The Synthesis of Two-Terminal Switching Circuits
By CLAUDE. E. SHANNON
PART I: GENERAL THEORY

1. INTRODUCTION

HE theory of switching circuits may be divided into two major divi-

sions, analysis and synthesis. The problem of analysis, determining
the manner of operation of a given switching circuit, is comparatively
simple. The inverse problem of finding a circuit satisfying certain given
operating conditions, and in particular the best circuit is, in general, more
difficult and more important from the practical standpeint. A basic part
of the general synthesis problem is the design of a two-terminal network
with given operating characteristics, and we shall consider some aspects of
this problem.

Switching circuits can be studied by means of Boolean Algebra.!'? This
is a branch of mathematics that was first investigated by George Boole in
connection with the study of logic, and has since been applied in various
other fields, such as an axiomatic formulation of Biology,® the study of neural
networks in the nervous system,* the analysis of insurance policies,® prob-
ability and set theory, etc.

Perhaps the simplest interpretation of Boolean Algebra and the one
closest to the application to switching circuits is in terms of propositions.
A letter X, say, in the algebra corresponds to a logical proposition. The
sum of two letters X 4 Y represents the proposition “X or ¥’ and the
product X1 represents the proposition “X and ¥, The symbol X’ is used
to represent the negation of proposition X, i.e. the proposition “not X”’.
The constants 1 and O represent truth and falsity respectively. Thus
X+ ¥ = 1 means X or ¥ is true, while X + YZ’ = 0 means X or (¥ and
the contradiction of Z) is false.

The interpretation of Boolean Algebra in terms of switching circuits®-*-#-1"
is very similar. The symbol X in the algebra is interpreted to mean a make
(front) contact on a relay or switch. The negation of X, written X',
represents a break (back) contact on the relay or switch. The constants 0
and 1 represent closed and open circuits respectively and the combining
operations of addition and multiplication correspond to series and parallel
connections of the switching elements involved. These conventions are
shown in Fig. 1. With this identification it is possible to write an aigebraic
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Fig. 1—Hindrance functions for simple circuits.

expression corresponding to a two-terminal network. This expression will
involve the various relays whose contacts appear in the network and will be
called the hindrance or hindrance function of the network. The last net-
work in Fig. 1 is a simple example.

Boolean expressions can be manipulated in a manner very similar to
ordinary algebraic expressions. Terms can be rearranged, multiplied out,
factored and combined according to all the standard rules of numerical
algebra. We have, for example, in Boolean Algebra the following identities’

0+ X=X
0-X=0
X=X

X+¥V=Y+X
XY =YX

X+¥+2)=X+V)+4
X(¥zZ) = (XY)Z
X(Y+2) = XY + XZ

The interpretation of some of these in terms of switching circuits is shown
in Fig. 2.
There are a number of further rules in Boolean Algebra which allow
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Fig. 2—Interpretation of some algebraic identities.

simplifications of expressions that are not possible in ordinary algebra.
The more important of these are:

X=X4+X=X+X+ X = etc.
X=X-X=XX-X = etc

X+1=1
X+¥VZ=X+1NX+2)
X+X =1

X-X' =0

X+ ¥) =XV
(XYY =X + V'

The circuit interpretation of some of these is shown in Fig. 3. These rules
make the manipulation of Boolean expressions considerably simpler than
ordinary algebra. There is no need, for example, for numerical coefficients
or for exponents, since nX = X = X.

By means of Boolean Algebra it is possible to tind many circuits equivalent
in operating characteristics to a given circuit. The hindrance of the given
circuit is written down and manipulated according to the rules. Each
different resulting expression represents a new circuit equivalent to the given
one. In particular, expressions may be manipulated to eliminate elements
which are unnecessary, resulting in simple circuits.

Any expression involving a number of variables X;, X2, ---, X, is
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called a function of these variables and written in ordinary function notation,
J(Xy, Xy, ---,X,). Thus wemighthave f(X,V,Z)=X4 V' Z+ XZ'.
In Boolean Algebra there are a number of important general theorems which
hold for any function. It is possible to expand a function about one or more
of its arguments as follows:

f(leXZ)"' ,X,.) = le(l;XZ: )X")+X,f(01X2) 1Xﬂ)
This is an expansion about X; . The term f(1, X, , - - - , X,;) is the function

X X X X X X
" 0——e = =0 O0—0. O——8 = o © 0 © o0
X = X + X = X4+ X+ X
.—oxo—o [ ] = L] L]
X+ =

X Y

Y ‘ O=—0
o—ox =
.+ - Lo
X + Y2 = (X+Y)(x+ 2)
X
= Gl
L
XX! = [+]

Fig. 3—Interpretation of some special Boolean identities.

f(X1, Xa, - -+, Xa) with 1 substituted for X, and 0 for X’, and conversely

forthe term (0, Xz, --- ,X.). Anexpansionabout X;and X,is:
f(XI;Xiy o )Xﬂ) = XlX?f(I)I:X-'!v-' "t :Xn)+X1X;f(1)0,X3) e 1Xﬁ)
+ XiXa/(0, 1, X, -+, X)) + XiX2f(1, 1, Xs, -++ , Xo)

This may be continued to give expansions about any number of variables.
When carried out for all # variables, f is written as a sum of 2* products
each with a coefficient which does not depend on any of the variables.
Each coefficient is therefore a constant, either O or 1.

There is a similar expansion whereby f is expanded as a product:

f(X].,X2, ’X2)
=Xy + 0, Xs, -+, X [X1 + f(1, Xa, -+, X)]
= [Xi+ X2+ /0,0, - , X ) [X1 4+ X2+ f(0, 1, -+ - , X)]
X1+ X2+ £1,0, -+, XIX{ + Xa + /(1 1, -+, Xa)]

= etc.
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‘The following are some further identities for general functions:
X+f/x,v,2--)=X4+50,7,2,--)
X+fx,v,zZ - )=X+/1,7,2,--)
XX, v,z - )=X/Q1,Y,2,---)
XX, ¥, Z,--)=X70,7,2,---)
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= xYF(4,4,%2) + XY F£(0,0,Y2) + XY f(0,1,Y,2) + X ¥ £(0,0,Y,2)
Fig. 4—Examples of some functional identities.

The network interpretations of some of these identities are shown in Fig.
4. A little thought will show that they are true, in general, for switching
circuits,

The hindrance function associated with a two-terminal network describes
the network completely from the external point of view. We can determine
from it whether the circuit will be open or closed for any particular position
of therelays. This is done by giving the variables corresponding to operated
relays the value O {since the make contacts of these are then closed and the
break contacts open) and unoperated relays the value 1. For example, with
the function f = W[X + ¥Y(Z + X’)] suppose relays X and ¥ operated and
Z and W not operated. Thenf = 1[0+ 0(1 4+ 1)] = 0 and in this condition
the circuit is closed.
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A hindrance function corresponds explicitly to a series-parallel type of
circuit, i.e. a circuit containing only series and parallel connections. This
is because the expression is made up of sum and product operations. There
is however, a hindrance function representing the operating characteristics
(conditions for open or closed circuits between the two terminals) for any
network, series-parallel or not. The hindrance for non-series-parallel net-
works can be found by several methods of which one is indicated in Fig. §
for a simple bridge circuit. The hindrance is written as the product of a
set of factors. Each factor is the series hindrance of a possible path between
the two terminals. Further details concerning the Boolean method for
switching circuits may be found in the references cited above.

