11-485/685/785, Fall 2024

HW2P2: Bootcamp

TAs: Christine Muthee, Sadrishya Agrawal , Tanghang Elvis.

Reflection of HW1P2

- **1.** What was challenging but you figured that out?
- 2. Which strategies / resources helped you the most?
- 3. What would you do differently if you could start over?

Reflection of HW1P2

- 1. What was challenging but you figured that out? → Great job
- Which strategies / resources helped you the most? → Things to keep for HW2P2
- What would you do differently if you could start over? → Things to change for HW2P2

Kaggle shoutouts -HW1 Hall of Fame!

#	Δ	Team	Members	Score	Entries	Last	Solutior
		Dropout 100%	•	0.87915	9	5d	
2		Jared Broyhill	9	0.87779	17	3d	
3		Relu	9	0.87740	4	4d	
4		Mengchun Zhang	9	0.87534	22	2d	
5		Vidur Sinha	9	0.87520	12	19h	
6		Ivan	0	0.87411	19	13h	
7		ZZ	9	0.87371	7	2d	
8		Hin Kit Eric Wong	\bigcirc	0.87348	57	3d	
9		π	9	0.87329	19	2d	
10		Aditya Kumar	3	0.87292	12	1d	

Kaggle shoutouts - hall of comic names!

Dropout 100%

DeepForgetting30

Colab Eats My Lunch Money

Overview of HW2P2

- HW2P2 is significantly more time consuming than HW1P2
- Models will be harder to develop, train, and converge
- Models must be written yourself and trained from scratch
- Use what you learned from HW1P2 💪
- Please start early!
- Strategize with your Study Team.

Goal of this HW Bootcamp:

Help you to get started with HW2P2 🚀

Agenda

- **1.** Problem statement
- 2. Workflow
 - a. Data loading and preprocessing
 - b. Building a model
 - c. Training, monitoring, testing, and Kaggle submission
 - d. Different loss functions for the task
- 3. FAQs

Problem statement

HW2P2 objective

Two tasks, <mark>one</mark> model, <mark>one</mark> submission

- Face classification
- Face verification

Face classification VS verification

Face classification (aka identification, recognition)

Given an image, who is this person? Person X, Y, or Z

Example: can be used in applications like attendance system

Face classification VS verification

Face classification (aka identification, recognition)	Face verification
Given an image, who is this person? Person X, Y, or Z	Is the pair of Images given to you of the same person?
Example: can be used in applications like attendance system	Example: you can unlock your smartphone using your face, but others can't

Workflow

HW Parts 2 ideal workflow

Step 0: Download the notebook.

Step 1: Complete all #TODOs and ensure your code runs and reaches very low cutoff.

Step 2: Divide the experiments among the study group members to achieve the high cutoff.

HW Parts 2 components

1: Data loading and preprocessing

2: Building a model

- **3**: Training and monitoring
- **4**: Testing and Kaggle submission

5: Different loss functions and model fine-tuning

1. Data loading and Preprocessing

Dataset and Data Loader.

- 1. Classification Dataset Class
 - a. Train.
 - b. Validation.
 - c. Test.
- 2. Verification Dataset Class.
 - a. Validation.
 - b. Test.

For every dataset class, there is a data loader !

Image Augmentations

Why Do We Need Augmentations

1. **Emulating More Data:** Transformations increase the perceived dataset size by applying various alterations to input images, leading to improved training and generalization.

2. **Preventing Overfitting:** Transformations expose the model to 'new' versions of images in every epoch, reducing the memorization of specific images and promoting the learning of robust features

3. Invariance: Training the model on transformed images teaches it to recognize objects independently of their orientation or position

4. Better Generalization: Transformations diversify the training set, exposing the model to a wide variety of examples, which can enhance performance on unseen data

Sample Augmentations

Random Crop

Original image

Random Rotation

Original image

Random Horizontal Flip

Original image

Good Transform

Random Vertical Flip

Original image

Not So Good Transform

Sample Augmentations

Color Jitter

Original image

Random Perspective

Original image

Transformation Tips

Consider Normalising the Data:

- Use torchvision.transforms.Normalize() after calculating the mean and standard

deviation of each pixel of each image of the dataset over all 3 channels(RGB)

Common Issue:

TypeError: Input tensor should be a torch tensor. Got <class 'PIL.Image.Image'>.

