(k)}=f_{k}\left(z_{j}^{(k)}\right)$
- Output:

$$
-Y=y_{j}^{(N)}, j=1 . . D_{N}
$$

Computing derivatives

We have computed all these intermediate values in the forward computation

We must remember them - we will need them to compute the derivatives

Computing derivatives

First, we compute the divergence between the output of the net $y=y^{(N)}$ and the desired output d

Computing derivatives

We then compute $\nabla_{Y^{(N)}} \operatorname{div}($.$) the derivative of the divergence w.r.t. the final output of the$ network $\mathrm{y}^{(\mathrm{N})}$

Computing derivatives

We then compute $\nabla_{Y^{(N)}} \operatorname{div}($.$) the derivative of the divergence w.r.t. the final output of the$ network $y^{(N)}$

We then compute $\nabla_{Z^{(N)}} \operatorname{div}($.$) the derivative of the divergence w.r.t. the pre-activation affine$ combination $z^{(N)}$ using the chain rule

Computing derivatives

Continuing on, we will compute $\nabla_{W^{(N)}} \operatorname{div}($.$) the derivative of the divergence with respect$ to the weights of the connections to the output layer

Computing derivatives

Continuing on, we will compute $\nabla_{W^{(N)}} \operatorname{div}($.$) the derivative of the divergence with respect$ to the weights of the connections to the output layer

Then continue with the chain rule to compute $\nabla_{Y^{(N-1)}} \operatorname{div}($.$) the derivative of the$ divergence w.r.t. the output of the N -1th layer

Computing derivatives

We continue our way backwards in the order shown

$$
\nabla_{Z(N-1)} \operatorname{div}(.)
$$

We continue our way backwards in the order shown

$$
\nabla_{W^{(N-1)}} \operatorname{div}(.)
$$

$$
y^{(0)}=x
$$

We continue our way backwards in the order shown

$$
\nabla_{Y^{(N-2)}} \operatorname{div}(.)
$$

We continue our way backwards in the order shown

$$
\nabla_{Z^{(N-2)}} \operatorname{div}(.)
$$

$$
\nabla_{Y^{(1)}} \operatorname{div}(.)
$$

We continue our way backwards in the order shown

$$
\nabla_{Z^{(1)}} \operatorname{div}(.)
$$

We continue our way backwards in the order shown

$$
\nabla_{W^{(1)}} \operatorname{div}(.)
$$

Backward Gradient Computation

- Let's actually see the math..

Computing derivatives

Computing derivatives

The derivative w.r.t the actual output of the final layer of the network is simply the derivative w.r.t to the output of the network

$$
\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}^{(N)}}=\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}}
$$

Calculus Refresher: Chain rule

For any nested function $l=f(y)$ where $y=g(z)$

$$
\frac{d l}{d z}=\frac{d l}{d y} \frac{d y}{d z}
$$

Computing derivatives

$$
\frac{\partial D i v}{\partial z_{i}^{(N)}}=\frac{\partial y_{i}^{(N)}}{\partial z_{i}^{(N)}} \frac{\partial D i v}{\partial y_{i}^{(N)}}
$$

Computing derivatives

Computing derivatives

Computing derivatives

Computing derivatives

$$
\frac{\partial D i v}{\partial z_{i}^{(N)}}=f_{N}^{\prime}\left(z_{i}^{(N)}\right) \frac{\partial D i v}{\partial y_{i}^{(N)}}
$$

Computing derivatives

Computing derivatives

Computing derivatives

Because
$z_{j}^{(N)}=w_{i j}^{(N)} y_{i}^{(N-1)}+$ other terms

Computing derivatives

Computing derivatives

Computing derivatives

$$
\frac{\partial D i v}{\partial w_{i j}^{(N)}}=y_{i}^{(N-1)} \frac{\partial \operatorname{Div}}{\partial z_{j}^{(N)}}
$$

For the bias term $y_{0}^{(N-1)}=1$

Calculus Refresher: Chain rule

Computing derivatives

Computing derivatives

Computing derivatives

Computing derivatives

$$
\frac{\partial D i v}{\partial y_{i}^{(N-1)}}=\sum_{j} w_{i j}^{(N)} \frac{\partial D i v}{\partial z_{j}^{(N)}}
$$

Computing derivatives

$$
\frac{\partial D i v}{\partial y_{i}^{(N-1)}}=\sum_{j} w_{i j}^{(N)} \frac{\partial D i v}{\partial z_{j}^{(N)}}
$$

Computing derivatives

We continue our way backwards in the order shown

$$
\frac{\partial D i v}{\partial z_{i}^{(N-1)}}=f_{N-1}^{\prime}\left(z_{i}^{(N-1)}\right) \frac{\partial D i v}{\partial y_{i}^{(N-1)}}
$$

We continue our way backwards in the order shown

$$
\frac{\partial D i v}{\partial w_{i j}^{(N-1)}}=y_{i}^{(N-2)} \frac{\partial D i v}{\partial z_{j}^{(N-1)}} \quad \text { For the bias term } y_{0}^{(N-2)}=1
$$

We continue our way backwards in the order shown

$$
\frac{\partial \operatorname{Div}}{\partial y_{i}^{(N-2)}}=\sum_{j} w_{i j}^{(N-1)} \frac{\partial \operatorname{Div}}{\partial z_{j}^{(N-1)}}
$$

$$
y^{(0)}=x
$$

We continue our way backwards in the order shown

$$
\frac{\partial D i v}{\partial z_{i}^{(N-2)}}=f_{N-2}^{\prime}\left(z_{i}^{(N-2)}\right) \frac{\partial D i v}{\partial y_{i}^{(N-2)}}
$$

We continue our way backwards in the order shown

$$
\frac{\partial D i v}{\partial y_{1}^{(1)}}=\sum_{j} w_{i j}^{(2)} \frac{\partial D i v}{\partial z_{j}^{(2)}}
$$

We continue our way backwards in the order shown

$$
\frac{\partial D i v}{\partial z_{i}^{(1)}}=f_{1}^{\prime}\left(z_{i}^{(1)}\right) \frac{\partial D i v}{\partial y_{i}^{(1)}}
$$

We continue our way backwards in the order shown

$$
\frac{\partial D i v}{\partial w_{i j}^{(1)}}=y_{i}^{(0)} \frac{\partial D i v}{\partial z_{j}^{(1)}}
$$

Gradients: Backward Computation

Initialize: Gradient w.r.t network output

$$
\frac{\partial \operatorname{Div}}{\partial y_{i}^{(N)}}=\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}}
$$

$$
\frac{\partial D i v}{\partial z_{i}^{(N)}}=f_{k}^{\prime}\left(z_{i}^{(N)}\right) \frac{\partial \operatorname{Div}}{\partial y_{i}^{(N)}}
$$

$$
\forall j \frac{\partial \operatorname{Div}}{\partial w_{i j}^{(k+1)}}=y_{i}^{(k)} \frac{\partial D i v}{\partial z_{j}^{(k+1)}}
$$