This paper is concerned with the problem of synthesizing a two-terminal
circuit which represents a given hindrance function f(X;, -++ , X,). Since
any given function f can be realized in an unlimited number of different

f= (WHX)(z+s)(W+Y+3)(z+Y+x)

Fig. 5—Hindrance of a bridge circuit.

ways, the particular design chosen must depend upon other considerations.
The most common of these determining criteria is that of economy of ele-
ments, which may be of several types, for example:

(1) We may wish to realize our function with the least total number of
switching elements, regardless of which variables they represent.

(2) We may wish to find the circuit using the least total number of relay
springs. This requirement sometimes leads to a solution different
from (1), since contiguous make and break elements may be combined
into transfer elements so that circuits which tend to group make and
break contacts on the same relay into pairs will be advantageous
for (2) but not necessarily for (1).

(3) We may wish to distribute the spring loading on all the relays or on
some subset of the relays as evenly as possible. Thus, we might try
to find the circuit in which the most heavily loaded relay was as
lightly loaded as possible. More generally, we might desire a circuit
in which the loading on the relays is of some specified sort, or as near
as possible to this given distribution. For example, if the relay X,
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must operate very quickly, while X, and X, have no essential time
limitations but are ordinary U-type relays, and X, is a multicontact
relay on which many contacts are available, we would probably try
to design a circuit for f(X1, X1, X5, X4) in such a way as, first of all,
to minimize the loading on X,, next to equalize the loading on X,
and X; keeping it at the same time as low as possible, and finally
not to load X any more than necessary. Problems of this sort may
be called problems in spring-load distribution.

Although all equivalent circuits representing a given function f which
contain only series and parallel connections can be found with the aid of
Boolean Algebra, the most economical circuit in any of the above senses will
often not be of this type. The problem of synthesizing non-series-parallel
circuits is exceedingly difticult. It is even more difhcult to show that a
circuit found in some way is the mos! economical one to realize a given
function., The difficulty springs from the large number of essentially
different networks available and more particularly from the lack of a
simple mathematical idiom for representing these circuits.

We will describe a new design method whereby any function f(Xy, X, -+ -,
X,) may be realized, and frequently with a considerable saving of elements
over other methods, particularly when the number of variables » is large.
The circuits obtained by this method will not, in general, be of the series-
parallel type, and, in fact, they will usually not even be planar. This
method is of interest theoretically as well as for practical design purposes,
for it allows us to set new upper limits for certain numerical functions asso-
ciated with relay circuits. Let us make the following definitions:

A(n) is defined as the least number such that any function of # variables
can be realized with not more than A(n) elements.* Thus, any function of
n variables can be realized with A(») elements and at least one function with
no less.

i(n) is defined as the least number such that given any function f of »
variables, there is a two-terminal network having the hindrance f and using
not more than u(n) elements on the most heavily loaded relay.

The first part of this paper deals with the general design method and the
behaviour of A(n). The second part is concerned with the possibility of
various types of spring load distribution, and in the third part we will study
certain classes of functions that are especially easy to synthesize, and give
some miscellaneous theorems on switching networks and functions.

2. FunpaMENTAL DESIGN THEOREM
The method of design referred to above is based on a simple theorem deal-
ing with the interconnection of two switching networks. We shall first

* An element means a make or break contact on one relay. A iransfer elemenf means
a make-and-break with a common spring, and contains two elements.
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state and prove this theorem. Suppose that M and N (Fig. 6) are two
(n + 1) terminal networks, M having the hindrance functions U (¢ =
1, 2, - -+ n) between terminals ¢ and £, and N having the functions V,
between band k. Further,let M besuchthat Uy = 1{(j,k= 1,2, --- , n).
We will say, in this case, that M is a disjunctive network. Under these con-
ditions we shall prove the following:

Theorem 1: If the corresponding terminals 1, 2, --- | n of M and N are
connected together, then

n

Us = [T (U + Vi) (1)

k=1

where Uas is the hindrance from terminal a to lerminal b.

L
fr——= 1 i 1
o2 | 2
(—e3 ' 3:
ae—— ™M i { i N [—ab
Pl
vl
—en | ne—
L

Fig. 6—Network for general design theorem.

Proof: It is known that the hindrance U., may be found by taking the
product of the hindrances of all possible paths from a to 4 along the elemente
of the network." We may divide these paths into those which cross the line
L once, those which cross it three times, those which cross it five times, etc.
Let the product of the hindrances in the first class be W, , in the second
class W, etc. Thus

Up = Wy WsWg - (2)

Now clearly

136"

il

I[ W+ vo
and also
Wy=Ws=--- =1
since each term in any of these must contain a summand of the type Uy,
which we have assumed to be 1. Substituting in (2) we have the desired

result.
The method of using this theorem to synthesize networks may be roughly
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described as follows: The function to be realized is written in the form of a
product of the type (1) in such a way that the functions U are the same for a
large class of functions, the V; determining the particular one under consider-
ation. A basic disjunctive network M is constructed having the functions
U}, between terminals @ and 2. A network NV for obtaining the functions
Vi is then found by inspection or according to certain general rules. We
will now consider just how this can be done in various cases.

3. DEsioN oF NETWORKS FOR GENERAL FUNCTIONS—BEHAVIOR OF A(n)-

a. Functions of One, Two and Three Variables:

Functions of one or two variables may be dismissed easily since the
number of such functions is so small. Thus, with one variable X, the
possible functions are only:

0,1, X, X

and obviously A(1) = 1, x(1) = 1.
With two variables X and ¥ there are 16 possible functions:

0XY XY Xv X'y X'y XY 4+ XV
11Xy X+4+Y X4V X4+Y X4+V XY +XV

so that A(2) = 4, u(2) = 2.

We will next show that any function of three variables f(X, ¥, Z) can be
realized with not more than eight elements and with not more than four
from any one relay. Any function of three variables can be expanded in a
product as follows:

XV, 2)=[X+ 7Y+ 0,0, 2)]X + ¥+ f(0,1, Z)]
X'+ ¥V 4 71,0, 2] (X' + V' + /1, 1, Z)].

In the terminology of Theorem 1 we let

Ui=X+7V Vi = 10,0, 2)
Us= X+ V Vi = £0, 1, Z)
Up=X + ¥ Vs = (1,0, Z)
Us= X'+ V' Vi= 11,1, 2)

so that
4
Ua = f(X,1,2) = H (Cr + Vi)

The above U functions are realized with the network M of Fig. 7 and it is
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easily seen that U, = 1 (j,k = 1,2, 3,4). The problem now is to construct
a second network N having the V functions V;, Vi, Vs, Vi. Each of
these is a function of the one variable Z and must, therefore, be one of the
four possible functions of one variable:

01,2 2.

Consider the network & of Fig. 8. If any of the V’s are equal to 0, connect
the corresponding terminals of M to the terminal of V marked 0; if any are
equal to Z, connect these terminals of M to the terminal of N marked Z,
etc. Those which are 1 are, of course, not connected to anything. It is
clear from Theorem 1 that the network thus obtained will realize the function
(X, Y,Z). Inmany cases some of the elements will be superfluous, e.g.,
if one of the V, is equal to 1, the element of M connected to terminal ¢ can

vt
X' ¥y —3
MCY:Y'D\“%

Fig. 7—Disjunctive tree with two bays.

be eliminated. At worst M contains six elements and N contains two.
The variable X appears twice, ¥ four times and Z twice. Of course, it is
completely arbitrary which variables we call X, ¥, and Z. We have thus
proved somewhat more than we stated above, namely,

Theorem 2: Any funclion of three variables may be realized using not more
ihan 2, 2, and 4 elements from the three variables in any desired order. Thus
A@B) < 8, u(3) < 4. Further, since make and break elements appear in
adjacent pairs we can obtain the distribution 1, 1, 2, in lerms of iransfer ele-
ments.

