## Generative Adversarial Networks

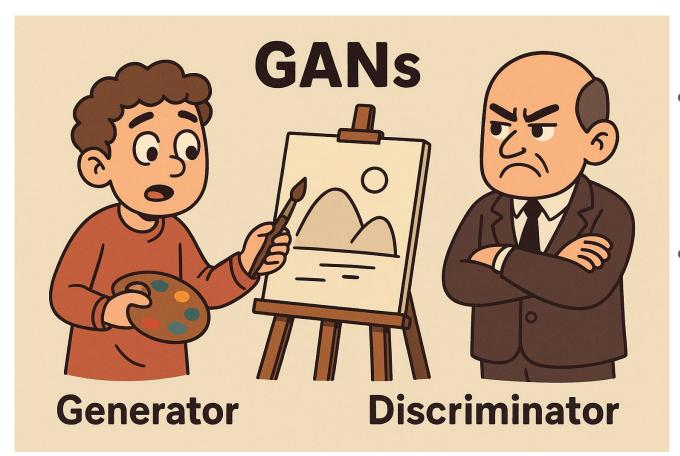
Presented By: Massa Baali

11785 Deep Learning
Spring 2025
(Based on slides from Ben
Striner and Bhiksha Raj)

## Outline

- Definition of GAN
- Discriminative vs. Generative Models
- Explicit vs. Implicit Models
- Problem
- What are GANs?
  - Generator definition
  - Discriminator definition
- Training GAN
- Perfect discriminator

## Definition



Two neural networks:

- **Generator:** trying to create something realistic whether it's an image, speech, or video.
- Discriminator: playing the
   role of the harsh critic, rejecting
   anything that doesn't seem real.

### Discriminative vs. Generative Models

#### Discriminative models learn to discriminate

- Determine the class given the input
- Compute P(y | x)

#### • Generative models can generate

- Produce more instances like the training data
- Compute and/or draw from P(x,y)

## Discriminative vs. Generative Models

#### Given a distribution of inputs X and labels Y

| Discriminative models                                         | Generative models                                      |
|---------------------------------------------------------------|--------------------------------------------------------|
| Discriminative models learn conditional distribution P(Y   X) | Generative models learn the joint distribution P(Y, X) |
| Learns decision boundary between classes.                     | Learns actual probability distribution of data.        |
| Limited scope. Can only be used for classification tasks.     | Can do both generative and discriminative tasks.       |
| E.g. Logistic regression, SVM etc.                            | E.g. Naïve Bayes, Gaussian Mixture Model etc.          |

Harder problem, requires a deeper understanding of the distribution than discriminative models.

## Explicit vs. Implicit Models

### **Explicit distribution models**

Calculates  $P(x \sim X)$  for all x

#### Implicit distribution models

Generate x ~ X

### Poll 1

#### • What is the difference between Discriminative models vs. Generative models

- Discriminative models model the decision boundary between classes, whereas Generative models model class distributions
- Generative models model the decision boundary between classes, whereas Discriminative models model class distributions

#### • What is the difference between Explicit and Implicit Generative models?

- Implicit models compute the probability of samples, whereas Explicit models only let you draw samples from the distribution
- Explicit models compute the probability of samples, whereas Implicit models only let you draw samples from the distribution

### Poll 1

- What is the difference between Discriminative models vs. Generative models
- Discriminative models model the decision boundary between classes, whereas Generative models model class distributions
- Generative models model the decision boundary between classes, whereas Discriminative models model class distributions
  - What is the difference between Explicit and Implicit Generative models?
- Implicit models compute the probability of samples, whereas Explicit models only let you draw samples from the distribution
- Explicit models compute the probability of samples, whereas Implicit models only let you draw samples from the distribution

## Problem

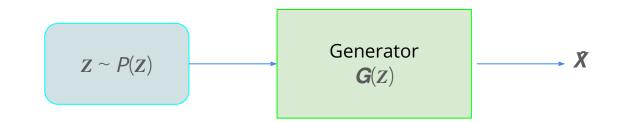




Given a large collection of face images, can a neural network learn to generate entirely new portraits? In other words, can we model and sample from the underlying distribution of faces?