Backward Pass

- Output layer (N) :
- For $i=1 \ldots D_{N}$
- $\frac{\partial \operatorname{Div}}{\partial y_{i}^{(N)}}=\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}} \quad$ [This is the derivative of the divergence]
- $\frac{\partial \text { Div }}{\partial z_{i}^{(N)}}=\frac{\partial D i v}{\partial y_{i}^{(N)}} f_{N}^{\prime}\left(z_{i}^{(N)}\right)$
- $\frac{\partial D i v}{\partial w_{i j}^{(N)}}=y_{i}^{(N-1)} \frac{\partial D i v}{\partial z_{j}^{(N)}}$ for $j=0 \ldots D_{N-1}$
- For layer $k=N-1$ downto 1
- For $i=1 \ldots D_{k}$
- $\frac{\partial D i v}{\partial y_{i}^{(k)}}=\sum_{j} w_{i j}^{(k+1)} \frac{\partial D i v}{\partial z_{j}^{(k+1)}}$
- $\frac{\partial D i v}{\partial z_{i}^{(k)}}=\frac{\partial D i v}{\partial y_{i}^{(k)}} f_{k}^{\prime}\left(z_{i}^{(k)}\right)$
- $\frac{\partial D i v}{\partial w_{i j}^{(k)}}=y_{i}^{(k-1)} \frac{\partial \operatorname{Div}}{\partial z_{j}^{(k)}}$ for $j=0 \ldots D_{k-1}$

Backward Pass

- Output layer (N) :
- For $i=1 \ldots D_{N}$
- $\frac{\partial \operatorname{Div}}{\partial y_{i}^{(N)}}=\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}}$
- $\frac{\partial D i v}{\partial z_{i}^{(N)}}=\frac{\partial D}{\partial y_{i}^{(N)}} f_{N}^{\prime}\left(z_{i}^{(N)}\right)$
- $\frac{\partial D i v}{\partial w_{i j}^{(N)}}=y_{i}^{(N-1)} \frac{\partial D i v}{\partial z_{j}^{(N)}}$ for $j=0 \ldots D_{N-1}$
- For layer $k=N-1$ downto 1 Very analogous to the forward pass:

Backward weighted combination
Called "Backpropagation" because the derivative of the loss is propagated "backwards" through the network

- For $i=1 \ldots D_{k}$
- $\frac{\partial D i v}{\partial y_{i}^{(k)}}=\sum_{j} w_{i j}^{(k+1)} \frac{\partial \operatorname{Div}}{\partial z_{j}^{(k+1)}}$ of next layer
- $\frac{\partial D i v}{\partial z_{i}^{(k)}}=\frac{\partial D i v}{\partial y_{i}^{(k)}} f_{k}^{\prime}\left(z_{i}^{(k)}\right)$
- $\frac{\partial D i v}{\partial w_{i j}^{(k)}}=y_{i}^{(k-1)} \frac{\partial D i v}{\partial z_{j}^{(k)}}$ for $j=0 \ldots D_{k-1}$

Using notation $\dot{y}=\frac{\operatorname{Div}(Y, d)}{\partial y}$ etc (overdot represents derivative of Div w.r.t variable)

- Output layer (N) :
- For $i=1 \ldots D_{N}$
- $\dot{y}_{i}^{(N)}=\frac{\partial D i v}{\partial y_{i}}$
- $\dot{z}_{i}^{(N)}=\dot{y}_{i}^{(N)} f_{N}^{\prime}\left(z_{i}^{(N)}\right)$
- $\frac{\partial \operatorname{Div}}{\partial w_{j i}^{(N)}}=y_{j}^{(N-1)} \dot{z}_{i}^{(N)}$ for $j=0 \ldots D_{N-1}$
- For layer $k=N-1$ downto 1
- For $i=1 \ldots D_{k}$
- $\dot{y}_{i}^{(k)}=\sum_{j} w_{i j}^{(k+1)} \dot{z}_{j}^{(k+1)}$
- $\dot{z}_{i}^{(k)}=\dot{y}_{i}^{(k)} f_{k}^{\prime}\left(z_{i}^{(k)}\right) \longleftarrow$ Backward equivalent of activation
- $\frac{\partial D i}{\partial w_{j i}^{(k)}}=y_{j}^{(k-1)} \dot{z}_{i}^{(k)}$ for $j=0 \ldots D_{k-1}$

Called "Backpropagation" because the derivative of the loss is propagated "backwards" through the network

Very analogous to the forward pass:
Backward weighted combination of next layer

1

For comparison: the forward pass again

- Input: D dimensional vector $\mathbf{x}=\left[x_{j}, j=1 \ldots D\right]$
- Set:
- $D_{0}=D$, is the width of the $0^{\text {th }}$ (input) layer
$-y_{j}^{(0)}=x_{j}, j=1 \ldots D ; \quad y_{0}^{(k=1 \ldots N)}=x_{0}=1$
- For layer $k=1 \ldots N$
- For $j=1 \ldots D_{k}$
- $z_{j}^{(k)}=\sum_{i=0}^{N_{k}} w_{i, j}^{(k)} y_{i}^{(k-1)}$
- $y_{j}^{(k)}=f_{k}\left(z_{j}^{(k)}\right)$
- Output:

$$
-Y=y_{j}^{(N)}, j=1 . . D_{N}
$$

Poll 2 (@340)

How does backpropagation relate to training the network (pick one)

- Backpropagation is the process of training the network
- Backpropagation is used to update the model parameters during training
- Backpropagation is used to compute the derivatives of the divergence with respect to model parameters, to be used in gradient descent.

Poll 2

How does backpropagation relate to training the network (pick one)

- Backpropagation is the process of training the network
- Backpropagation is used to update the model parameters during training
- Backpropagation is used to compute the derivatives of the divergence with respect to model parameters, to be used in gradient descent. (correct)

Special cases

- Have assumed so far that

1. The computation of the output of one neuron does not directly affect computation of other neurons in the same (or previous) layers
2. Inputs to neurons only combine through weighted addition
3. Activations are actually differentiable

- All of these conditions are frequently not applicable
- Will not discuss all of these in class, but explained in slides
- Will appear in quiz. Please read the slides

Special Case 1. Vector activations

- Vector activations: all outputs are functions of all inputs

Special Case 1. Vector activations

Scalar activation: Modifying a z_{i} only changes corresponding y_{i}

$$
y_{i}^{(k)}=f\left(z_{i}^{(k)}\right)
$$

Vector activation: Modifying a z_{i} potentially changes all, $y_{1} \ldots y_{M}$

$$
\left.\left[\begin{array}{c}
y_{1}^{(k)} \\
y_{2}^{(k)} \\
\vdots \\
y_{M}^{(k)}
\end{array}\right]=f\left(\left[\begin{array}{c}
z_{1}^{(k)} \\
z_{2}^{(k)} \\
\vdots \\
z_{D}^{(k)}
\end{array}\right]\right)\right)_{95}
$$

"Influence" diagram

Scalar activation: Each z_{i} influences one y_{i}

Vector activation: Each z_{i} influences all, $y_{1} \ldots y_{M}$

Scalar Activation: Derivative rule

$$
\frac{\partial \text { Div }}{\partial z_{i}^{(k)}}=\frac{\partial \operatorname{Div}}{\partial y_{i}^{(k)}} \frac{d y_{i}^{(k)}}{d z_{i}^{(k)}}
$$