The theorem gives only upper limits for A(3) and u(3). The question
immediately arises as to whether by some other design method these limits
could be lowered, i.e., can the < signs be replaced by < signs. It can be
shown by a study of special cases that A(3) = 8, the function

XOY®Z=XVYZ+YVZ)+X (VZ + V'Z)

requiring eight elements in its most economical realization. u(3), however,
is actually 3.
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It seems probable that, in general, the function
10X @ - @ X,

requires 4(n — 1) elements, but no proof has been found. Proving that a
certain function cannot be realized with a small number of elements is
somewhat like proving a number transcendental; we will show later that
almost all* functions require a large number of elements, but it is difficult
to show that a particular one does.

0 e |

Fig. 8—Network giving all functions of one variable.
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Fig. 9—Disjunctive tree with three bays.

b. Functions of Four Variables:

In synthesizing functions of four variables by the same method, two
courses are open. First, we may expand the function as follows:

JW, X, ¥, 2) =W+ X+ Y+ Vi)W + X+ V' + V2.
W+ X+ V4 V@)W + X + YV + Vd2)
W+ X+ Y+ VDWW + X+ ¥ + Vi(2)).
W+ X + Y+ V(DLW + X'+ YV + Vis(2)).

By this expansion we wouldlet Uy = W+ X+ V, U= W+ X+ Y, -,
Us = W 4+ X'+ Y’ and construct the M network in Fig. 9. N would
* We use the expression “almost all” in the arithmetic sense: e.g., a property is true

of almost all functions of n variables if the fraction of all functions of # variables for which
it is not true = 0 as # — .
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again be as in Fig. 8, and by the same type of reasoning it can be seen that
Ad) < 16.

Using a slightly more complicated method, however, it is possible to
reduce this limit. Let the function be expanded in the following way:

W, X, V,2) =W+ X+ V¥, 2)]- W + X' + Vy(V, Z)]
W'+ X + VsV, )1 [W + X' + ViV, 2)].

We may use a network of the type of Fig. 7 for M. The V functions are
now functions of two variables ¥ and Z and may be any of the 16 functions:

40 ¥ vz Y+z  [Vz+vz
1 v vz Y+ 27 YZ+YV'Z
B c D
z vz V'+2Z
z vz o A

We have divided the functions into five groups, 4, B, C, D and E for later
reference. We are going to show that any function of four variables can

. : oy
———< z>—4"’
N

Y

Fig. 10—Simplifying network.

be realized with not more than 14 elements. This means that we must
construct a network N using not more than eight elements (since there are
six in the M network) for any selection of four functions from those listed
above. To prove this, a number of special cases must be considered and
dealt with separately:

(1) I all four functions are from the groups, 4, B, C, and D, N will
certainly not contain more than eight elements, since eight letters at most
can appear in the four functions.

(2) We assume now that just one of the functions is from group E;
without loss of generality we may take it to be YZ’' + V'Z, for it is the other,
replacing ¥ by ¥’ transforms it into this. If one or more of the remaining
functions are from groups A4 or B the situation is satisfactory, for this func-
tion need require no elements. Obviously 0 and 1 require no elements and
Y, Y’,Z or Z’ may be “tapped off”” from the circuit for ¥ Z’ 4 ¥’Z by writing
itas (V 4+ Z)(V' + Z’). For example, ¥’ may be obtained with the circuit
of Fig. 10. This leaves four elements, certainly a sufficient number for
any two functions from 4, B, C, or D.
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(3) Now, still assuming we have one function, Y2’ 4+ V'Z, from E,
suppose at least two of the remaining are from D. Using a similar “tapping
off”’ process we can save an element on each of these. For instance, if the
functions are ¥ 4+ Z and ¥’ + Z’ the circuit would be as shown in Fig. 11.

{4) Under the same assumption, then, our worst case is when two of the
functions are from C and one from D, or all three from C. This latter case
is satisfactory since, then, at least one of the three must be a term of
YZ' + Y'Z and can be “tapped off.” The former case is bad only when
the two functions from C are YZ and ¥’Z’. It may be seen that the only

.—Oz

2 ,
Fig. 11—Simplifying network,

Fig. 12—Simplifying network.

essentially different choices for the function from Dare ¥V 4+ Zand V' + Z.
That the four types of functions f resulting may be realized with 14 elements
can be shown by writing out typical functions and reducing by Boolean
Algebra.

(5) We now consider the cases where two of the functions are from E.
Using the circuit of Fig. 12, we can tap off functions or parts of functions
from 4, B or D, and it will be seen that the only difficult cases are the fol-
lowing: (a) Two functions from C. 1In this case either the function f is
symmetric in ¥ and Z or else both of the two functions may be obtained
from the circuits for the E functions of Fig. 12. The symmetric case is
handled in a later section. (b) One is from C, the other from D. There
is only one unsymmetric case. We assume the four functions are ¥ @ Z,
I"® Z', YZand Y + Z'. This gives rise to four types of functions f,
which can all be reduced by algebraic methods. This completes the proof.
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Theorem 3: Any function of four variables can be realized with nol more
than 14 elements.

¢. Functions of More Than Four Variables:
Any function of five variables may be written
f(Xy, o, Xo) = [Xs + filXe, -, XOIIXs 4+ fo(Xy, -+, X9

and since, as we have just shown, the two functions of four variables can
be realized with 14 elements each, f(X,, - -+ X;) can be realized with 30

]
xe — %o~
X — X5
Y o— B P
’ Y
Y 'o— -0 &
X! Y e———— x!

x' Y'&————1 X’
X +Y’o—0xojr-{:v}ﬁ

x’+\’o—-oYo-—J
XY 1
x*
Xyle X'Y
Y Y?
XY o————
x!
XY+ X' Y
¥ 14

Fig. 13—Network giving all functions of two variables.

Now consider a function f(X,, Xs, -+, X.) of n variables. For
5 < n £ 13 we get the best limit by expanding about all but two variables.
f(Xl,Xz, ,Xn) =X+ X4+ Xoz t Vl(Xn—l,Xn)]

X+ Xa 4 X+ V(X e, Va)l (4)

The V’s are all functions of the variables Xn_;, X» and may be obtained
from the general N network of Fig. 13, in which every function of two
variables appears. This network contains 20 elements which are grouped
into five transfer elements for one variable and five for the other.* The
M network for (4), shown in Fig. 14, requires in general 2" — 2 elements.
Thus we have:

* Several other networks with the same property as Fig. 13 have been found, but they
all require 20 elements.
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Theorem 4. An) < 2" + 18

d. Upper Limits for A() with Large n.

Of course, it is not often necessary to synthesize a function of more than
say 10 variables, but it is of considerable theoretical interest to determine
as closely as possible the behavior of A(») for large #.

X

Fig. 14—Disjunctive tree with (# — 2) bays.
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Fig. 15—Network giving all functions of (m + 1) variables constructed from one giving
all functions of m variables.

We will first prove a theorem placing limits on the number of elements
required in a network analogous to Fig. 13 but generalized for m variables.

Theorem 5. An N network realizing all 2°" functions of m variables can
be constructed using not more than 2-2°" elements, i.e., not more than two ele-
ments per function. Any network wilk lhis property uses at least (3 — )
elements per function for any e > 0 with n sufficiently large.