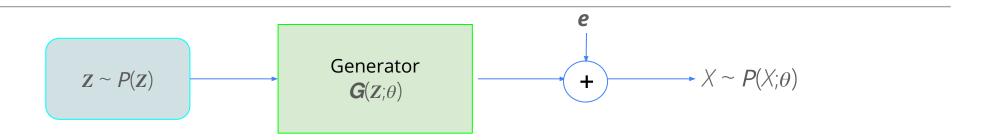
• How do we even characterize this distribution?

## What we have seen: VAE



- We can't directly characterize the full distribution in high-dimensional space.
- Underlying hypothesis: Real-world data is **structured**—it does not occupy the entire high-dimensional space.
- Instead, data lies on a lower-dimensional manifold embedded in the high-dimensional space
- This latent code is then **transformed** via a neural network to generate high-dimensional outputs using the **Generator**.
- Generator is a decoder of a VAE

## What we have seen: VAE

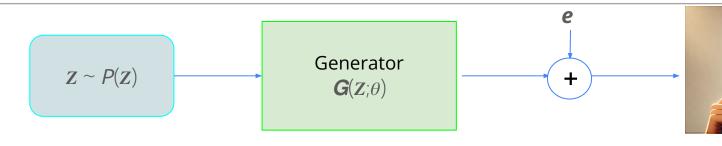


- Mapping  $z \rightarrow G(z)$  alone cannot fully explain the data distribution.
- We introduce a correction term: random noise e that accounts for any errors in choosing the right dimensionality of the space.
- This defines a generative model: it can now draw diverse samples that better match real data.
- Trained by maximizing the likelihood of the data  $\theta^* = \arg\max_{\theta} \log P(X; \theta)$
- Equivalently, we minimize -ve likelihood of the data as seen in the VAE lecture

$$\theta^* = \arg\min_{\theta} -\log P(X; \theta)$$

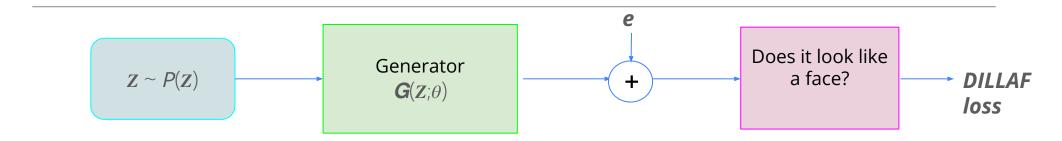
# WHERE IS THE PROBLEM?

Does it look like a face?



- Likelihood maximization does not actually relate to whether the output actually looks like a face
- It doesn't guarantee that generated samples look like real faces.
- To verify this, we need to check if the output looks like a face.
- Manually inspecting samples isn't scalable—we need to automate this check.

## WHERE IS THE PROBLEM?



- Replacing the human evaluator with a classifier
- The loss of the classifier is the (DILLAF) loss.

### Poll 2

- VAEs are implicit Generative models, True or False
  - True
  - False
- Why would likelihood maximization not result in a model that produces more facelike outputs (for a face-generating VAE)?
  - The model can maximize the likelihood of training data without any assurance about what other (non-training) samples look like
  - The model is more likely to run into poor local optima
  - The model only captures the mode of the distribution of faces, whereas most face-like images are in the tail of the distribution
- The face-generating model is more likely to generate face-like images if it were trained with a differentiable loss function that explicitly evaluates if the outputs look like faces or note, True or False
  - True
  - False