- In the case of scalar activation functions, the derivative of the loss w.r.t to the input to the unit is a simple product of derivatives

Derivatives of vector activation

$$
\frac{\partial D i v}{\partial z_{i}^{(k)}}=\sum_{j} \frac{\partial D i v}{\partial y_{j}^{(k)}} \frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}}
$$

Note: derivatives of scalar activations are just a special case of vector activations:

$$
\frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}}=0 \text { for } i \neq j
$$

- For vector activations the derivative of the loss w.r.t. to any input is a sum of partial derivatives
- Regardless of the number of outputs $y_{j}^{(k)}$

Example Vector Activation: Softmax

$$
y_{i}^{(k)}=\frac{\exp \left(z_{i}^{(k)}\right)}{\sum_{j} \exp \left(z_{j}^{(k)}\right)}
$$

Example Vector Activation: Softmax

Example Vector Activation: Softmax

Example Vector Activation: Softmax

$$
\begin{gathered}
y_{i}^{(k)}=\frac{\exp \left(z_{i}^{(k)}\right)}{\sum_{j} \exp \left(z_{j}^{(k)}\right)} \\
\frac{\partial D i v}{\partial z_{i}^{(k)}}=\sum_{j} \frac{\partial \operatorname{Div}}{\partial y_{j}^{(k)}} \frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}} \\
\frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}}=\left\{\begin{array}{c}
y_{i}^{(k)}\left(1-y_{i}^{(k)}\right) \text { if } i=j \\
-y_{i}^{(k)} y_{j}^{(k)} \text { if } i \neq j
\end{array}\right. \\
\frac{\partial \operatorname{Div}}{\partial z_{i}^{(k)}}=\sum_{j} \frac{\partial \operatorname{Div}}{\partial y_{j}^{(k)} y_{j}^{(k)}\left(\delta_{i j}-y_{i}^{(k)}\right)}
\end{gathered}
$$

- For future reference
- $\delta_{i j}$ is the Kronecker delta: $\delta_{i j}=1$ if $i=j, \quad 0$ if $i \neq j_{102}$

Backward Pass for softmax output

layer

- Output layer (N) :
- For $i=1 \ldots D_{N}$

$$
\begin{aligned}
& \text { - } \frac{\partial \operatorname{Div}}{\partial y_{i}^{(N)}}=\frac{\partial \operatorname{Div}(Y, d)}{\partial y_{i}} \\
& \text { - } \frac{\partial \operatorname{Div}}{\partial z_{i}^{(N)}}=\sum_{j} \frac{\partial \operatorname{Div}(Y, d)}{\partial y_{j}^{(N)}} y_{i}^{(N)}\left(\delta_{i j}-y_{j}^{(N)}\right) \\
& \text { - } \frac{\partial D i}{\partial w_{i j}^{(N)}}=y_{i}^{(N-1)} \frac{\partial D i v}{\partial z_{j}^{(N)}} \text { for } j=0 \ldots D_{N-1}
\end{aligned}
$$

- For layer $k=N-1$ downto 1
- For $i=1 \ldots D_{k}$
- $\frac{\partial D i v}{\partial y_{i}^{(k)}}=\sum_{j} w_{i j}^{(k+1)} \frac{\partial D i v}{\partial z_{j}^{(k+1)}}$
- $\frac{\partial D i v}{\partial z_{i}^{(k)}}=\frac{\partial D i v}{\partial y_{i}^{(k)}} f_{k}^{\prime}\left(z_{i}^{(k)}\right)$
- $\frac{\partial D i v}{\partial w_{i j}^{(k)}}=y_{i}^{(k-1)} \frac{\partial D i v}{\partial z_{j}^{(k)}}$ for $j=0 \ldots D_{k-1}$

Special cases

- Examples of vector activations and other special cases on slides
- Please look up
- Will appear in quiz!

Vector Activations

$$
\left[\begin{array}{c}
y_{1}^{(k)} \\
y_{2}^{(k)} \\
\vdots \\
y_{M}^{(k)}
\end{array}\right]=f\left(\left[\begin{array}{c}
z_{1}^{(k)} \\
z_{2}^{(k)} \\
\vdots \\
z_{D}^{(k)}
\end{array}\right]\right)
$$

- In reality the vector combinations can be anything
- E.g. linear combinations, polynomials, logistic (softmax), etc.

Special Case 2: Multiplicative networks

- Some types of networks have multiplicative combination
- In contrast to the additive combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.

Backpropagation: Multiplicative Networks

Forward:

$$
o_{i}^{(k)}=y_{j}^{(k-1)} y_{l}^{(k-1)}
$$

Backward: $\frac{\frac{\partial D i v}{\partial o_{i}^{(k)}}=\sum_{j} w_{i j}^{(k+1)} \frac{\partial D i v}{\partial z_{j}^{(k+1)}}}{}$

$$
\begin{array}{|l|l|}
\hline \frac{\partial D i v}{\partial y_{j}^{(k-1)}}=\frac{\partial o_{i}^{(k)}}{\partial y_{j}^{(k-1)}} \frac{\partial D i v}{\partial o_{i}^{(k)}}=y_{l}^{(k-1)} \frac{\partial D i v}{\partial o_{i}^{(k)}} \quad \frac{\partial D i v}{\partial y_{l}^{(k-1)}}=y_{j}^{(k-1)} \frac{\partial D i v}{\partial o_{i}^{(k)}} \\
\hline
\end{array}
$$

- Some types of networks have multiplicative combination

Multiplicative combination as a case of vector activations

$$
\begin{gathered}
z_{i}^{(k)}=y_{i}^{(k-1)} \\
y_{i}^{(k)}=z_{2 i-1}^{(k)} z_{2 i}^{(k)}
\end{gathered}
$$

- A layer of multiplicative combination is a special case of vector activation

Multiplicative combination: Can be viewed as a case of vector activations

$$
z_{i}^{(k)}=\sum_{j} w_{j i}^{(k)} y_{j}^{(k-1)}
$$

$$
y_{i}^{(k)}=\prod_{l}\left(z_{i}^{(k)}\right)^{\alpha_{i}^{(k)}}
$$

$$
\frac{\partial y_{i}^{(k)}}{\partial z_{j}^{(k)}}=\alpha_{j i}^{(k)}\left(z_{j}^{(k)}\right)^{\alpha_{j i}^{(k)}-1} \prod_{l \neq j}\left(z_{l}^{(k)}\right)^{\alpha_{l i}^{(k)}}
$$

$$
\frac{\partial D i v}{\partial z_{j}^{(k)}}=\sum_{i} \frac{\partial D i v}{\partial y_{i}^{(k)}} \frac{\partial y_{i}^{(k)}}{\partial z_{j}^{(k)}}
$$

- A layer of multiplicative combination is a special case of vector activation 109