The first part will be proved by induction. We have seen it to be true
form = 1, 2. Suppose it is true for some m with the network V of Fig. 15.
Any function of 2 - 1 variables can be written

g = [Xm+l +fa][X'm+1 +fb]
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where f, and f; involve only m variables. By connecting from g to the cor-
responding f, and f, terminals of the smaller network, as shown typically
for gz, we see from Theorem 1 that all the g functions can be obtained.
Among these will be the 2*" f functions and these can be obtained simply
by connecting across to the f functions in question without any additional
elements. Thus the entire network uses less than

@ - 2224 2.2

om

elements, since the V network by assumption uses less than 2-2°” and the
first term in this expression is the number of added elements.

The second statement of Theorem 7 can be proved as follows. Suppose
we have a network, Fig. 16, with the required property. The terminals
can be divided into three classes, those that have one or less elements di-

——e
l—ef>

n—

m
faz

Fig. 16—Network giving all functions of m variables.

tectly connected, those with two, and those with three or more. The first
set consists of the functions 0 and 1 and functions of the type

X +f) =X+ fxo

where X is some variable or pnmed variable, The number of such functions
is not greater than 2m.2"" " for there are 2m ways of selecting an “X"’
and then 2*" " different functions Jfx=o of the remaining m — 1 variables.
Hence the terminals in this class as a fraction of the total — 0 as m — .
Functions of the second class have the form

= (X + )Y 4 1)
In case X # ¥’ this may be written
XY + XV'gxoyvmo + X'Vegzover + X'Vgroov—o

and there are not more than (2m)(2m — 2)[2*""}" such functions, again a

vanishingly small fraction. In case X = ¥’ we have the situation shown
in Fig. 17 and the XX’ connection can never carry ground to another
terminal since it is always open as a series combination. The inner ends
of these elements can therefore be removed and connected to terminals
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corresponding to functions of less than m variables according to the equation

g= X+ X 4+ fi) = (X + fu=0)(X’ + fox=1)

if they are not already so connected. This means that all terminals of the
second class are then connected to a vanishingly small fraction of the total
terminals. We can then attribute two elements each to these terminals
and at least one and one-half each to the terminals of the third group. As
these two groups exhaust the terminals except for a fraction which — 0
as n— o, the theorem follows.

If, in synthesizing a function of » variables, we break off the tree at the
(n — m)th bay, the tree will contain 2" ™" — 2 elements, and we can find
an N network with not more than 2°"-2 elements exhibiting every function
of the remaining m variables. Hence

M) 27— 24227 < v 2 O

1>\°x
—x!

V.

Fig. 17—Possible situation in Fig. 16.

for every integer m. We wish to find the integer M = M(»n) minimizing
this upper bound.
Considering 7 as a continuous variable and » fixed, the function

f(m) — 2n—m+l + 22"'_2

clearly has just one minimum. This minimum must therefore lie between
my and m,; 4 1, where

flm) = f(mi + 1)
ie., ar it 9Py = v )

or 2" = Mt 2Py

Now m; cannot be an integer since the right-hand side is a power of two
and the second term is less than half the first. It follows that to find the
infeger M making f(M) a minimum we must take for M the least integer
satisfying

oM +1

211 —<_ 2M+12
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Thus M satisfies:

M+14+2"">u> M4 2" (5)
This gives:
n <11 M=2
nN<n<2 M=3
20 < n < 37 M=4
31T<n<70 M=35
70 < n <135 M=6
etc.

L]
AV

3 4 5 6 7 8 9 10 1
LOGaN

Fig. 18—Behaviour of g(n).

(
q

n+1
Our upper bound for A{n) behaves something like . with a superimposed

saw-tooth oscillation as »n varies between powers of two, due to the fact that
m must be an integer. If we define g(n) by

n+l

— 2
M 4 22 = gm) "

M being determined to minimize the function (i.e., M satisfying (5)), then
g(n) varies somewhat as shown in Fig. 18 when plotted against logs #. The
maxima occur just beyond powers of two, and closer and closer to them
asn— . Also, the saw-tooth shape becomes more and more exact. The
sudden drops occur just after we change from one value of M to the next.
These facts lead to the following:

Theorem 6. (a) For all n

n+3

An) < 2 .
7

() For almosi all n

n+2

A < -,
”
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(c) There is an infinite sequence of n; for which

2n+l
>\(71«i)<7‘(1+'6) e > 0.

These results can be proved rigorously without much difficulty.
¢. A Lower Limit for A(n) with Large n.

Up to now most of our work has been toward the determination of upper
limits for A(n). We have seen that for all #

An) < B L.
b4

. . 2,
We now ask whether this function B s anywhere near the true value

of A(n), or may A(»n) be perhaps dominated by a smaller order of infinity,
e.g., n*. It was thought for a time, in fact, that A(n) might be limited by
#* for all n, arguing from the first few values: 1, 4, 8, 14, We will show that

.. 2" .
this is far from the truth, for actually s the correct order of magni-

tude of A(n):

ALY cxmy<BZ
n ”

for all n. A closely associated question to which a partial answer will be
given is the following: Suppose we define the “complexity” of a given func-
tion f of n variables as the ratio of the number of elements in the most
economical realization of f to A(z). Then any function has a complexity
lying between 0 and 1. Are most functions simple or complex?

Theorem 7: For all sufficiently large n, all functions of n variables excepting

a fraction § require at least (1 — e)% elements, where e and & are arbitrarily

small positive numbers. Hence for large n

o) > (1 — o =

and almost all functions have a complexity > (1 — ¢). For a cerlain sequence
n; almost all functions have a complexity > 1(1 — ¢).

The proof of this theorem is rather interesting, for it is a pure existence
proof. We do not show that any particular function or set of functions

requires {1 — ¢) z elements, but rather that it is impossible for all functions
n
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to require less. This will be done by showing that there are not enough
networks with less than (1 — e) — branches to go around, i.e., to represent

all the 2" functions of varlables, taking account, of course, of the different
assignments of the variables to the branches of each network. This is only
possible due to the extremely rapid increase of the function 2*°. We require
the following:

Lemma: The number of two-terminal networks with K or less branches is
less than (6K)F,

Any two-terminal network with K or less branches can be constructed
as follows: First line up the K branches as below with the two terminals
a and &.

a. 1—r
22
3—3
4—4'
b. K—K’
We first connect the terminals g, 8, 1, 2, - - - , K together in the desired way.

The number of different ways we can do this is certainly limited by the num-
ber of partitions of K 4 2 which, in turn, is less than
2K+l

for this is the number of ways we can put one or more division marks between
the symbols ¢, 1, --- , K, b. Now, assuming g, 1, 2, --- , K, b, intercon-
nected in the desired manner, we can connect 1’ either to one of these ter-
minals or to an additional junction point, i.e., 1’ has a choice of at most

K+3

terminals, 2’ has a choice of at most K + 4, etc. Hence the number of
networks is certainly less than

UK+ 3K +4)(K+5) - Q2K+ 3)
<(6K)X K>3

and the theorem is readily verified for K = 1, 2.
We now return to the proof of Theorem 7. The number of functions of »

(1 — e2°
7

variables that can be realized with elements is certainly less than

the number of networks we can construct with this many branches multi-
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plied by the number of assignments of the variables to the branches, i.e.,
it is less than

nT}(l—e)(2%/n)
H = (2u)70em [6(1 —€) 2;7]

Hence

logz H

2" 2" 2']
(1- e)—n—log2n+(1 - e);log(l—- e); -6
= (1 — ¢) 2* 4 terms dominated by this term for large =.

