HW2P1 Bootcamp

Convolutional Neural Networks with Numpy
John Liu, Michael Kireeff, Sardhishya Agrawal

Acknowledgment:

Resampling

® For loop is not required in python

® [ook up np.kron
® Arrayslicing: [start:end: step]

® Things to remember
® Trying to compute the required shape while up sampling (some simple formula you can think of?)
® Computing and storing the shape in forward.

® This is because the gradient should be the same shape as the input.

Convolutions

® You can perform convolutions in 2 ways:

® The Loopy way (Bad)

® Tensordot (Good)
® The more for loops you use for your questions, the more time it takes to run.

® With tensordot, you don’t have to do all those broadcasting and everything given in the write-up

Dimensionality - 1D

Let’s start with a 1-dimensional array

v1

v2

v3

v4

Current dimensions:

(width)

\

This is a 1d array of intensity values.
So, it's a 1d array of gray-scale pixels

Dimensionality - 2D

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

~— This is a 1d array of intensity values.
So, it's a 1d array of gray-scale pixels

v12

v13

v14

v15

v16

Let's simplify the image going forward....

Current dimensions:
(height, width)

Dimensionality - 2D-RGB

Let’s have 3 blocks now,

e onerepresenting Red light intensities
e one representing blue light intensities

e one representing Green light intensities Stacking them will give

us a full-colored image
\»

Current dimensions:
(channels, height, width)

Red

Just color them now

)

Green

Blue

Dimensionality - Batch of 2D RGB

Let’'s have a bunch of images for a batch now...

= Apply a filters of (kernel_height x kernel_width)
~

Current dimensions:
(batch size, channels, height, width)

Tensordot

® Ref: https:/numpy.org/doc/stable/reference/generated/numpy.tensordot.html

® Appendix of the write up has amazing documentation of it

® Don't use for loops for convolution even though everything is given in the lecture slides
® Tensordot is faster and helps you (also TAs) to debug easily

® You only need 1 for loop for convld and 2 for loops for conv2d. If you are using more, then your
implementation of tensordot is wrong even if you get the answer right

https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html

Tensordot

e Before starting ConvXd.py, open a notebook and try to understand tensordot with
random examples

e Consider the shapes:
e Input: X(A, B, C); Weight: W(P, Q, R)
e You can do tensordot when you have matched shapes
e fB=Qand C=R,
® Tensordot(X, W, matched axes) -> Output(A, P)
® You can think that the output shape will be the shape of the unmatched axes in that order

e Make sure inputs (input and weight) to tensordot have some matching axes. Why do

you need matching axes in convolution? (Hint: A filter only looks at a segment of
input)

e Tip: Print shapes in your code to understand

Tensordot

(A, X, C,Y) (X,P,Q,Y) —_— (A, C, P, Q)
L 2

Can you find the output pattern?

(X, Y) from input 1 matches to (X, Y) from input 2
Can you think in terms of axes?

Should match all the axes that you think needs to be matched. Not restricted to 2
axes

Multiplying Two Arrays (A basic example of tensordot)

I
N

(filters, channels, height, width)

Resulting in output of dimension:
(filters,).

I. — [f1 score, f2 score] o

(channels, height, width)

np.tensordot(filters, images, axes=[[1, 2, 3][0, 1, 2]])

We took our two image filters,
Applied our filters across each
channel in the image,

And summed up the responses
to get a single score per filter.

Let’s say our filters are looking
for a cat and a dog

Our resulting values indicate
how strongly each filter detects
a cat or a dog in the entire
image.

Match the dimensions channel to channel, height to
height, width to width

Convid to Conv2d

® Try to understand each step while coding convld
® Every step between Convld and Conv2d (forward and backward) are identical

® While transitioning from Conv1ld to Conv2d, you just need to account for the extra dimension and do
an extra something

Pooling

® | ectures have a basic pseudocode which can be developed

® You might need many loops for this task

e Np.max and np.unravel_index might be useful if you want to reduce the number of loops

« But multiple loops are acceptable for this particular task

® Backprop in both might is harder than forward, but if you know the concept behind it, it will not be
that hard.

® | ook at the write up for images.

Easy way to understand gradient
propagation

Input Kernels Output
(A) (2) (2)

We get 2 maps in backward for dLdZ. After some process for finding dLdA, you again get 2 maps. But A has
1 map and dLdA will also have the same shape. How to understand gradient propagation?

Easy way to understand gradient
propagation

=
Input Kernels Output
(A) (2) (2)

Draw the influence diagram.

Easy way to understand gradient
propagation

=
Input Kernels Output
(A) (2) (2)

Any small change dA will cause a change in both maps of Z.