Gradients: Backward Computation

For $k=N . . .1$
For $i=1$:layer width

$$
\begin{array}{l|l|}
\begin{array}{l|l}
\text { If layer has vector activation } \\
\frac{\partial D i v}{\partial z_{i}^{(k)}}=\sum_{j} \frac{\partial D i v}{\partial y_{j}^{(k)}} \frac{\partial y_{j}^{(k)}}{\partial z_{i}^{(k)}}
\end{array} \Leftrightarrow \frac{\text { Else if activation is scalar }}{} \Leftrightarrow \frac{\partial D i v}{\partial z_{i}^{(k)}}=\frac{\partial D i v}{\partial y_{i}^{(k)}} \frac{\partial y_{i}^{(k)}}{\partial z_{i}^{(k)}} \\
\frac{\partial D i v}{\partial y_{i}^{(k-1)}}=\sum_{j} w_{i j}^{(k)} \frac{\partial D i v}{\partial z_{j}^{(k)}} & \frac{\partial D i v}{\partial w_{i j}^{(k)}}=y_{i}^{(k-1)} \frac{\partial D i v}{\partial z_{j}^{(k)}} \\
\hline
\end{array}
$$

Special Case : Non-differentiable activations

$$
y=\max _{j} z_{j}
$$

- Activation functions are sometimes not actually differentiable
- E.g. The RELU (Rectified Linear Unit)
- And its variants: leaky RELU, randomized leaky RELU
- E.g. The "max" function
- Must use "subgradients" where available
- Or "secants"

The subgradient

- A subgradient of a function $f(x)$ at a point x_{0} is any vector v such that

$$
\left(f(x)-f\left(x_{0}\right)\right) \geq v^{T}\left(x-x_{0}\right)
$$

- Any direction such that moving in that direction increases the function
- Guaranteed to exist only for convex functions
- "bowl" shaped functions
- For non-convex functions, the equivalent concept is a "quasi-secant"
- The subgradient is a direction in which the function is guaranteed to increase
- If the function is differentiable at x_{0}, the subgradient is the gradient
- The gradient is not always the subgradient though

Non-differentiability: RELU

$$
\Delta f(z)=\alpha \Delta z
$$

- At 0 a negative perturbation $\Delta z<0$ results in no change of $f(z)$

$$
\text { - } \quad \alpha=0
$$

- A positive perturbation $\Delta z>0$ results in $\Delta f(z)=\Delta z$

$$
-\quad \alpha=1
$$

- Peering very closely, we can imagine that the curve is rotating continuously from slope $=0$ to slope $=1$ at $z=0$
- So any slope between 0 and 1 is valid

Subgradients and the RELU

- The subderivative of a RELU is the slope of any line that lies entirely under it
- The subgradient is a generalization of the subderivative
- At the differentiable points on the curve, this is the same as the gradient
- Can use any subgradient at 0
- Typically, will use the equation given

Subgradients and the Max

- Vector equivalent of subgradient
- 1 w.r.t. the largest incoming input
- Incremental changes in this input will change the output
- 0 for the rest
- Incremental changes to these inputs will not change the output

Poll 3 (@341)

We have $y=\max (z 1, z 2, z 3)$, computed at $z 1=1, z 2=2, z 3=3$. Select all that are true

- $d y / d z 1=1$
- $d y / d z 1=0$
- $d y / d z 2=1$
- $d y / d z 2=0$
- $d y / d z 3=1$
- $d y / d z 3=0$

Poll 3

We have $y=\max (z 1, z 2, z 3)$, computed at $z 1=1, z 2=2, z 3=3$. Select all that are true

- $d y / d z 1=1$
- $d y / d z 1=0$ (correct)
- $d y / d z 2=1$
- $\mathrm{dy} / \mathrm{dz2}=0$ (correct)
- $d y / d z 3=1$ (correct)
- $d y / d z 3=0$

Subgradients and the Max

$$
y_{i}=\max _{l \in \mathcal{S}_{j}} z_{l}
$$

- Multiple outputs, each selecting the max of a different subset of inputs
- Will be seen in convolutional networks
- Gradient for any output:
- 1 for the specific component that is maximum in corresponding input subset
- O otherwise

Backward Pass: Recap

- Output layer (N) :
- For $i=1 \ldots D_{N}$
- $\frac{\partial D i v}{\partial y_{i}^{(N)}}=\frac{\partial D i v(Y, d)}{\partial y_{i}}$

- $\frac{\partial D i v}{\partial w_{j i}^{(N)}}=y_{j}^{(N-1)} \frac{\partial D}{\partial z_{i}^{(N)}}$ for $j=0 \ldots D_{k}$
- For layer $k=N-1$ downto 1

These may be subgradients

- For $i=1 \ldots D_{k}$
- $\frac{\partial D i}{\partial y_{i}^{(k)}}=\sum_{j} w_{i j}^{(k+1)} \frac{\partial D i v}{\partial z_{j}^{(k+1)}}$

- $\frac{\partial D i v}{\partial w_{j i}^{(k)}}=y_{j}^{(k-1)} \frac{\partial D i v}{\partial z_{i}^{(k)}}$ for $j=0 \ldots D_{k}$

Overall Approach

- For each data instance
- Forward pass: Pass instance forward through the net. Store all intermediate outputs of all computation.
- Backward pass: Sweep backward through the net, iteratively compute all derivatives w.r.t weights
- Actual loss is the sum of the divergence over all training instances

$$
\text { Loss }=\frac{1}{|\{X\}|} \sum_{X} \operatorname{Div}(Y(X), d(X))
$$

- Actual gradient is the sum or average of the derivatives computed for each training instance

$$
\nabla_{W} \text { Loss }=\frac{1}{|\{X\}|} \sum_{X} \nabla_{W} \operatorname{Div}(Y(X), d(X)) W \leftarrow W-\eta \nabla_{W} \mathbf{L o s s}^{\mathrm{T}}
$$

Training by BackProp

- Initialize weights $\boldsymbol{W}^{(k)}$ for all layers $k=1 \ldots K$
- Do: (Gradient descent iterations)
- Initialize Loss $=0$; For all i, j, k, initialize $\frac{d L o s}{d w_{i, j}^{(k)}}=0$
- For all $t=1: T$ (Iterate over training instances)
- Forward pass: Compute
- Output $\boldsymbol{Y}_{\boldsymbol{t}}$
- Loss $+=\operatorname{Div}\left(\boldsymbol{Y}_{\boldsymbol{t}}, \boldsymbol{d}_{\boldsymbol{t}}\right)$
- Backward pass: For all i, j, k :

$$
\begin{aligned}
& - \text { Compute } \frac{d \operatorname{Div}\left(Y_{t}, \boldsymbol{d}_{t}\right)}{d w_{i, j}^{(k)}} \\
& -\frac{d \operatorname{Loss}}{d w_{i, j}^{(k)}}+=\frac{d \operatorname{Div}\left(Y_{t}, \boldsymbol{d}_{t}\right)}{d w_{i, j}^{(k)}}
\end{aligned}
$$

- For all i, j, k, update:

$$
w_{i, j}^{(k)}=w_{i, j}^{(k)}-\frac{\eta}{T} \frac{d \operatorname{Loss}}{d w_{i, j}^{(k)}}
$$