By choosing # so large that 5 2" dominates the other terms of log H we
arrive at the inequality
logs H < (1 — &) 27
H < 27w
But there are S = 2°" functions of # variables and

H 2(1—e1)2"

S 27"

—0 as n—> o,

Hence almost all functions require more than (1 — €)2" elements.
Now, since for all # > N there is at least one function requiring more than

(say) % % elements and since A(n) > 0 for » > 0, we can say that for all n,

A#n) > 4 z
i

for some constant 4 > 0, for we need only choose 4 to be the minimum
number in the finite set:

1 M) A2 AB) AN
'2’ ’ -21 ’ 22 ) Zj y "7 2_N
1 2 3 N

Thus A{n) is of the order of magnitude of %I . The other parts of Theorem

8 follow easily from what we have already shown.

The writer is of the opinion that almost all functions have a complexity
nearly 1,i.e.,, > 1 — e. This could be shown at least for an infinite sequence
#; if the Lemma could be improved to show that the number of networks is
less than (6K)*"* for large K. Although several methods have been used
in counting the networks with K branches they all give the result (6K)x.
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It may be of interest to show that for large X the number of networks is
greater than

(GK)K“

This may be done by an inversion of the above argument. Let f(K) be the
number of networks with K branches. Now, since there are 2* functions of

n+2
n variables and each can be realized with (14 ¢) 27 elements (» sufficiently

large),

n+2
f ((1 + e) z_n_“) (zn)(1+e)(2n+2/n) > 22-
for n large. But assuming f(K) < (6K)™* reverses the inequality, as
is readily verified. Also, for an infinite sequence of K,

J(&) > (6K)™"

Since there is no obvious reason why f(K) should be connected with powers
of 2 it seems likely that this is true forall large K.

We may summarize what we have proved concerning the behavior of
n+l
A(n) for large nas follows. A(n) varies somewhat as Z—n— ;if we let

n+l

AMn) = Ap —
n

then, for large #, A . lies between 3 — eand (2 + ¢), while. for an infinite
sequenceof n,4 — e < 4. <1+ e
We have proved, incidentally, that the new design methed cannot, in a
sense, be improved very much. With series-parallel circuits the best known
limit* for A(n) is
An) < 32142

n

- elements.” We have lowered
logg n

n

the order of infinity, dividing by at least lovg' - and possibly by n. The
2

best that can be done now is to divide by a constant factor < 4, and for
some #, < 2. The possibility of a design method which does this seems,
however, quite unlikely. Of course, these remarks apply only to a perfectly
general design method, i.e., one applicable to any function. Many special
classes of functions can be realized by special methods with a great saving.

and almost all functions require (1 — ¢)

* Mr. J. Riordan has pointed out an error in my reasoning in (6) leading to the statement
that this limit isactually reached by the function X, ® X; @ ... @ X.,and basshown that
this function and its negative can be realized with about n? clements. The error occurs
in Part IV after equation 19 and lies in the assumption that the factorization given is
the best.
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PART II: CONTACT LOAD DISTRIBUTION

4. FUNDAMENTAL PRINCIPLES

We now consider the question of distributing the spring load on the relays
as evenly as possible or, more generally, according to some preassigned
scheme. It might be thought that an attempt to do this would usually
result in an increase in the total number of elements over the most economi-
cal circuit. This is by no means true; we will show that in many cases (in
fact, for almost all functions) a great many load distributions may be ob-
tained (including a nearly uniform distribution) while keeping the total
number of elements at the same minimum value. Incidentally this result
has a bearing on the behavior of u(%), for we may combine this result with

Fig. 19—Disjunctive tree with the contact distribution 1, 3, 3.
2nt+l

preceding theorems to show that u(n) is of the order of magnitude of as

n
n— o and also to get a good evaluation of u(#) for small n,

The problem is rather interesting mathematically, for it involves additive
number theory, a subject with few if any previous applications. Let us
first consider a few simple cases. Suppose we are realizing a function with
the tree of Fig. 9, The three variables appear as follows:

W, X, ¥ appear
2,4,8 times, respectively-
ot, in terms of transfer elements*
1,2,4.
Now, W, X, and Y may be interchanged in any way without altering the
operation of the tree. Also we can interchange X and ¥V in the lower branch

of the tree only without altering, its operation. This would give the dis-
tribution (Fig. 19)

1,33

* In this section we shall always speak in terms of transfer elements.
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A tree with four bays can be constructed with any of the following dis-
tributions

W X Y Z

1, 2, 4 8=1,2,4+1,24
1, 2,5 7=1,244+1,33
1, 2,6, 6=1,24+1,4,2
1, 3, 3, 8=1,24 +2,1,4
1, 3, 4, 7=1,3,3+2,1,4
1, 3,5 6=1,42+21,4
1, 4, 4, 6=1,33+313
1, 4, 5, 5=1,42 +3,1,3

and the variables may be interchanged in any manner. The “sums’’ on the
right show how these distributions are obtained. The first set of numbers
represents the upper half of the tree and the second set the lower half. They
are all reduced to the sum of sets 1, 2, 4 or 1, 3, 3 in some order, and these
sets are obtainable for trees with 3 bays as we already noted. Ingeneralitis
clear that if we can obtain the distributions

a1 ,82,043, ", 8n
br,ba, by, -, ba
for a tree with # bays then we can obtain the distribution
La+bi,a+ b, - 8,4+ ba

for a tree with #» + 1 bays.

Now note that all the distributions shown have the following property:
any one may be obtained from the first, 1, 2, 4, 8, by moving one or more
units from a larger number to a smaller number, or by a succession of such
operations, without moving any units to the number 1. Thus 1, 3, 3, 8 is
obtained by moving a unit from 4 to 2. The set 1, 4, 5, 5 is obtained by
first moving two units from the 8 to the 2, then one unit to the 4. Further-
more, every set that may be obtained from the set 1, 2, 4, 8 by this process
appears as a possible distribution. This operation is somewhat analogous
to heat flow—heat can only flow from a hotter body to a cooler one just as
units can only be transferred from higher numbers to lower ones in the above.

These considerations suggest that a disjunctive tree with » bays can be
constructed with any load distribution obtained by such a flow from the
initial distribution

1,2,4,8, .-+, 2~

We will now show that this is actually the case.
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First let us make the following definition: The symbol (a1, ¢a2, <+, @a)
represents any set of numbers &;, b5, - -+, b, that may be obtained from
the set @y, a2, « -+ , ¢, by the following operations:

1. Interchange of letters.

2. A flow from a larger number to a smaller one, no flow, however, being
allowed to the number 1. Thus we would write

1,2,4,8=(1,24,8)
4,4,1,6 = (1,2, 4, 8)
1,3,10,3,10 = (1, 2, 4, 8, 12)
but 2, 2 # (1, 3). It is possible to put the conditions that
by, b2, ba=(a1,az, -, an) (6)
into a more mathematical form. Let the a; and the 4; be arranged as non;

decreasing sequences. Then a necessary and sufficient condition for the
relation (6) is that

(1) b= 2 a s=1,2, -, m,
=] 1

(2) Z b; = Za-‘, and
1 1

(3) There are the same number of 1’s among the g; as among the b, .
The necessity of (2) and (3) is obvious. (1) follows from the fact that if
a; is non-decreasing, flow can only occur toward the left in the sequence

a1,Q2,Q3, ' " ,Qn
8
and the sum Z a; can only increase. Also it is easy to see the sufficiency of
1

the condition, for if &, , b5, - - - , b, satisfies (1), (2), and (3) we can get the
b; by first bringing a; up to by by a flow from the ¢; as close as possible to
a1 (keeping the “entropy’ low by a flow between elements of nearly the
same value), then bringing a» up to b (if necessary) etc. The details
are fairly obvious.