### Poll 2

- VAEs are implicit Generative models, True or False
  - True
  - False
- Why would likelihood maximization not result in a model that produces more facelike outputs (for a face-generating VAE)?
  - The model can maximize the likelihood of training data without any assurance about what other (non-training) samples look like
  - The model is more likely to run into poor local optima
  - The model only captures the mode of the distribution of faces, whereas most face-like images are in the tail of the distribution
- The face-generating model is more likely to generate face-like images if it were trained with a differentiable loss function that explicitly evaluates if the outputs look like faces or note, True or False
  - True
  - False

## What are GANs?

#### **Generative Adversarial Networks**

Generative Models which

generate data similar to

the training data . E.g. VAE

Adversarial Training GANS

are made up of two

competing networks

(adversaries) that are trying

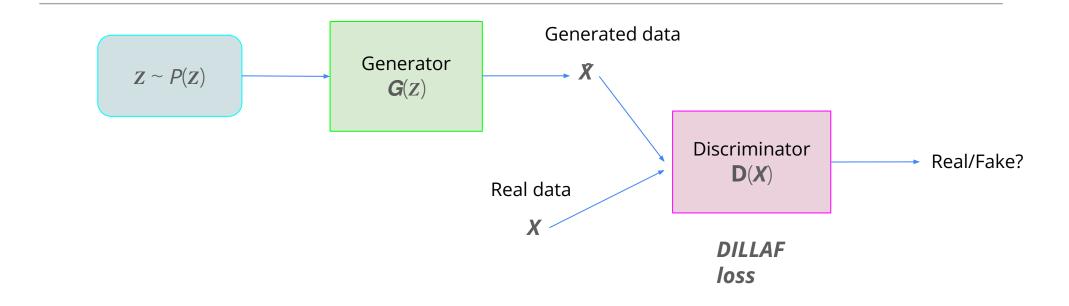
beat each other.

Neural Networks

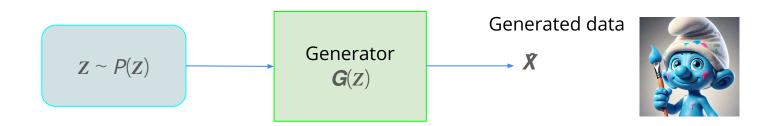
### What are GANs?

- Introduced in 2014
- Goal is to model P(X), the distribution of training data
  - Model can generate samples from P(X)
- Trained using a pair of models acting as "adversaries"
  - A "Generator" that generates data
  - A "Discriminator" that evaluates it
    - The DILLAF loss!!

## What are GANs?

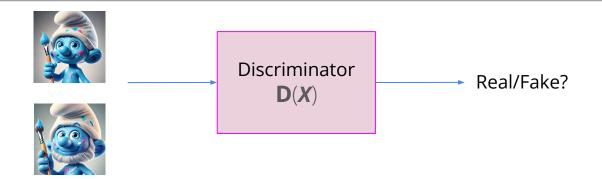


## The Generator



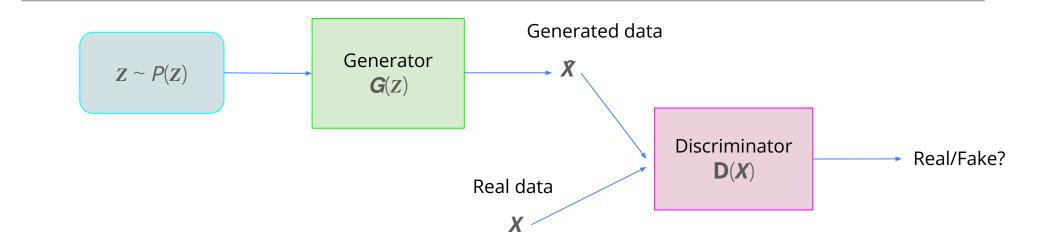
- The generator produces realistic looking X = G(z) from a latent vector z
- Generator input  ${f z}$  can be sampled from a known prior, e.g. standard Gaussian
- Goal: generated distribution,  $P_{\bf c}({\bf X})$  matches the true data distribution  $P_{\bf X}({\bf X})$ 
  - $P_{\mathbf{G}}(\mathbf{X})$  is the more "memorable" notation for  $P_{\mathbf{X}}(\mathbf{X})$ , the probability that
  - a generated sample **X** takes the value **X**.