- Until Loss has converged

Vector formulation

- For layered networks it is generally simpler to think of the process in terms of vector operations
- Simpler arithmetic
- Fast matrix libraries make operations much faster
- We can restate the entire process in vector terms
- This is what is actually used in any real system

Vector formulation

$\mathbf{W}_{k}=\left[\begin{array}{cccc}w_{11}^{(k)} & w_{21}^{(k)} & \vdots & w_{D_{k-1} 1}^{(k)} \\ w_{12}^{(k)} & w_{22}^{(k)} & \vdots & w_{D_{k-1} 2}^{(k)} \\ \cdots & \cdots & \ddots & \vdots \\ w_{1 D_{k}}^{(k)} & w_{2 D_{k}}^{(k)} & \cdots & w_{D_{k-1} D_{k}}^{(k)}\end{array}\right] \quad \mathbf{b}_{\boldsymbol{k}}=\left[\begin{array}{c}b_{1}^{(k)} \\ b_{2}^{(k)} \\ \vdots \\ b_{D_{k}}^{(k)}\end{array}\right]$

- Arrange the inputs to neurons of the kth layer as a vector $\mathbf{z}_{\boldsymbol{k}}$
- Arrange the outputs of neurons in the kth layer as a vector $\mathbf{y}_{\boldsymbol{k}}$
- Arrange the weights to any layer as a matrix \mathbf{W}_{k}
- Similarly with biases

Vector formulation

$\mathbf{W}_{k}=\left[\begin{array}{cccc}w_{11}^{(k)} & w_{21}^{(k)} & \vdots & w_{D_{k-1} 1}^{(k)} \\ w_{12}^{(k)} & w_{22}^{(k)} & \vdots & w_{D_{k-1} 2}^{(k)} \\ \cdots & \cdots & \ddots & \vdots \\ w_{1 D_{k}}^{(k)} & w_{2 D_{k}}^{(k)} & \cdots & w_{D_{k-1} D_{k}}^{(k)}\end{array}\right] \quad \mathbf{b}_{\boldsymbol{k}}=\left[\begin{array}{c}b_{1}^{(k)} \\ b_{2}^{(k)} \\ \vdots \\ b_{D_{k}}^{(k)}\end{array}\right]$

- The computation of a single layer is easily expressed in matrix notation as (setting $\mathbf{y}_{\mathbf{0}}=\mathbf{x}$):

$$
\mathbf{z}_{k}=\mathbf{W}_{k} \mathbf{y}_{k-1}+\mathbf{b}_{k} \quad \mathbf{y}_{k}=\boldsymbol{f}_{k}\left(\mathbf{z}_{k}\right)
$$

The forward pass: Evaluating the network

 X
The forward pass

The forward pass

The Complete computation

$$
\mathbf{y}_{1}=f_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)
$$

The forward pass

The Complete computation

$$
\mathbf{y}_{1}=f_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)
$$

The forward pass

The Complete computation

$$
\mathbf{y}_{2}=f_{2}\left(\mathbf{W}_{2} f_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right)
$$

The forward pass

The Complete computation

$$
\mathbf{z}_{N}=\mathbf{W}_{N} f_{N-1}\left(\ldots f_{2}\left(\mathbf{W}_{2} f_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right) \ldots\right)+\mathbf{b}_{N}
$$

The forward pass

The Complete computation

$$
\boldsymbol{Y}=f_{N}\left(\mathbf{W}_{N} f_{N-1}\left(\ldots f_{2}\left(\mathbf{W}_{2} f_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right) \ldots\right)+\mathbf{b}_{N}\right)
$$

Forward pass

Forward pass: Initialize

$$
\mathbf{y}_{0}=\mathbf{x}
$$

For $\mathrm{k}=1$ to $\mathrm{N}: \mathbf{z}_{k}=\mathbf{W}_{k} \mathbf{y}_{k-1}+\mathbf{b}_{k} \quad \mathbf{y}_{k}=\boldsymbol{f}_{k}\left(\mathbf{z}_{k}\right)$
Output

$$
\mathrm{Y}=\mathbf{y}_{N}
$$

The Forward Pass

- Set $\mathbf{y}_{0}=\mathbf{x}$
- Iterate through layers:
- For layer $\mathrm{k}=1$ to N :

$$
\begin{gathered}
\mathbf{z}_{k}=\mathbf{W}_{k} \mathbf{y}_{k-1}+\mathbf{b}_{k} \\
\mathbf{y}_{k}=\boldsymbol{f}_{k}\left(\mathbf{z}_{k}\right)
\end{gathered}
$$

- Output:

$$
\mathbf{Y}=\mathbf{y}_{N}
$$

The Backward Pass

- Have completed the forward pass
- Before presenting the backward pass, some more calculus...
- Vector calculus this time

Vector Calculus Notes 1: Definitions

- A derivative is a multiplicative factor that multiplies a perturbation in the input to compute the corresponding perturbation of the output
- For a scalar function of a vector argument

$$
\begin{aligned}
y & =f(\mathbf{z}) \\
\Delta y & =\nabla_{\mathbf{z}} y \Delta \mathbf{z}
\end{aligned}
$$

- If \mathbf{z} is an $R \times 1$ vector, $\nabla_{\mathbf{z}} y$ is a $1 \times R$ vector
- The shape of the derivative is the transpose of the shape of \mathbf{z}
- $\nabla_{\mathbf{z}} y^{\top}$ is called the gradient of y w.r.t \mathbf{z}

Vector Calculus Notes 1: Definitions

- For a vector function of a vector argment

$$
\begin{aligned}
\mathbf{y} & =f(\mathbf{z}) \\
{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{M}
\end{array}\right] } & =f\left(\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{D}
\end{array}\right]\right) \\
\Delta y & =\nabla_{\mathbf{z}} y \Delta \mathbf{z}
\end{aligned}
$$

- If \mathbf{z} is an $R \times 1$ vector, and \mathbf{y} is an $L \times 1 \nabla_{\mathbf{z}} \mathbf{y}$ is an $L \times R$ matrix
- Or the dimensions won't match
- $\nabla_{\mathbf{z}} \mathbf{y}$ is called the Jacobian of \mathbf{y} w.r.t \mathbf{z}

Calculus Notes: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a Jacobian
- It is the matrix of partial derivatives given below

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{M}
\end{array}\right]=f\left(\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{D}
\end{array}\right]\right)
$$

Using vector notation

$$
\mathbf{y}=f(\mathbf{z})
$$

$$
J_{\mathbf{y}}(\mathbf{z})=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial z_{1}} & \frac{\partial y_{1}}{\partial z_{2}} & \cdots & \frac{\partial y_{1}}{\partial z_{D}} \\
\frac{\partial y_{2}}{\partial z_{1}} & \frac{\partial y_{2}}{\partial z_{2}} & \cdots & \frac{\partial y_{2}}{\partial z_{D}} \\
\cdots & \cdots & \ddots & \cdots \\
\frac{\partial y_{M}}{\partial z_{1}} & \frac{\partial y_{M}}{\partial z_{2}} & \cdots & \frac{\partial y_{M}}{\partial z_{D}}
\end{array}\right]
$$