Additive number theory, or the problem of decomposing a number into the
sum of numbers satisfying certain conditions, (in our case this definition is
generalized to “‘sets of numbers”) enters through the following Lemma:

Lemma:Ifa;,as,---,a8. = (2,4,8,--+,27
then we can decompose the a; into the sum of two sets

a;=bi+ ¢
such that
blsb2s'“)bﬂ= (1)2’41"')2"-l)
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and
C1,02, " " ;60 = (17214:"';2"—l)

We may assume the g; arranged in a non-decreasing sequence, ¢; < as <
4z < --- € a,. In case ¢; = 2 the proof is easy. We have
1,2,4, ..., 21 B
1,2,4,---,2% C
2,4,8,--.,2" A
and a flow has occurred in the set
4,8,16,-.-,2"
to give a3, s, -+, Gn. Now any permissible flow in C corresponds to a

permissible flow in either A or B since if
cG=a+b>ci=ai+ b
then either a; > a; or b;>b
Thus at each flow in the sum we can make a corresponding flow in one or the

other of the summands to keep the addition true.
Now suppose g; > 2. Since the ¢, are non-decreasing

(n—1)a<@H—-2) —qg< 2 —2-3

Hence
n+1
m—1<i =3 1<
n—1
the last inequality being obvious for # > 5 and readily verified for » < 5.
This shows that (¢; — 1) and (a; — 1) lie between some powers of two in the
set
1,24, 2
Suppose
21 < (g, — 1) <€ 20
< (- 1)< a? g<p<(n—1)
Allow a flow between 2¢ and 24! until one of them reaches (a2, — 1), the
other (say) R; similarly for (¢; — 1) the other reaching S. As the start
toward our decomposition, then, we have the sets (after interchanges)
‘L
(@ —1) 1 2,4---277 R 22T...pr gL

1 ap— 11 2,4...29% 2970 27 ... iy grtlLL.gnd
@ as ‘ 4,8---2"_‘ Pt L om
L
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We must now adjust the values to the right of L — L to the values
@y,04, " ,8,. Letusdenote the sequence

4: 8: ] 2q—l’ (2?‘“1 + R)1 3.2q, 3'2TH: "o (2p + S)r 2p+2) B 2"

by w1, gz, "+, #taz. Now since all the rows in the above addition are
non-decreasing to the right of L — L, and no 1’s appear, we will have proved
the lemma if we can show that )
3 i+3
ZP(SZ‘R i=1:21"':(n_2)
f==1 =3

since we have shown this to be a sufficient condition that

3,80, ", 80 = (1,0, ", Hn-1)

and the decomposition proof we used for the first part will work. For
1< g — 2,i.e., before the term (27! + R)

> = 42— 1)

feml

and
43
2 i > day > 427 > i
3
since
9<?
Hence

+3

<X a Ti<g—2
1 3
Next, for (g — 1) < i < (p — 3), i.e., before the term (27 + 5)
S oui=4(2"" — 1)+ R+ 32227 — 1)
1

< 32" _4<3.2" — 5
since
R < 2¢

also again
i+3
dag> a7t
3

so that in this interval we also have the desired inequality. Finally for the
last interval,
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Zﬂi=2i—1—al—0252i+3—01—a2_2

and
=43 i+3

Za.-=Za.‘—al—aaZZ”B—al—az—Z
3 1
since
ay,Qz, " ,8, = (2,418: te ’Zn)
This proves the lemma.

5. Tue DisjoNcTivE TREE

It is now easy to prove the following:
Theorem 8: A disjunctive tree of n bays can be consiructed with any dis-
Iribution

1,02, ", 80 = (1,2’4’.._,2n—1)‘

We may prove thislby induction. We have seen it to be true for » =
2,3,4. Assuming it for n, it must be true for n 4 1since the Lemma shows
that any

a1,082, """ ,0n = (2)41 8) y2”)
can be decomposed into a sum which, by assumption, can be realized for the

two branches of the tree.
It is clear that among the possible distributions

(1y 2, 41 A} 2n—1)
for the tree, an “almost uniform” one can be found for all the variables but

one. That is, we can distribute the load on (¢ — 1) of them uniformly
except at worst for one element. We get, in fact, for

n=1 1

n=2 1,2

n=23 1,33

n=4 1,4,5, 5,

n=235 1,7,7,8, 8,

n==6 1,12, 12,12, 13, 13
n=17 1,21,21,21,21,21, 21
etc.

as nearly uniform distributions.

6. OTHER DISTRIBUTION PROBLEMS

Now let us consider the problem of load distribution in series-parallel
circuits. We shall prove the following:
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Theorem 9: Any function f(X,, X, -, X.) may be realized with a
series-parallel circuil with the following distribution:
(11 2) 4’7 T 2"—2), 22

in lerms of (ransfer elements.
This we prove by induction. It is true for » = 3, since any function of
three variables can be realized as follows:

JX, Y, 2) = [X + fi (¥, 20X + f2 (¥, 2)]

and £1(¥, Z) and f»(¥, Z) can each be realized with one transfer on ¥ and
one on Z. Thus f(X, ¥, Z) can be realized with the distribution 1, 2, 2,
Now assuming the theorem true for (z — 1) we have

X1, Xey o, Xa) = [Xn+ (X, X2y oo, X))
[Xil +f2(Xl) X?) T, Xﬂ*—‘)]
and

—3
,...,2"

—3
...’2n

4, 8,16, .-, 277

A simple application of the Lemma thus gives the desired result. Many
distributions beside those given by Theorem 9 are possible but no simple
criterion has yet been found for describing them. We cannot say any
distribution

(1,2,4,8, .-, 2" 27
(at least from our analysis) since for example
3,6,67=(24,8,8)
cannot be decomposed into two sets
a1,a2,a3,a,=(1,2,4,4)
and
b, b2, b5, ba=(1,2,4,4)

It appears, however, that the almost uniform case is admissible.

As a final example in load distribution we will consider the case of a net-
work in which a number of trees in the same variables are to be realized.
A large number of such cases will be found later. The following is fairly
obvious from what we have already proved.
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Theorem 10: 1t is possible to construct m different trees in the same n variables
with the following distribution:
1,83, , an = (m, 2m, 4m, --- , 2*"'m)

It is interesting to note that under these conditions the bothersome 1 disap-
pears form > 1. We can equalize the load on all # of the variables, not just
n — 1 of them, to within, at worst, one transfer element.

7. TeE FuncTION u(n)

We are now in a position to study the behavior of the function u(n).
This will be done in conjunction with a treatment of the load distributions
possible for the general function of n variables. We have already shown
that any function of three variables can be realized with the distribution

1,1,2

in terms of transfer elements, and, consequently u(3) < 4.
Any function of four variables can be realized with the distribution

1,1, (2, 4)
Hence p(4) < 6. For five variables we can get the distribution
1,1,(2,4,8)
or alternatively
1,5,5,(2,4)
so that (5) < 10. With six variables we can get
1,5,5, (24, 8) and u(6) < 10
for seven,
1,5,5,(2,4,8,16) and u(7) < 16

etc. Also, since we can distribute uniformly on all the variables in a tree
except one, it is possible to give a theorem analogous to Theorem 7 for the
function u(n):

Theorem 11: For all n

For almost all n
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For an infinite number of n; ,
2n+l

pn) <1+ ¢

n*

The proof is direct and will be omitted.