## The Discriminator



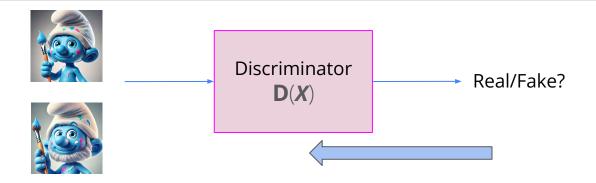
- Discriminator  $\mathbf{D}(\mathbf{X})$  is trained to tell the difference between real and generated (fake) data
- Specifically, data produced by the generator
- If a perfect discriminator is fooled, the generated data cannot be distinguished from real data

## Training a GAN



Both, the generator and discriminator must be trained

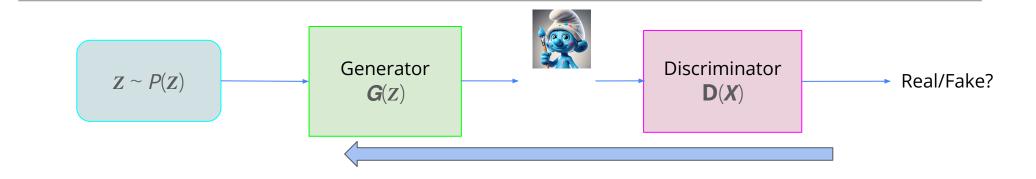
## Training the discriminator



#### **Training the discriminator:**

- The discriminator is provided training examples of real and synthetic faces
- The discriminator is trained to minimize its classification loss
- Minimize error between actual and predicted labels
- Discriminator parameters are trained such that
- $\mathbf{D}(\mathbf{X}) = 1$  for real faces. Maximize  $\log \mathbf{D}(\mathbf{X})$
- $\mathbf{D}(\mathbf{X}) = 0$  for synthetic faces. Maximize  $\log (1 \mathbf{D}(\mathbf{X}))$

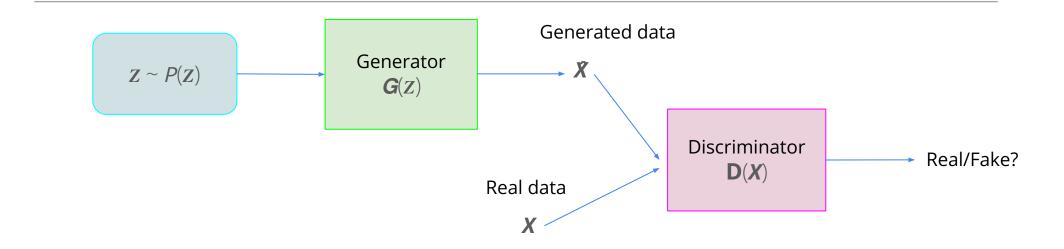
## Training the generator



#### **Training the generator:**

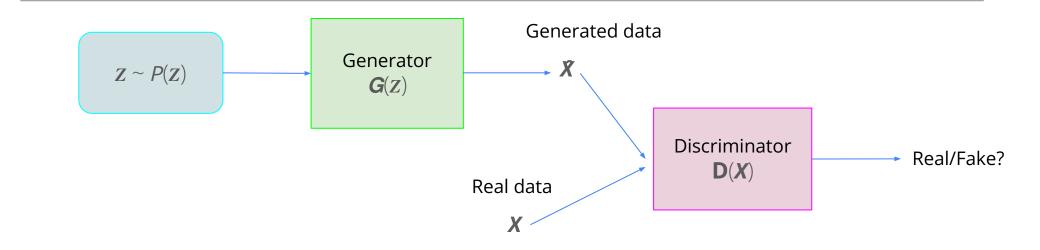
- The discriminator's loss is backpropagated to the generator
- The generator is trained to maximize the discriminator loss
- It is trained to "fool" the discriminator
- Generator parameters are trained such that
- D(G(z)) = 1 (i.e. 1- D(G(z)) = 0). Minimize log(1 D(G(z)))