Scanning MLP

® Appendix of HW2P1

® Tips to understand better: Draw everything

How Conv1ld sees the
input

How Linear sees the
input

Scanning MLP

Consider that the MLP takes
some input and produces 2
output features

Input:

Scanning MLP

Input:

Scanning MLP

Scanning MLP

Kernel size=3

Scanning MLP

”””—”’_,——47'
HEENEREER

Flatten

You did this in HW1P2 when
you used a non-zero context

Scanning MLP

P

Flatten

Scanning MLP - l l l

\Flatten

Scanning MLP

Output:

Input:

Scanning MLP

Output:

Input:

Which gives in_channels = 3, out_channels = 2, kernel_size = 3, stride = 1

We transformed Linear(9, 2) to Conv1d(3, 2, kernel_size= 3, stride= 1)

Dive into the Writeup

8 Converting Scanning MLPs to CNNs

Make sure you have copied linear.py, activation.py, loss.py from HW1PL. Future sections will re-use code
from these files.
8.1 A Simplified Example for CNN as scanning by MLPs
Consider a 108 x 1 (108 time steps, with 1 dimensional vectors at cach time).
and a 1-D CNN model (1D is used because illustration is easier) with the following architecture:
o layer 1: 2 filters of kernel width 2, with stride 2
o layer 2: 1 filter of kernel width 2, with stride 2
o layer 3: 3 filters of kernel width 2, with stride 2
o Finally a single softmax unit which combines all the outputs of the final layer.
This can be visualized by the figure below:

Figure 24

A few notes before we move on:

 The little black bars at the bottom represent the sequence of input vectors. Each vector is 1-dimensional
as specified carlier (but this can be generalized to any dimension input).

o Additionally, there would be many MANY more arrows in this diagram ie. cach input vector should
be directed into BOTH the red and green neurons in the first layer. EACH output from the red and
green neurons should be input into the blue neuron in the 2nd layer, etc. (don’t even get us started
with the third layer). We simplified the arrows for your viewing pleasure :)

o We will trust that you understand the true direction of all the data flow (if you are confused, please
refer back to lecture). We will simplify A LOT of the arrows to make the graphics easier to digest :D

30

Dive into the Writeup

@) » »
o000
® 000 -
i &

CNN View Extracted MLP

Figure 25

TImportant note!!!!
(As can observed from implementing your convolutional layers) conv layers process the slices of the
data in parallel. For instance, in the first layer, the red and green neurons operate on all the slices of input
vectors almost simultancously, and their outputs are fed into the next layer. We want to make sure you fully
understand that cach layer is not " waiting for the next slice of data to be processed,” even if the vectors are
separated by "time step”.

Another note is that each neuron is a “filter” trying to “filter out its own desired pattern.” Thus, each neuron
will produce its own channel of data indicated how likely its desired pattern s present. Tn our example, our
first layer’s red and groen neurons output, 1 channel cach, and the 2 channels are combined into a single
output. The next conv layer will take in kernel width of these outputs. The next layer’s number of in
channels will also need Lo be equal to the current layer’s out channels (also equal Lo the number of our
filters/neurons) Lo process the output data.

Let’s take a look at the Extr:

ed MLP layer-by-layer in figu
o Layer 1 (red & green neurons) (2 filters of kernel width 2, with stride 2):
For each neuron, the kernel width (2) is the number of input vectors processed at once. The input
channels (1) is the dimension of our input vectors. You will also notice that since we have 2 neurons
(aka. 2 filters), our output channels will be 2.

o Layer 2 (blue neuron) (1 filter of kernel width 2, with stride
This layer’s kernel width (2) is the number layer 1 outputs that we will take in at once. The input
channels (2) is the number of output channels from the previous layer. We have 1 neuron (aka 1
filter), and hence 1 output channel

o Layer 3 (black, yellow, & purple) (3 filters of kernel width 2, with stride 2):
Similar to layer 2, this layer’s kernel width (2) is the number layer 2 outputs that each neuron will
take in at once. The input channels is the number of output channels from the previous layer. We
have 1 neuron (aka 1 filter), and hence 1 output channel

6Conversely, this means that our specified output channels is also the number of filters/neurons we have in this layer.

Dive into the Writeup

Simple MLP Distributed MLP

Figure 26

Let’s take a step back oul and complete the rest of our MLP. The ”Simple Scanning MLP” on the left has
three layers. If we naively count, we can see the first layer (in total) has 8 neurons, the second has 2 and
the third has 3. So, il we implement our CNN naively, we can essentially mimic our CNN with an MLP that
has 13 neurons.

Taking a look at the right "Distributed MLP” image, we can see more clearly that not all of the neurons are
necessary. In the first layer, il is the same two neurons repeatedly operating on all the slices of our input
data, and although the MLP has 13 neurons, it only has 6 unique neurons (this means 6 unique filters that
need their weights to be adjusted to detect their desired patterns). As a result, we say that the 13 neurons
"share 6 shared setls of parameters”.

CNN Model

® Just calling all the layers which you implemented previously
® Only thing to think about: Initialization size of the final Linear Layer?

® Errors which you may get:

® [f you have a closeness error (true_divide error), change to np.tanh()

THANK'Y