PART III: SPECIAL FUNCTIONS

8. FuncrioNnaL RELATIONS

We have seen that almost all functions require the order of

2n+l

n
elements per relay for their realization. Yet a little experience with the
circuits encountered in practice shows that this figure is much too large.
In a sender, for example, where many functions are realized, some of them
involving a large number of variables, the relays carry an average of perhaps
7 or 8 contacts. In fact, almost all relays encountered in practice have less
than 20 elements. What is the reason for this paradox? The answer, of
course, is that the functions encountered in practice are far from being a
random selection. Again we have an analogue with transcendental numbers
—although almost all numbers are transcendental, the chance of first en-
countering a transcendental number on opening a mathematics book at
random is certainly much less than 1. The functions actually encountered
are simpler than the general run of Boolean functions for at least two major
reasons:

(1) A circuit designer has considerable freedom in the choice of functions
to be realized in a given design problem, and can often choose fairly simple
ones. For example, in designing translation circuits for telephone work it is
common to use additive codes and also codes in which the same number of
relays are operated for each possible digit. The fundamental logical simplic-
ity of these codes reflects in a simplicity of the circuits necessary to handle
them.

(2) Most of the things required of relay circuits are of a logically simple
nature. The most important aspect of this simplicity is that most circuits
can be broken down into a large number of small circuits. In place of
realizing a function of a large number of variables, we realize many functions,
each of a small number of variables, and then perhaps some function of these
functions. To get an idea of the effectiveness of this consider the following
example: Suppose we are to realize a function ’

J(Xa, Xay ooy Xow)
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of 2n variables. The best limit we can put on the total number of elements

2n-+1
necessary is about ETS However, if we know that f 1s a function of two
functions f; and f; , each involving only # of the variables, i.e. if
=8, )

f‘=f1(X1;X2s“' JXﬂ)
f2=fz(Xn+1,Xn+2,"' ,in)

then we can realize f with about

2n+l

4.4
n

2n+1
elements, a much lower order of infinity than gz—n— . If gisone of the simpler

functions of two variables; for example if g(f1, f2) = f1 + f2, or in any case

at the cost of two additional relays, we can do still better and realize f with
2n+l .

about 2-— elements. In general, the more we can decompose a synthesis

problem into a combination of simple problems, the simpler the final circuits.
The significant point here is that, due to the fact that f satisfies a certain
functional relation .

f= g(flsf'l))

we can find a simple circuit for it compared to the average function of the
same number of variables.

This type of functional relation may be called functional separability. It
is often easily detected in the circuit requirements and can always be used
to reduce the limits on the number of elements required. We will now show
that most functions are not functionally separable.

Theorem 12: The fraciion of all functions of n variables that can be writlen
in the form

f = g(h(Xl ‘v Xs), -"x«i—l y Ty .X’;;)
where 1 < s < n — 1 approaches zero as n approaches =,
We can select the s variables to appear in % in ? ways; the function #

then has 2*" possibilities and g has VA possibilities, since ithas # — s+ 1
arguments. The total number of functionally separable functions is there-
fore dominated by
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"i? (ﬂ) 22- 223—:-*—1

s=2 §
112 2 _on—1
<(n-—3)=2"7
2
and the ratio of this to 2" —> 0 as# — .

Xs+1

&
3

GIBINIE

Fig. 21—Use of separability of two sets of variables.

In case such a functional separability occurs, the general design method
described above can be used to advantage in many cases. This is typified
by the circuit of Fig. 20.  If the separability is more extensive, e.g.

J=gn{X1 - Xo), ia(Xor -+ X0), X, -+ 0, X)

the circuit of Fig. 21 can be used, using for “/,” either /1y or /, , whichever
requires the least number of elements for realization together with its
negative.

We will now consider a second type of functional relation which often
occurs in practice and aids in economical realization. This type of relation
may be called group invariance and a special case of it, functions symmetric
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in all variables, has been considered in (6). A function f(X.,---, Xa)
will be said to be symmetric in X, , X, if it satisfies the relation

f(Xl,X27"' :Xl) =f(X2,X1,"',X,,).
It is symmetric in X, and X', if it satisfies the equation
Sy, Xa, oo, Xo) = f(Xe, X1, Xs, oo, Xo)

These also are special cases of the type of functional relationships we will

consider. Let us denote by

Vo -+, = I the operation of leaving the variables in a function as they
are,

Nieo <+, the operation of negating the first variable (i.e. the one occupy-
ing the first position),

Now -+, that of negating the second variable,

Niue o that of negating the first two, etc.

So that Nyaf (X, ¥, Z) = f(X'YZ') etc.

The symbols ¥4 form an abelian group, with the important property that
each element is its own inverse; NiNi = I The product of two elements
may be easily found —if Ny N; = N, , % is the number found by adding ¢
and j as though they were numbers in the base two but without carrying.

Note that there are 2" elements to this “negating’ group. Now let

S1.23....m = I = the operation of leaving the variables of a function in the
same order

S22 = be that of interchanging the first two variables

Ss,2.14,..-.8 = that of inverting the order of the first three, etc.

Thus

Sauf(X; Y) Z) = f(Z’ Xr Y)
Smf(Z, X, Y) = ngzf(X, Yy Z) = f(Y: Z; X)

etc. The S; also form a group, the famous “substitution” or “symmetric”
group. It isof order #!. It does not, however, have the simple properties
of the negating group—it is not abelean (» > 2) nor does it have the self
inverse property.* The negating group is not cyclic if # > 2, the symmetric
group is not if n > 3.

The outer product of these two groups forms a group G whose general
element is of the form N; S; and since £ may assume 2* values and 7, #! values,
the order of G is 2"n!

It is easily seen that S; N; = N,S;, where k may be obtained by per-

* This is redundant; the self inverse property implies commutativity for if XX = I
then XY = (X¥)71 = y-1X1 = ¥X.
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forming on %, considered as an ordered sequence of zero’s and one’s, the
permutation S; . Thus

Su1¢Nuoe = NionoSasna .

By this rule any product such as N;S; N Ny Sm Vo Sy can be reduced to the
form

NN; - NoSpSy--- S,

and this can then be reduced to the standard form N;S; .
A function f will be said to have a non-trivial group invariance if there are
elements N;S; of G other than 7 such that identically in all variables

NiS; f=f.

It is evident that the set of all such elements, N,S; , for a given function,
forms a subgroup G, of G, since the product of two such elements is an ele-
ment, the inverse of such an element is an element, and all functions are
invariant under I.

A group operator leaving a function f invariant implies certain equalities
among the terms appearing in the expanded form of f. To show this,
consider a fixed ¥,;S;, which changes in some way the variables (say)
X:, Xz2,--, X,. Let the function f(X,, -, Xa.) be expanded
about Xy, ---, X, :

f= X1+ X2+ "'+Xr+f1(xr+l;'”:Xl)]
[X]I+X2+ "'+Xr+f2(Xr+l)"')X')]

X1+ Xo+ -+ Xo 4 for(Xepr, -0, Xl

If f satisfies N;S;f = f we will show that there are at least 12 equalities
between the functions fi, f2,---, fr. Thus the number of functions
satisfying this relation is

S (22"-’)!2' - 2!21

since each independent f; can be any of just 2" functions, and there are
at most 4 2" independent ones. Suppose N,.S; changes

X, X2, -, X, A
into

= *

Aal’Xﬂ!’.-‘!X:r B

where the *’s may be either primes or non primes, but no X:‘. = X;. Give
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X, the value 0. This fixes some element in B namely, X,;, where a; = 1.
There are two cases:
(1) If this element is the first term, ¢, = 1, then we have

0X,,  , X,
lXﬂl s "7 X“r
Letting X3, --- , X, range through their 2" possible sets of values gives

277! equalities between different functions of the set f; since these are
really

f(Xl,X2r"':Xf;Xr+11"'an)

with X1, X;, - -+, X, fixed at a definite set of values.