## The GAN formulation



- Discriminator
  - For real data X, Maximize log **D**(X)
  - For synthetic data, Maximize log (1- **D**(**X**))
- Generator
  - Minimize log (1- **D**(**%**))

## The GAN formulation



• The original GAN formulation is the following min-max optimization

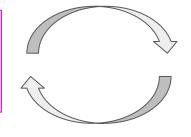
$$\min_{G} \max_{D} E_{X} \log D(X) + E_{Z} \log(1 - D(G(Z)))$$

Objective of D: 
$$D(X) = 1$$
 and  $D(G(Z)) = 0$ 

Objective of G: 
$$D(G(Z)) = 1$$

## How to train a GAN?

 $\begin{array}{c} {\bf Discriminator} \\ {\bf D}({\bf \textit{X}}) \end{array}$ 



Generator G(Z)

Step 1: Train the Discriminator using the current Generator

Step 2: Train the Generator to beat the Discriminator

Optimize:  $\min_{G} \max_{D} E_X \log D(X) + E_Z \log(1 - D(G(Z)))$ 

The discriminator is not needed after convergence

## Poll 3

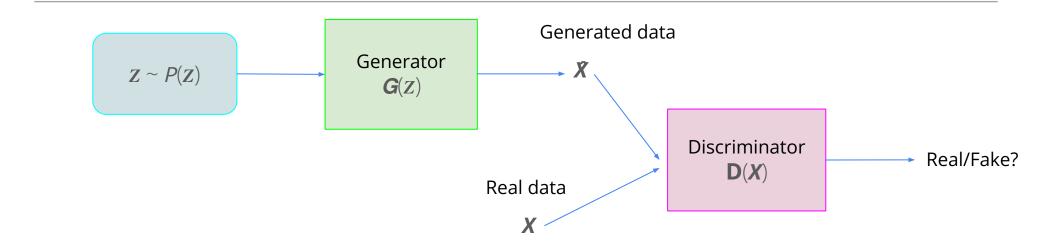
- When training a GAN, which component must you train first
  - The discriminator
  - The generator
- Which component is updated more frequently
  - The discriminator
  - The generator

## Poll 3

- When training a GAN, which component must you train first
  - The discriminator
  - The generator
- Which component is updated more frequently
  - The discriminator
  - The generator

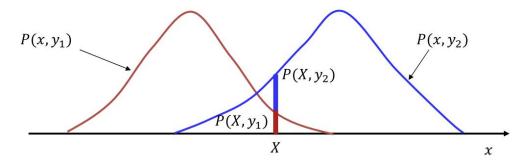
The discriminator is the (DILLAF) loss. Training the loss is more important, since the loss guides the training!

## How does it behave?



So how does this behave when each component is optimized...

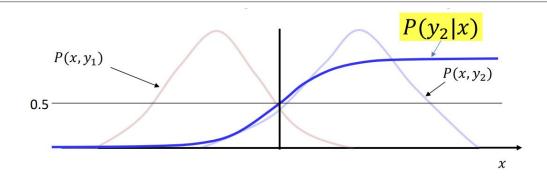
## The perfect discriminator



- An ideal discriminator should separate real faces from fake ones.
- But in practice, distributions overlap → perfect separation is hard.
- The optimal discriminator is the one with lowest possible error.
- It estimates the probability of a sample being real, given x.
- Mathematically: the a posteriori probability of the classes for any instance x = X is:

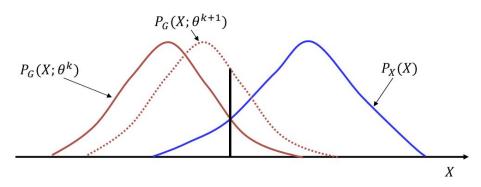
$$P(y_i|X) = \frac{P(X, y_i)}{P(X, y_1) + P(X, y_2)}$$