- Please check the sequencing of your transforms. Read the documentation and verify the kind of input required.

This Is What A Typical Transform Pipeline Could Look Like:

```
transforms = transforms.Compose([
    transforms.Random____(112),
    transforms.Random____(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
```

Torchvision Transforms Illustrations URL:

https://pytorch.org/vision/0.11/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py

Final Images After Transformation (After applying Augmentations).

Validation Samples

Test Samples

0 0 0 0 0 0 0

WE MIGHT HAVE A PROBLEM IF IT LOOKS LIKE THIS!!

2. Building a model

WHY NOT USE LINEAR LAYERS???

HINT: For a 1000 x 1000 image With 1 M Hidden Neurons.

Rather use something else...

HINT: For a 1000 x 1000 image (Grayscale) With 1 M Hidden Neurons.

That is ~10^12 M Trainable Parameters

We Also Lose Spatial Features

WHY NOT USE LINEAR LAYERS???

MLP sensitive to location of the image

The need for shift invariance

Shared filters

OUR HERO: CNNs

BUT WHY?????

CNN

- They are good in capturing spatial patterns (1D,2D data)
- 2. Good at feature detection.
- 3. They share parameters across local region, reducing number of parameters
- 4. Translational Invariance
- 5. Computational efficiency(pooling)

ARE CNN'S ENOUGH ? Strategy!!!

Smile

NEED MORE COMPLEX **ARCHITECTURES WITH DIFFERENT WAYS TO CONVERGE THE MODEL AND** MITIGATE OVERFITTING
GOOD MODELS (*for this homework)

- 1. RESNET (here)
- 2. SE-RESNET (here)
- 3. ConvNext(<u>here</u>)
- 4. (ANY MAGICAL ARCHITECTURE)

LET'S TALK ABOUT RESNETS

ResNet

- To Convert Paper -> Code [understand the blocks + main aspects]
- ResNet Blocks: [Basic Blocks and Bottleneck Blocks]
- ResNet Main Aspect: Residual Connections

Residual Connections

In traditional feedforward neural networks, data flows through each layer **sequentially**: The output of a layer is the input for the next layer.

Residual connection provides another path for data to reach latter parts of the neural network by **skipping** some layers.

How do they help??

- For feedforward neural networks, training a deep network is usually very difficult, due to problems such as **exploding gradients and vanishing gradients**.
- On the other hand, the training process of a neural network with residual connections is empirically shown to converge much more easily, even if the network has several hundreds layers.
- Without Residual Connections, the gradients (signal for learning) get weaker as they flow backward to these layers.

Residual Connections

- The residual connection first applies identity mapping to *x*
- Then it performs element-wise addition F(x) + x.
- The whole architecture that takes an input x and produces output F(x) + x is usually called a residual block or a building block.
- Quite often, a residual block will also include an activation function such as ReLU applied to F(x) + x.

ResNet: BasicBlock

- •It's just a regular 3x3 convolution (then BN, ReLU), another 3x3 convolution (then BN).
- •Then, a skip connection adding input and output, then ReLU.

ResNet: Bottleneck Block

- •A 256-channel input goes through a point-wise convolution, reducing channels to 64.
- •Then, a 3x3 regular convolution maintains channels at 64.
- •Then, a point-wise convolution expands channels back to 256.
- Finally, the residual connection.

Residual Connection - Basic Block

Note: this is not the actual code, this is just an example :)

<pre>class BasicBlock(torch.nn.Module):</pre>	<pre>def forward(self, A0):</pre>
<pre>definit(self, n_h):</pre>	R0 = A0
<pre>self.linear0 = torch.nn.Linear(n_h, n_h)</pre>	Z0 = self.linear0(A0)
<pre>self.linear1 = torch.nn.Linear(n_h, n_h)</pre>	BZ0 = self.bn0(Z0)
	A1 = self.relu(BZ0)
<pre>self.bn0 = torch.nn.BatchNorm1d(n_h)</pre>	
<pre>self.bn1 = torch.nn.BatchNorm1d(n_h)</pre>	<pre>Z1 = self.linear1(A1)</pre>
	BZ1 = self.bn1(Z1)
<pre>self.relu = torch.nn.ReLU(inplace=True)</pre>	A2 = self.relu(BZ1 +

return A2

)