Check: $\quad \Delta \mathbf{y}=J_{y}(\mathbf{z}) \Delta \mathbf{z}$

Jacobians can describe the derivatives of neural activations w.r.t their input

$$
\begin{aligned}
& y_{i}=f\left(z_{i}\right) \\
& J_{y}(\mathbf{z})=\left[\begin{array}{cccc}
f^{\prime}\left(z_{1}\right) & 0 & \ldots & 0 \\
0 & f^{\prime}\left(z_{2}\right) & \cdots & 0 \\
\cdots & \ldots & \ddots & \ldots \\
0 & 0 & \cdots & f^{\prime}\left(z_{M}\right)
\end{array}\right]
\end{aligned}
$$

- For scalar activations (shorthand notation):
- Jacobian is a diagonal matrix
- Diagonal entries are individual derivatives of outputs w.r.t inputs

For Vector activations

$$
J_{y}(\mathbf{z})=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial z_{1}} & \frac{\partial y_{1}}{\partial z_{2}} & \cdots & \frac{\partial y_{1}}{\partial z_{D}} \\
\frac{\partial y_{2}}{\partial z_{1}} & \frac{\partial y_{2}}{\partial z_{2}} & \cdots & \frac{\partial y_{2}}{\partial z_{D}} \\
\cdots & \cdots & \ddots & \cdots \\
\frac{\partial y_{M}}{\partial z_{1}} & \frac{\partial y_{M}}{\partial z_{2}} & \cdots & \frac{\partial y_{M}}{\partial z_{D}}
\end{array}\right]
$$

- Jacobian is a full matrix
- Entries are partial derivatives of individual outputs w.r.t individual inputs

Special case: Affine functions

$$
\begin{gathered}
\mathbf{z}(\mathbf{y})=\mathbf{W} \mathbf{y}+\mathbf{b} \\
\nabla_{\mathbf{y}} \mathbf{z}=J_{\mathbf{z}}(\mathbf{y})=\mathbf{W}
\end{gathered}
$$

- Matrix \mathbf{W} and bias \mathbf{b} operating on vector \mathbf{y} to produce vector \mathbf{z}
- The Jacobian of \mathbf{z} w.r.t \mathbf{y} is simply the matrix \mathbf{W}

Vector Calculus Notes 2: Chain rule

- For nested functions we have the following chain rule

$$
\mathbf{y}=\mathbf{y}(\mathbf{z}(\mathbf{x})) \quad \square \nabla_{\mathrm{x}} \mathbf{y}=\nabla_{\mathrm{z}} y \nabla_{\mathrm{x}} \mathbf{z}
$$

$$
\text { Check } \quad \Delta \mathbf{y}=\nabla_{\mathbf{z}} y \Delta \mathbf{z}
$$

$$
\Delta \mathbf{z}=\nabla_{\mathbf{x}} \mathbf{z} \Delta \mathbf{x}
$$

$$
\Delta \mathbf{y}=\nabla_{\mathbf{z}} y \nabla_{\mathbf{x}} \mathbf{z} \Delta \mathbf{x}=\nabla_{\mathbf{x}} \mathbf{y} \Delta \mathbf{x}
$$

Vector Calculus Notes 2: Chain rule

- Chain rule for Jacobians:
- For vector functions of vector inputs:

$$
\mathbf{y}=\boldsymbol{y}(\mathbf{z}(\mathbf{x})) \quad \square \quad J_{\mathbf{y}}(\mathbf{x})=J_{\mathbf{y}}(\mathbf{z}) J_{\mathrm{z}}(\mathbf{x})
$$

$$
\text { Check } \Delta \mathbf{y}=J_{y}(z) \Delta z
$$

$$
\Delta z=J_{z}(\mathbf{x}) \Delta \mathrm{x}
$$

$$
\Delta \mathbf{y}=J_{\mathbf{y}}(\mathbf{z}) J_{z}(\mathbf{x}) \Delta \mathbf{x}=J_{\mathbf{y}}(\mathbf{x}) \Delta \mathbf{x}
$$

Vector Calculus Notes 2: Chain rule

- Combining Jacobians and Gradients
- For scalar functions of vector inputs $(z()$ is vector):

$$
D=D(\boldsymbol{y}(\mathbf{z})) \quad \square \nabla_{\mathbf{z}} D=\nabla_{y}(D) J_{y}(\mathbf{z})
$$

Check $\Delta D=\nabla_{y}(D) \Delta \boldsymbol{y}$
$\Delta \boldsymbol{y}=J_{y}(\mathbf{z}) \Delta \mathbf{z}$

$$
\Delta D=\nabla_{\mathbf{y}}(D) J_{y}(\mathbf{z}) \Delta \mathbf{z}=\nabla_{\mathbf{z}} D \Delta \mathbf{z}
$$

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule

- For nested functions we have the following chain rule

$$
\begin{aligned}
& D=D\left(\boldsymbol{y}_{N}\left(\mathbf{z}_{N}\left(\boldsymbol{y}_{N-1}\left(\mathbf{z}_{N-1}\left(\ldots \boldsymbol{y}_{1}\left(\mathbf{z}_{1}(\mathbf{x})\right)\right)\right)\right)\right)\right) \\
& \nabla_{\mathbf{x}} D=\nabla_{\mathbf{y}_{N}} D \nabla_{\mathbf{z}_{N}} \boldsymbol{y}_{N} \nabla_{y_{N-1}} \mathbf{z}_{N} \nabla_{\mathbf{z}_{N-1}} \boldsymbol{y}_{N-1} \ldots \nabla_{\mathbf{z}_{1}} \boldsymbol{y}_{1} \nabla_{\mathbf{x}} \mathbf{z}_{1}
\end{aligned}
$$

Note the order: The derivative of the outer function comes first

Vector Calculus Notes 2: Chain rule

- For nested functions we have the following chain rule

$$
\begin{aligned}
& D=D\left(\underline{\left.\boldsymbol{y}_{N}\left(\mathbf{z}_{N}\left(\boldsymbol{y}_{N-1}\left(\mathbf{z}_{N-1}\left(\ldots \boldsymbol{y}_{1}\left(\mathbf{z}_{1}(\mathbf{x})\right)\right)\right)\right)\right)\right)}\right. \\
& \nabla_{\mathbf{x}} D=\nabla_{\mathbf{y}_{N} D} \nabla_{\mathbf{z}_{N}} \boldsymbol{y}_{N} \nabla_{\boldsymbol{y}_{N-1}} \mathbf{z}_{N} \nabla_{\mathbf{z}_{N-1}} \boldsymbol{y}_{N-1} \ldots \nabla_{\mathbf{z}_{1}} \boldsymbol{y}_{1} \nabla_{\mathbf{x}} \mathbf{z}_{1}
\end{aligned}
$$