## The perfect discriminator



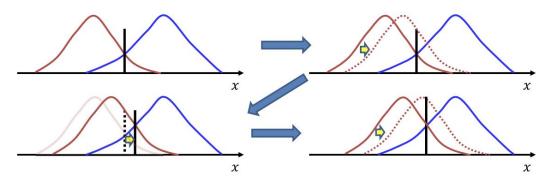
- At the start, the generator's output is poor (random noise or bad faces).
- The discriminator quickly learns the decision boundary between real and fake.
- A well-trained discriminator is key—it gives useful feedback to guide the generator.
- Once the discriminator is solid, the generator shifts its output distribution to fool it.
- This back-and-forth improves the generator over time.

### Updating the Generator: Fooling the perfect discriminator

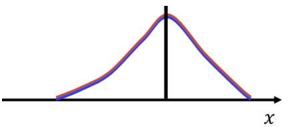


- The generator updates its parameters to improve output.
- It shifts its distribution closer to real data (e.g., moves right).
- The goal is to fool the discriminator into thinking generated samples are real.
- This process continues as training goes on.

## Iterated learning



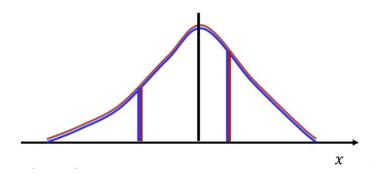
- Discriminator learns perfect boundary
- Generator moves its distribution past the boundary "into"
- the real distribution
- Discriminator relearns new "perfect" boundary
- Generator shifts distribution past new boundary
- 0 ..
- In the limit Generator's distribution sits perfectly on "real"
- o distribution and the perfect discriminator is still random



## What Happens When GANs Are Perfectly Trained?

- The discriminator becomes a perfect judge it separates real and fake really well.
- The generator keeps updating until its output looks exactly like real data.
- This happens by minimizing the difference between real and fake distributions.
- That difference is called Jensen-Shannon Divergence (JSD) a measure of similarity.
- When the generator is perfect:
  - It fools the discriminator every time.
  - The discriminator outputs 0.5 for everything (can't tell real from fake).
  - No more learning both networks stop improving.

### The optimal generator with the optimal discriminator



• The generator of the fully optimized GAN will generate  $P_{\mathbf{G}}(X) = P_{\mathbf{X}}(\mathbf{X})$ , i.e. the distribution of the generated data will be identical to that of the original data

## Jensen-Shannon Divergence (JSD)

This training procedure minimizes the JSD between fake and real distributions.

$$JSD (P,Q)$$
= 0.5  $KL(P, 0.5(P+Q)) + 0.5KL(Q, 0.5(P+Q))$ 

## Min-Max Stationary Point

#### There exists a stationary point:

- If the generated data exactly matches the real data, the discriminator outputs 0.5 for all inputs
- If discriminator outputs 0.5, the gradients for the generator is flat, so generator does not learn
- Unfortunately, this is also true of a random discriminator

## Min-Max Optimization

- Generator and the discriminator need to be trained simultaneously
  - If discriminator is undertrained, it provides sub-optimal feedback to the generator
  - If the discriminator is overtrained, there is no local feedback for marginal improvements

### Poll 4

#### • Identify potential reasons a GAN could fail

- Generator always generates the same face that fools the discriminator
- The JSD may have poor derivatives preventing the model from learning
- The discriminator may be random resulting in no derivatives
- The discriminator may be too certain, resulting in no derivatives

### Poll 4

#### • Identify potential reasons a GAN could fail

- Generator always generates the same face that fools the discriminator
- The JSD may have poor derivatives preventing the model from learning
- The discriminator may be random resulting in no derivatives
- The discriminator may be too certain, resulting in no derivatives

# Thank you :-)