(2) If the element in question is another term, say X,, , we then give X,
in line A the opposite value, X, = (X:z)’ = (X, ). Now proceeding as
before with the remaining r — 2 variables we establish 2" equalities between
the f;.

Now there are not more* than 2"n! relations
N:S;if=f

of the group invariant type that a function could satisfy, so that the number
of functions satisfying any non-trivial relation

< 2%n! 2¥,

Since
2"l 282" 50 asn — ©

we have:

Theorem 13: Almost all functions have no non-lrivial group invariance.

It appears from Theorems 12 and 13 and from other results that almost all
functions are of an extremely chaotic nature, exhibiting no symmetries or
functional relations of any kind. This result might be anticipated from the
fact that such relations generally lead to a considerable reduction in the
number of elements required, and we have seen that almost all functions are
fairly high in “complexity”.

If we are synthesizing a function by the disjunctive tree method and the
function has a group invariance involving the variables

XI’X2, ’X'_
at least 2" of the terminals in the corresponding tree can be connected to
* Qur factor is really less than this because, first, we must exclude N;S; = I; and second,

except for self inverse elements, one relation of this type implies others, viz. the powers
(N SpFf = f.
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other ones, since at least this many equalities exist between the functions to
be joined to these terminals. This will, in general, produce a considerable
reduction in the contact requirements on the remaining variables. Also an
economy can usually be achieved in the M network. In order to apply this

X
xl
(2)
Y'
X
——e Y
INDEPENDENT
OF X,Y X
YI
(3) (4)

Fig. 22—Networks for group invariance in two variables.

Fig. 23—Networks for group invariance in three variables.

method of design, however, it is essential that we have a method of deter-
mining which, if any, of the ¥;S; leave a function unchanged. The
following theorem, although not all that might be hoped for, shows that we
don’t need to evaluate N;S;f for all ¥;S; but only the N;f and S;f.
Theorem 14: A necessary and sufficient condition that N:S;f = f is that
Nif=S8;f.
This follows immediately from the self inverse property of the N;. Of
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course, group invariance can often be recognized directly from circuit re-
quirements in a design problem.

Tables I and II have been constructed for cases where a relation exists
involving two or three variables. To illustrate their use, suppose we have
a function such that

NlllSll!f = f

)

X2

Fig. 24—M network for partially symmetric functions.

The corresponding entry Z’Y’X in the group table refers us to circuit 9 of
Fig. 23. 'The asterisk shows that the circuit may be used directly; if there
is no asterisk an interchange of variables is required. We expand f about
X, Y, Z and only two different functions will appear in the factors. These
two functions are realized with two trees extending from the terminals of the
network 9. Any such function f can berealized with (using just one variable
in the N network)

9+22~*-2)+2

=247 elements,
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a much better limit than the corresponding

21 4 18
for the general function.
TasLe I
Grove Inxvariaxce IxvorLving Two VariaBLes (Superscrirts RErFer 1O Fic. 22)
Sz Sut
Noo (x v (y x)™*
Not (v ¥)** (y x')*
A\Yl ° (‘1.’.‘,')2 (3,’:‘.)3*
Ni (x'y')! {y'x')
TasrLe IT
GroupP INVARIANCE INVOLVING THREE VARIABLES (SUPErscrirTs REFER 1O F1c, 23)
S Sian S S S S
Now XYVZ XZI't YXZ VZX VAS A ZYX:
N XVYZ ¥ XZY1 YxXz': VZX'? ZXY' Y ZYX's
Naw XV'Z3 XZ'T TX'Z+ VZ'X Y AW AN &
N X172'® XNZ'yt AR VZz’xre ZX'Ye ZI'X' 8
Niya X'VZ3 XZy I"XZ+ 1"ZX 9 Z'XY # Z’TrX+

N X'VZ'S N'Zy7 e 1'XNZ' V'ZX'? Z'X1e Z'YX L
Nue X'V'Z5* X'Z'y s* A VZNe PR Z'YX 8
N X'1'Z'e Xz | A WA V’Z'X' ¢ VA0 & Z'7X T
9. ParrtiaLLY SyaMETRIC FuncTioNs
We will say that a function is “partially symmetric” or “symmetric in a
certain set of variables” if these variables may be interchanged at will
without altering the function. Thus
XTZIW+ (XY 4+ X'V + WZ'
is symmetric in X and 1. Partial symmetry is evidently a special case of
the general group invariance we have been considering. It is known that
any function symmetric in all variables can be realized with not more than
n® elements, where 2 is the number of variables.” In this section we will
improve and generalize this result.
Theorem 15: Any function (X1, Xa, -+, Xo, I, Vo, -+ T, svm-
melric it Ny, Xa, -+, X can be wrillen

f(le‘Yih 7‘Ym, Iy'ly Yﬂ’ Tty I'n)
= [Su("\'l 3 -Y‘.’ y T T, -Ym) + fo(Iyl ’ 1'2’ Tty I’n)]~
[51(-’&'1 s X s 7Ty Xm) + fl(yl 1 Yy y T T Yn)]-

[Svu(-\rl ’ X2 y Ty ‘Y"l) + f"l(yl ’ ]'2 y Py Irﬂ)] (6)
where
fK(Yl y Y2) T Irvn)
=f(0’0) e 707 17 17 AR 1: Yl) IY?) ] I,")
kO’%s (m — k) 1’s
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and Sip(X1, Xz, -+, Xn) is the symmelric function of X1, Xe, -+, X4
with k for ifs only a-number. '

This theorem follows from the fact that since f is symmetric in X; , X,
-« -, X, the value of f depends only on the number of X’s that are zero and
the values of the ¥’s. If exactly A of the X’s are zero the value of J is
therefore fx , but the right-hand side of (6) reduces to fx in this case, since
then Sj(Xl ) .Yz , Tt ,A’,,,) = 1,] #= K, andSK = 0.

The expansion (6) is of a form suitable for our design method. We can
realize the disjunctive functions Sk(X1, X2, + -+, X,) with the symmetric
function lattice and continue with the general tree network as in Fig. 24,
one tree from each level of the symmetric function network. Stopping the
trees at Y,_;, it is clear that the entire network is disjunctive and a second
application of Theorem 1 allows us to compiete the function f with two ele-
ments from ¥, . Thus we have

Theorem 16. Ay function of m ++ n variables symmetric in m of them can
be realized with not more than the smaller of

(m+ D) + m)or (m + D)2+ m — 2) + 2

elements. In particular a funclion of n variables symmelric in n — 2 or more
of them can be realized with not more lhan

w—n+4 2
elemenls.
If the function is symmetricin Xy , X5, -+ - , X ,andalsoin ¥y, Vs, -+
V.,and not in Z;, Zs, - -+ , Z, it may be realized by the same method,

using symmetric function networks in place of trees for the ¥ variables.
It should be expanded first about the X’s (assuming m < r) then about the
Y’s and finally the Z's. The Z part will be a set of (m 4 1)(r 4 1) trees.
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