Note the order: The derivative of the outer function comes first

More calculus: Special Case

- Scalar functions of Affine functions

$$
\mathbf{z}=\mathbf{W y}+\mathbf{b}
$$

$$
D=f(\mathbf{z})
$$

$$
\begin{aligned}
& \nabla_{\mathbf{y}} D=\nabla_{\mathbf{z}}(D) \mathbf{W} \\
& \nabla_{\mathbf{b}} D=\nabla_{\mathbf{z}}(D) \\
& \hline \nabla_{\mathbf{w}} D=\mathbf{y} \nabla_{\mathbf{z}}(D)
\end{aligned}
$$ parameters

- Note: the derivative shapes are the transpose of the shapes of \mathbf{W} and \mathbf{b}

More calculus: Special Case

- Scalar functions of Affine functions

$$
\mathbf{z}=\mathbf{W} \mathbf{y}+\mathbf{b} \quad D=f(\mathbf{z})
$$

- Writing the transpose

$$
\begin{aligned}
& \mathbf{z}^{\top}=\mathbf{y}^{\top} \mathbf{W}^{\top}+\mathbf{b}^{\top} \\
& \hline \nabla_{\boldsymbol{W}^{\top} \mathbf{Z}^{\top}=\mathbf{y}^{\top}}
\end{aligned}
$$

$$
\nabla_{\boldsymbol{W}^{\top}} D=\nabla_{\boldsymbol{z}^{\top}} D \nabla_{\boldsymbol{W}^{\top} \boldsymbol{z}^{\top}}=\nabla_{\mathbf{z}^{\top}} D \mathbf{y}^{\top}
$$

$$
\nabla_{\boldsymbol{W}} D=\left(\nabla_{\boldsymbol{W}^{\top}} D\right)^{\top}=\mathbf{y}_{\boldsymbol{z}} D
$$

$$
\nabla_{\mathbf{w}} D=\mathbf{y} \nabla_{\mathbf{z}}(D)
$$

Special Case: Application to a network

- Scalar functions of Affine functions

$$
\mathbf{z}=\mathbf{W} \mathbf{y}+\mathbf{b}
$$

$$
\operatorname{Div}=\operatorname{Div}(\mathbf{z})
$$

$$
\nabla_{\mathbf{y}} \operatorname{Div}=\nabla_{\mathbf{z}} \operatorname{Div} \mathbf{W}
$$

$$
\mathbf{z}_{k}=\mathbf{W}_{k} \mathbf{y}_{k-1}+\mathbf{b}_{k}
$$

The divergence is a scalar function of \mathbf{z}_{k}
Applying the above rule

$$
\nabla_{\mathbf{y}_{k-1}} \operatorname{Div}=\nabla_{\mathbf{z}_{k}} \operatorname{Div} \mathbf{W}_{k}
$$

Special Case: Application to a network

- Scalar functions of Affine functions

$$
\begin{aligned}
& \mathbf{z}=\mathbf{W} \mathbf{y}+\mathbf{b} \\
& \hline \operatorname{Div}=\operatorname{Div}(\mathbf{z})
\end{aligned}
$$

$$
\nabla_{\mathbf{b}} \text { Div }=\nabla_{\mathbf{z}} \text { Div }
$$

$\Longrightarrow \quad \nabla_{\mathbf{b}}$ Div $=\nabla_{\mathbf{z}}$ Div

$$
\begin{aligned}
& \mathbf{z}_{k}=\mathbf{W}_{k} \mathbf{y}_{k-1}+\mathbf{b}_{k} \\
& \nabla_{\mathbf{b}_{k}} \text { Div }=\nabla_{\mathbf{z}_{k}} \text { Div } \\
& \hline \nabla_{\mathbf{w}_{k}} \text { D }=\mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} \text { Div } \\
& \hline
\end{aligned}
$$

Poll 4 (@342)

We are given the function $Y=F(G(H(X)))$, where Y and X are vectors, and G and H also compute vector outputs.

Select the correct formula for the derivative of Y w.r.t. X. We use the notation $\nabla_{X}(Y)$ to represent the derivative of Y w.r.t X.

- $\nabla_{X}(H) \nabla_{H}(G) \nabla_{G}(F)$
- $\nabla_{G}(F) \nabla_{H}(G) \nabla_{X}(H)$
- Both are correct

Poll 4

We are given the function $Y=F(G(H(X)))$, where Y and X are vectors, and G and H also compute vector outputs.

Select the correct formula for the derivative of Y w.r.t. X. We use the notation $\nabla_{X}(Y)$ to represent the derivative of Y w.r.t X.

- $\nabla_{X}(H) \nabla_{H}(G) \nabla_{G}(F)$
- $\nabla_{G}(F) \nabla_{H}(G) \nabla_{X}(H)$ (correct)
- Both are correct

The backward pass

- The network is a nested function

$$
\boldsymbol{Y}=f_{N}\left(\mathbf{W}_{N} f_{N-1}\left(\ldots f_{2}\left(\mathbf{W}_{2} f_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right) \ldots\right)+\mathbf{b}_{N}\right)
$$

- The divergence for any \mathbf{x} is also a nested function
$\operatorname{Div}(Y, d)=\operatorname{Div}\left(f_{N}\left(\mathbf{W}_{N} f_{N-1}\left(\ldots f_{2}\left(\mathbf{W}_{2} f_{1}\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}\right) \ldots\right)+\mathbf{b}_{N}\right), d\right)$

The backward pass

In the following slides we will also be using the notation $\nabla_{\mathbf{Z}} \mathbf{Y}$ to represent the derivative of any \mathbf{Y} w.r.t any \mathbf{z}

The backward pass

First compute the derivative of the divergence w.r.t. Y.
The actual derivative depends on the divergence function.
N.B: The gradient is the transpose of the derivative

The backward pass

The divergence is a nested function: $\operatorname{Div}\left(\mathbf{Y}\left(\mathbf{z}_{N}\right)\right)$
$\nabla_{\mathbf{Z}_{N}}$ Div $=\nabla_{\mathbf{Y}}$ Div. $\nabla_{\mathbf{z}_{N}} \mathbf{Y}$
Already computed New term

The backward pass

$\nabla_{\mathbf{z}_{N}} \operatorname{Div}=\nabla_{\mathbf{Y}} \operatorname{Div} J_{\mathbf{Y}}\left(\mathbf{z}_{N}\right)$
Already computed New term

The backward pass

The divergence is a nested function: $\operatorname{Div}\left(\mathbf{z}_{N}\left(\mathbf{y}_{N-1}\right)\right)$

$$
\mathbf{z}_{N}=\mathbf{W}_{N} \mathbf{y}_{N-1}+\mathbf{b}_{N} \quad \Rightarrow \quad \nabla_{\mathbf{y}_{N-1}} \mathbf{z}_{N}=\mathbf{W}_{N}
$$

The backward pass

The backward pass

The backward pass

The backward pass

 matrix for scalar activations

The backward pass

$$
\nabla_{\mathbf{y}_{N-2}} \operatorname{Div}=\nabla_{\mathbf{z}_{N-1}} \operatorname{Div} \cdot \nabla_{\mathbf{y}_{N-2}} \mathbf{z}_{N-1}
$$

The backward pass

$\nabla_{\mathbf{y}_{N-2}} \operatorname{Div}=\nabla_{\mathbf{z}_{N-1}} \operatorname{Div} \mathbf{W}_{N-1}$