R0)

Residual Connection - Bottleneck Block

Note: this is not the actual code, this is just an example :)

```
class Bottleneck(torch.nn.Module):
                                                             def forward(self, A0):
                                                              R0 = self.residual(A0)
def __init__ (self, n h):
                                                               ZO = self.linearO(AO)
   self.residual = torch.nn.Linear(n h, n h*4)
                                                              BZ0 = self.bn0(Z0)
                                                              A1 = self.relu(BZ0)
   self.linear0 = torch.nn.Linear(n h, n h )
   self.linear1 = torch.nn.Linear(n h, n h )
                                                               Z1 = self.linear1(A1)
   self.linear2 = torch.nn.Linear(n h, n h*4)
                                                              BZ1 = self.bn1(Z1)
                                                              A2 = self.relu(BZ1)
   self.bn0 = torch.nn.BatchNorm1d(n h
   self.bn1 = torch.nn.BatchNorm1d(n h )
                                                               Z2 = self.linear2(A2)
   self.bn2 = torch.nn.BatchNorm1d(n h*4)
                                                              BZ2 = self.bn2(Z2)
                                                              A3 = self.relu(BZ2 + R0)
   self.relu = torch.nn.ReLU(inplace=True)
                                                               return A3
```

ResNet: Overall Architecture

Layer Name	Output Size	18-Layer	34-Layer	50-Layer
cov1	112×112		$7\times7,$ 64, stride 2	
			3×3 max pool, stride 2	ŝ.
cov2_x	56×56	$\left[\begin{array}{rrr} 3\times3, & 64\\ 3\times3, & 64 \end{array}\right]\times2$	$\left[\begin{array}{rrr} 3 \times 3, & 64 \\ 3 \times 3, & 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, & 64 \\ 3 \times 3, & 64 \\ 1 \times 1, & 256 \end{bmatrix} \times 3$
cov3_x	28 imes 28	$\left[\begin{array}{cc} 3\times3, & 128\\ 3\times3, & 128 \end{array}\right]\times2$	$\left[\begin{array}{ccc} 3\times3, & 128\\ 3\times3, & 128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, & 128 \\ 3 \times 3, & 128 \\ 1 \times 1, & 512 \end{bmatrix} \times 4$
cov4_x	14×14	$\left[\begin{array}{cc} 3\times3, & 256\\ 3\times3, & 256 \end{array}\right]\times2$	$\left[\begin{array}{ccc} 3\times3, & 256\\ 3\times3, & 256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, & 256 \\ 3 \times 3, & 256 \\ 1 \times 1, & 1028 \end{bmatrix} \times 6$
cov5_x	7×7	$\left[\begin{array}{cc} 3\times3, & 512\\ 3\times3, & 512 \end{array}\right]\times2$	$\left[\begin{array}{cc} 3\times3, & 512\\ 3\times3, & 512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
1×1		ave	erage pool, 1000-d fc, soft	max
FLO	OPs	$1.8 imes10^9$	$3.6 imes10^9$	$3.8 imes 10^9$

34-layer residual

АНННННННН

BREATHE!!!!

General Architecture Flow

- •CNN architectures are divided into stages, which are divided into blocks.
 - Each "stage" consists of (almost) equivalent "blocks"
 - Each "block" consists of a few CNN layers, BN, and ReLUs.
- •To understand an architecture, we mostly need to understand its blocks.
- •All that changes for blocks in different stages is the base # of channels

ConvNeXt

- •This is a very new paper, a state-of-the-art architecture.
- •However, its intuitions are very similar to MobileNetV2.
- •Again, remember that to understand a paper, we just really need to understand its **blocks**.
- •Just a single block type for ConvNeXt
- •**Read the paper** for details on stages/channel sizes, etc.
 - •We recommend ConvNeXt-T size which has less than 35M parameters.

General Architecture Flow

- •However, you do need to piece these blocks together into a final model.
- •The general flow is like this:
 - Stem
 - Stage 1
 - Stage 2
 - ...
 - Stage n
 - Classification Layer

Summary

•A normal convolution mixes information from **both different channels and different spatial locations (pixels)**

•A depth-wise convolution only mixes information **over spatial locations**

• Different channels do not interact.

