
Optimization, Training, and 
Stabilization
Generative Adversarial Networks, Part II

Slides based on lectures by Ben Striner



1. Optimization Issues

2. Training and Stabilization

3. Take Aways



GANs

- Powerful tool for generative modeling
- Has lots of potential
- Limited by pragmatic issues
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Understanding Optimization Issues

Failures can be hard to diagnose

- “Mode collapse”
- Unclear errors

- Why? Many potential reasons

http://www.youtube.com/watch?v=ktxhiKhWoEE
http://www.youtube.com/watch?v=D5akt32hsCQ


Understanding Optimization Issues

1. Simultaneous updates
a. Why can’t we just train an optimal discriminator?

2. Not guaranteed to converge to a global optimum
a. Even a game of Rock-Paper-Scissors may never converge

3. Not guaranteed to reach a stationary point 
a. Even if there is a stationary point, you might not converge toward it



Simultaneous Updates

- Why can’t we just train an optimal 
discriminator? 

- The optimal discriminator is conditional on the 
current generator, and you can’t train the 
generator without training the discriminator. 

- Adversarial balance

http://www.youtube.com/watch?v=ebMei6bYeWw


Factors Affecting Balance

- Optimizers and learning rates

- Architectures, number of parameters, depths

- Regularization

- Repeat training D for k_D iterations, then train G for k_G iterations

- Make the iterations of k_D and k_G dynamic, depending on metrics 



Not Guaranteed to Converge using Gradient Descent

Rock-Paper-Scissors example 

- Player A randomly plays Rock
- Player B then should only play Paper
- Player A then should only play Scissors
- Player B then should only play Rock
- Player A then should only play Paper
- …

http://www.youtube.com/watch?v=JmON4S0kl04


Not Guaranteed to Converge using Gradient Descent

Rock-Paper-Scissors example 

- Global Optimum: 
- both players choose with probability (0.33, 0.33, 0.33)

- Local Optimum for (rock, paper, scissors): 
- If player A plays with probability (0.36, 0.32, 0.32)
- Then player B should play with probability (0,1,0)..



Not Guaranteed to reach a Stationary Point

- Gradients can circle or point away from the minima, so there might not be a 
local “well” around the stationary point. 

- Even if a generated point is 0, it doesn’t mean that the points around that area 
area also 0; likewise, for 1.
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GAN Training Techniques

Foundations & Stability Fixes

- Gradient descent is locally 
stable

- Numerics of GANs
- Instance Noise
- Least-Squares GAN (LSGAN)
- DRAGAN
- Unrolled GAN
- Improved Techniques for GAN

Divergence Replacements

- Wasserstein GAN (WGAN)
- WGAN Gradient Penalty
- Spectral Normalized GAN



Gradient Descent GAN Optimization is Locally Stable

- The generator tries to minimize its original loss and also tries to minimize the 
squared norm of the discriminator’s gradient.  

- If the generator makes an improvement but the discriminator gradient is large, 
the discriminator could undo that improvement.

- If the generator improves in a way that nears the discriminator gradient 
towards zero, the discriminator could not undo the improvement.



Numerics of GANs

- Considers the joint field of generator and discriminator parameters

- Finds stationary points by minimizing the norm of the gradient of each player; 
both the generator and the discriminator try to minimize the other’s gradients 
as well as their own.

- The regularization parameter balances between adversarial objective and 
consensus objective 



Numerics of GANs

- The generator and the discriminator are aiming for a “consensus”: they’re 
both trying to get to a joint point that is stationary

- The consensus objective is to minimize the norm of both gradients. Both the 
generator and the discriminator try to minimize the other’s gradients as well 
as their own.

- Since the 0 gradient can include minima, maxima, and saddlepoints, the 
consensus gives a small regularization parameter such that there is enough 
stability when it’s near a minima so that your GAN goes down to it.  

https://www.inference.vc/my-notes-on-the-numerics-of-gans/



Instance Noise

- Add noise to generated and real images

- Smooth the function learned by the discriminator



Least-Squares GAN

- Instead of binary cross entropy, uses an L2 loss

- The generator tries to minimize L2 loss

 

- The discriminator tries to minimize L2 loss 

- Simplifies the loss function over time



DRAGAN

- Minimize the norm of the gradient in a region around real data to make a 
function smoother

- Smooth in a random region around real data to smooth the discriminator 



Unrolled GAN

- Calculate the discriminator after a few SGD steps

- Find the generator that has the best loss on the future discriminator

- Differentiate through gradient descent 



Unrolled GAN



Previously… 

Jensen-Shannon Divergence in GANs: 

- Theoretical foundation for GANS, symmetrizing KL divergence; defined as the 
average of two KL divergences.

Problems with KL:

- If p(x) > 0 but q(x) = 0, then the result is infinity.
- If p(x) = 0, then the contribution to KL is zero.    



Wasserstein GAN

- Wasserstein Distance: Mass times the distance required to transform one 
distribution to another.

- Intuitive and Differentiable: Provides smoother gradients compared to other 
metrics.

- Hard to Calculate: Involves optimal transport, which is computationally 
intensive.
 



Wasserstein GAN



Wasserstein GAN



Wasserstein GAN - Gradient Penalty (GP)

An alternative to gradient clipping

- Lipsch should be 1 everywhere 
- Add penalty of mean squared distance 

between gradient and 1
- Use samples that are random linear 

interpolations between real and fake 
data

- Calculate gradient of D at random 
samples that are between points 



Spectral Norm

- Max amount a matrix can stretch input vectors

- The Lipschitz is bound on how fast a function can change
- Divides weights by spectral norm to keep each layer stable

- Helps keep discriminator smooth and well-behaved
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Effective Trends

- Regularize and smooth the discriminator around real and generated points.

- Update players towards consensus or stable regions, not just greedy updates.

- Simplify networks and losses to eliminate nonlinearity.

- Constrain discriminator complexity to avoid overtraining.

- Grow or chain GANs to reduce complexity and learn a curriculum.



Common Problems

- Unrolling is computationally expensive 

- Sampling is unreliable

- Bound methods learn poor local optima 



Where to? 

- How can we architect a neural network to learn a meaningful loss function? 



Video Links

Mode collapse: 
https://www.youtube.com/watch?v=ktxhiKhWoEE&ab_channel=AyushSingh

Attempt to train DCGAN: 
https://www.youtube.com/watch?v=D5akt32hsCQ&ab_channel=BoolBada

Simple GAN: 
https://www.youtube.com/watch?v=ebMei6bYeWw&ab_channel=BenjaminStriner

Unrolled Adversarial Optimization: 
https://www.youtube.com/watch?v=JmON4S0kl04&ab_channel=BenjaminStriner

https://www.youtube.com/watch?v=ktxhiKhWoEE&ab_channel=AyushSingh
https://www.youtube.com/watch?v=D5akt32hsCQ&ab_channel=BoolBada
https://www.youtube.com/watch?v=ebMei6bYeWw&ab_channel=BenjaminStriner
https://www.youtube.com/watch?v=JmON4S0kl04&ab_channel=BenjaminStriner
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