The backward pass

The backward pass

$$
\nabla_{\mathbf{z}_{1}} \operatorname{Div}=\nabla_{\mathbf{y}_{1}} \operatorname{Div} J_{\mathbf{y}_{1}}\left(\mathbf{z}_{1}\right)
$$

The backward pass

$\nabla_{\mathbf{W}_{1}}$ Div $=\mathbf{x} \nabla_{\mathbf{z}_{1}}$ Div
$\nabla_{\mathbf{b}_{1}}$ Div $=\nabla_{\mathbf{z}_{1}}$ Div

In some problems we will also want to compute the derivative w.r.t. the input

The Backward Pass

- Set $\mathbf{y}_{N}=Y, \mathbf{y}_{0}=\mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_{N}}$ Div $=\nabla_{Y}$ Div
- For layer $\mathrm{k}=\mathrm{N}$ downto 1:
- Compute $J_{\mathbf{y}_{k}}\left(\mathbf{z}_{k}\right)$
- Will require intermediate values computed in the forward pass
- Backward recursion step:

$$
\begin{gathered}
\nabla_{\mathbf{z}_{k}} \operatorname{Div}=\nabla_{\mathbf{y}_{k}} \operatorname{Div} J_{\mathbf{y}_{k}}\left(\mathbf{z}_{k}\right) \\
\nabla_{\mathbf{y}_{k-1}} \operatorname{Div}=\nabla_{\mathbf{z}_{k}} \operatorname{Div} \mathbf{W}_{k}
\end{gathered}
$$

- Gradient computation:

$$
\begin{gathered}
\nabla_{\mathbf{w}_{k}} \text { Div }=\mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} \text { Div } \\
\nabla_{\mathbf{b}_{k}} \text { Div }=\nabla_{\mathbf{z}_{k}} \text { Div }
\end{gathered}
$$

The Backward Pass

- Set $\mathbf{y}_{N}=Y, \mathbf{y}_{0}=\mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_{N}} \operatorname{Div}=\nabla_{Y}$ Div
- For layer $\mathrm{k}=\mathrm{N}$ downto 1:
- Compute $J_{\mathbf{y}_{k}}\left(\mathbf{z}_{k}\right)$
- Will require intermediate values computed in the forward pass
- Backward recursion step:

Note analogy to forward pass

$$
\begin{aligned}
& \nabla_{\mathbf{z}_{k}} \operatorname{Div}=\nabla_{\mathbf{y}_{k}} \operatorname{Div} J_{\mathbf{y}_{k}}\left(\mathbf{z}_{k}\right) \\
& \nabla_{\mathbf{y}_{k-1}} \operatorname{Div}=\nabla_{\mathbf{z}_{k}} \operatorname{Div} \mathbf{W}_{k}
\end{aligned}
$$

- Gradient computation:

$$
\begin{gathered}
\nabla_{\mathbf{w}_{k}} \text { Div }=\mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} \text { Div } \\
\nabla_{\mathbf{b}_{k}} \text { Div }=\nabla_{\mathbf{z}_{k}} \text { Div }
\end{gathered}
$$

For comparison: The Forward Pass

- Set $\mathbf{y}_{0}=\mathbf{x}$
- For layer $\mathrm{k}=1$ to N :
- Forward recursion step:

$$
\begin{gathered}
\mathbf{z}_{k}=\mathbf{W}_{k} \mathbf{y}_{k-1}+\mathbf{b}_{k} \\
\mathbf{y}_{k}=\boldsymbol{f}_{k}\left(\mathbf{z}_{k}\right)
\end{gathered}
$$

- Output:

$$
\mathbf{Y}=\mathbf{y}_{N}
$$

Neural network training algorithm

- Initialize all weights and biases ($\mathbf{W}_{1}, \mathbf{b}_{1}, \mathbf{W}_{2}, \mathbf{b}_{2}, \ldots, \mathbf{W}_{N}, \mathbf{b}_{N}$)
- Do:
- Loss $=0$
- For all k, initialize $\nabla_{\mathbf{W}_{k}}$ Loss $=0, \nabla_{\mathbf{b}_{k}}$ Loss $=0$
- For all $t=1: T \quad \#$ Loop through training instances
- Forward pass : Compute
- Output $Y\left(X_{t}\right)$
- Divergence $\operatorname{Div}\left(Y_{t}, d_{t}\right)$
- Loss += $\operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right)$
- Backward pass: For all k compute:
- $\nabla_{\mathbf{y}_{k}} \operatorname{Div}=\nabla_{\mathbf{z}_{k}+1} \operatorname{Div} \mathbf{W}_{k+1}$
$-\nabla_{\mathbf{z}_{k}} \operatorname{Div}=\nabla_{\mathbf{y}_{k}} \operatorname{Div} J_{\mathbf{y}_{k}}\left(\mathbf{z}_{k}\right)$
$-\nabla_{\mathbf{W}_{k}} \operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right)=\mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} \operatorname{Div} ; \nabla_{\mathbf{b}_{k}} \operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right)=\nabla_{\mathbf{z}_{k}} \operatorname{Div}$
$-\nabla_{\mathbf{W}_{k}} \operatorname{Loss}+=\nabla_{\mathbf{W}_{k}} \operatorname{Div}\left(\boldsymbol{Y}_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right) ; \nabla_{\mathbf{b}_{k}} \operatorname{Loss}+=\nabla_{\mathbf{b}_{k}} \operatorname{Div}\left(Y_{t}, \boldsymbol{d}_{\boldsymbol{t}}\right)$
- For all k, update:

$$
\mathbf{W}_{k}=\mathbf{W}_{k}-\frac{\eta}{T}\left(\nabla_{\mathbf{W}_{k}} \text { Loss }\right)^{T} ; \quad \mathbf{b}_{k}=\mathbf{b}_{k}-\frac{\eta}{T}\left(\nabla_{\mathbf{w}_{k}} \text { Loss }\right)^{T}
$$

- Until Loss has converged

Setting up for digit recognition

Training data

- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation
- $Y \in(0,1)$
- d is either 0 or 1
- Use KL divergence
- Backpropagation to compute derivatives
- To apply in gradient descent to learn network parameters

Recognizing the digit

Training data

$(5,5)$	$(2,2)$
$(2,2)$	$(4,4)$
$(0,0)$	$(2,2)$

- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
- First ten outputs correspond to the ten digits
- Optional 11th is for none of the above
- Softmax output layer:
- Ideal output: One of the outputs goes to 1 , the others go to 0
- Backpropagation with KL divergence
- To compute derivatives for gradient descent updates to learn network

Story so far

- Neural networks must be trained to minimize the average divergence between the output of the network and the desired output over a set of training instances, with respect to network parameters.
- Minimization is performed using gradient descent
- Gradients (derivatives) of the divergence (for any individual instance) w.r.t. network parameters can be computed using backpropagation
- Which requires a "forward" pass of inference followed by a "backward" pass of gradient computation
- The computed gradients can be incorporated into gradient descent

Issues

- Convergence: How well does it learn
- And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- Etc..

Next up

- Convergence and generalization