•A point-wise convolution only mixes information **over different channels**

• Different spatial locations do not interact

• Remember parameter limit for this HW is 30 million.

3. Training, monitoring, and testing

Monitoring Training vs Validation Acc

- •The standard intuition of "overfitting" is if the training & validation gap is too large, you should stop training as it's overfitting.
- •However, in modern DL, this intuition is not as relevant.
- •XELoss != Accuracy
 - Model can keep improving after training accuracy hits 100%.
 - •There is recent research that finds that on some problems, training accuracy hits 100% at epoch 10 while validation accuracy is <50%. Then, on epoch 1000,

validation hits 100%.

- •Of course, we can't train for that long, but train until validation stops improving.
 - Or just set a standard LR schedule/setup like "CosineAnnealingLR for 50 epochs" and just let it run.

How to tackle overfitting?

- •There are *a lot* of different trick to improving your CNN model.
- •From the recent ConvNeXt paper
- •What we recommend trying first:
 - Label Smoothing (huge boost)
 - Stochastic Depth
 - DropBlock (paper)
 - Dropout before final classification layer
- •Then you can try the others
- Check out "Bag of Tricks for Image Classification with Convolutional Neural Networks"
 - https://arxiv.org/abs/1812.01187

(pre-)training config	ConvNeXt-T/S/B/L ImageNet-1K 224 ²
optimizer	AdamW
base learning rate	4e-3
weight decay	0.05
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.999$
batch size	4096
training epochs	300
learning rate schedule	cosine decay
warmup epochs	20
warmup schedule	linear
layer-wise lr decay [6, 10]	None
randaugment [12]	(9, 0.5)
label smoothing [65]	0.1
mixup [85]	0.8
cutmix [84]	1.0
stochastic depth [34]	0.1/0.4/0.5/0.5
layer scale [69]	1e-6
gradient clip	None
exp. mov. avg. (EMA) [48]	0.9999
	and the second se

4. Different loss functions and training strategies

How is this different from **Face Classification**?

How is this different from **Face Classification**?

How is this different from **Face Classification**?

Separable Features (e.g. classification)

Discriminative Features (e.g. metric learning)

Why classification cannot do verification?

Classifier can only perform closed-set recognition

• Need to re-train with open-set new identities everytime

But...we can just use the backbone to extract features and compare features, which does not require classifier

Zero Shot Losses

- In Classification problems, the objective is maximize the classification accuracy of specific classes seen
- In Zero shot problems, we intend to derive representations where each instance of same class is clustered together, and far away from the other classes
 - The training classes are example classes and model should learn generic concepts of clustering these classes together from these examples
 - Zero shot losses use used for such tasks

Cross Entropy Loss

- CE is a zero shot loss
- Features learned by the classifier with Cross-Entropy is not discriminative enough
- Also needs sufficiently large number of classes to converge

A Closer Look into Cross-Entropy

$$\mathbf{p} = \text{Softmax}(\mathbf{s}) = \left[\frac{\exp(s^1)}{\sum_{k=1}^C \exp(s^k)}, \dots, \frac{\exp(s^C)}{\sum_{k=1}^C \exp(s^k)}\right] \in \mathbb{R}^C$$
$$\mathcal{L}_{\text{CE}} = \frac{1}{N} \sum_{i}^N \sum_{j}^C -y_i^j \log p_i^j.$$

Feature Visualization of Cross-Entropy

NormFace: L2 Hypersphere Embedding for Face Verification. Feng Wang et al.

A Closer Look into Cross-Entropy

$$\mathbf{p} = \text{Softmax}(\mathbf{s}) = \left[\frac{\exp(s^{1})}{\sum_{k=1}^{C} \exp(s^{k})}, \dots, \frac{\exp(s^{C})}{\sum_{k=1}^{C} \exp(s^{k})}\right] \in \mathbb{R}^{C}$$
$$\mathcal{L}_{\text{CE}} = \frac{1}{N} \sum_{i}^{N} \sum_{j}^{C} -y_{i}^{j} \log p_{i}^{j}.$$
$$l_{\text{CE}} = \sum_{j}^{\cup} -y^{j} \log p^{j}$$
$$= \sum_{j}^{C} -y^{j} \log \frac{\exp(s^{j})}{\sum_{k=1}^{C} \exp(s^{k})}$$
$$= -\log \frac{\sum_{k=1, k \neq y}^{C} \exp(s^{k})}{\exp(s^{y})}$$
$$= s^{y} - \log \sum_{k=1, k \neq y}^{C} \exp(s^{k})$$
$$\approx s^{y} - \max_{k \in [C], k \neq y} (s^{k})$$

What are better features?

Larger intra-class similarity

(Smaller intra-class distance)

Smaller inter-class similarity

(Larger inter-class distance)

What are better features?

Larger intra-class similarity

(Smaller intra-class distance)

Smaller inter-class similarity

(Larger inter-class distance)

Human language?

Features of the same class have larger similarity

Contrastive Losses

Let's compute a similarity metric between model embeddings to learn more discriminative features between the input data.

Recommended Watch: <u>Rec 0.18</u> and <u>Rec 0.19</u>

How do we enforce the model to learn these **discriminative features**?

How do we maximize the similarity between **"positive" pairs** and minimize the similarity between **"negative" pairs**?

Two Paradigms

• Metric Learning/Pairwise Learning

• Margin-based Softmax

Metric Learning/Pairwise Learning

Centre Loss Triplet Loss N-Pair Loss Contrastive Loss...

$$\mathcal{L} = \max(s^n - s^p + m, 0)$$
Margin-based Softmax

AM-Softmax

SphereFace

CosFace

ArcFace

. . .

CombinedMarginFace

$$L_{1} = -\log \frac{e^{W_{y_{i}}^{T}x_{i} + b_{y_{i}}}}{\sum_{j=1}^{N} e^{W_{j}^{T}x_{i} + b_{j}}} \quad L_{3} = -\log \frac{e^{s\cos(\theta_{y_{i}} + m)}}{e^{s\cos(\theta_{y_{i}} + m)} + \sum_{j=1, j \neq y_{i}}^{N} e^{s\cos\theta_{j}}}$$

PyTorch Metric Learning

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

How to Get Started

- Use a simple network and cross-entropy loss for early deadline
- Try better architectures with cross-entropy loss
- Try data augmentation
- Try other loss functions
- Fine-tune your cross-entropy loss with other loss functions

Approach 1 - Joint Loss Optimization

Approach 2 - Sequential (Fine-tuning)

Types of Contrastive Losses

Centre Loss

ArcFace Loss

SphereFace Loss

Centre Loss

$$\mathcal{L}_{C} = rac{1}{2}\sum_{i=1}^{m} \|m{x}_{i} - m{c}_{y_{i}}\|_{2}^{2}$$

- Increases the disparity between classes using softmax
- Increases inter-class distance by reducing intra-class Euclidean distance by assigning centers to each class.
- Calculating the centre for each class, is difficult

ArcFace

$$L = -\frac{1}{N} \sum_{i=1}^{N} \ln \frac{\exp\left\{s \cdot \cos(\theta_{y_i,i} + m)\right\}}{\exp\left\{s \cdot \cos\left(\theta_{y_i,i} + m\right)\right\} + \sum_{j \neq y_i} \exp\left\{s \cdot \left(\cos(\theta_{j,i})\right\}\right\}}$$

- Builds on the concepts of the sphere face and cos face.
- Replaced the multiplicative angular margin in CosFace, with an additive margin 'm'

ArcFace

• The additive factor of 'm' has found to lead to better convergence as compared to its multiplicative counterpart in Sphere Face.

Sphere Face

$$L_{\text{ang}} = -\sum_{i} \ln \frac{\exp\left\{ \|\mathbf{x}_{i}\| \cos(m \cdot \theta_{y_{i},i})\right\}}{\exp\left\{ \|\mathbf{x}_{i}\| \cos(m \cdot \theta_{y_{i},i})\right\} + \sum_{j \neq y_{i}} \exp\left\{ \|\mathbf{x}_{i}\| \cos\left(\theta_{j,i}\right)\right\}}$$

- Makes use of an angular margin, imposed by heta
- The learned features construct a discriminative angular distance equivalent to the geodesic distance on a hypersphere manifold
- θ :- denotes the type of decision boundary learned, which leads to different margins for different classes

Sphere Face

M ~ Angular Margin

FAQ

Thanks!

See you on Piazza and in OHs!