
11-485/685/785, Fall 2024 
  
HW2P2: Bootcamp 

TAs:  Christine Muthee, Sadrishya Agrawal , Tanghang Elvis. 



Reflection of HW1P2 
 
1. What was challenging but you figured that out?  
2. Which strategies / resources helped you the most? 
3. What would you do differently if you could start over? 



Reflection of HW1P2 
 
1. What was challenging but you figured that out? → Great job 
2. Which strategies / resources helped you the most? → Things to 

keep for HW2P2  
3. What would you do differently if you could start over? → Things to 

change for HW2P2 



Kaggle shoutouts -HW1 Hall of Fame!  
 
 



Kaggle shoutouts - hall of comic names!  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● HW2P2 is significantly more time consuming than HW1P2 

● Models will be harder to develop, train, and converge 

● Models must be written yourself and trained from scratch 

● Use what you learned from HW1P2 💪  

● Please start early! 

● Strategize with your Study Team. 

 

 

 

Overview of HW2P2  



Goal of this HW Bootcamp:  
 
 
Help you to get started with HW2P2 🚀  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1. Problem statement 
2. Workflow  

a. Data loading and preprocessing   
b. Building a model 
c. Training, monitoring, testing, and Kaggle submission  
d. Different loss functions for the task 

3. FAQs 
 

Agenda 



Problem statement  



HW2P2 objective  

 

Two tasks, one model, one submission 

 

● Face classification 
● Face verification  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Face classification VS verification   

Face classification (aka identification, recognition) 

Given an image, who is this person? Person X, Y, or Z 

Example: can be used in applications like attendance system 
  

Face 
classification 

Satya 

Mark 

Haven’t seen it before  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Face classification VS verification   

Face classification (aka identification, recognition)  Face verification 

Given an image, who is this person? Person X, Y, or Z  Is the pair of Images given to you of the same person?  

Example: can be used in applications like attendance system   Example: you can unlock your smartphone using your face, but 
others can’t 

Face 
classification 

Satya 

Mark 

Haven’t seen it before  



Workflow  



HW Parts 2 ideal workflow 
 
Step 0: Download the notebook.  
 
Step 1: Complete all #TODOs and ensure your code runs and 
reaches very low cutoff.  
 
Step 2: Divide the experiments among the study group 
members to achieve the high cutoff.  



HW Parts 2 components  
 
1: Data loading and preprocessing 
 
2: Building a model 
 
3: Training and monitoring 
 
4: Testing and Kaggle submission 
 
5: Different loss functions and model fine-tuning  
 



1. Data loading and Preprocessing 
 
 
 



Dataset and Data Loader.
 
1. Classification Dataset Class 

a. Train. 
b. Validation. 
c. Test. 

2. Verification Dataset Class. 
a. Validation. 
b. Test. 

 
For every dataset class, there is a data loader ! 



Image 
Augmentations



Why Do We Need Augmentations

1. Emulating More Data: Transformations increase the perceived dataset 
size by applying various alterations to input images, leading to improved 
training and generalization. 
 

2. Preventing Overfitting: Transformations expose the model to ’new’ 
versions of images in every epoch, reducing the memorization of specific 
images and promoting the learning of robust features 
 

3. Invariance: Training the model on transformed images teaches it to 
recognize objects independently of their orientation or position 
 

4. Better Generalization: Transformations diversify the training set, 
exposing the model to a wide variety of examples, which can enhance 
performance on unseen data 
 



Random Crop

Random Rotation

Sample Augmentations 



Random Horizontal Flip

Good Transform



Random Vertical Flip

Not So Good Transform



Color Jitter

Random Perspective

Sample Augmentations 



Transformation Tips

Consider Normalising the Data: 
 

- Use torchvision.transforms.Normalize() after calculating the mean and standard 

deviation of each pixel of each image of the dataset over all 3 channels(RGB) 

 

Common Issue: 
TypeError: Input tensor should be a torch tensor. Got <class 'PIL.Image.Image'>. 

- Please check the sequencing of your transforms. Read the documentation and 

verify the kind of input required. 



Torchvision Transforms Illustrations URL: 
https://pytorch.org/vision/0.11/auto_examples/plot_transforms.html#sphx-glr-auto-e
xamples-plot-transforms-py 

This Is What A Typical Transform Pipeline Could Look Like: 

transforms = transforms.Compose([ 
        transforms.Random_____(112), 
        transforms.Random_____(), 
        transforms.ToTensor(), 
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) 
]) 

https://pytorch.org/vision/0.11/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py
https://pytorch.org/vision/0.11/auto_examples/plot_transforms.html#sphx-glr-auto-examples-plot-transforms-py


Final Images After Transformation 
(After applying Augmentations).



WE MIGHT HAVE A PROBLEM IF IT LOOKS 
LIKE THIS!!



2. Building a model 
 
 



WHY NOT USE LINEAR 
LAYERS??? 



HINT: For a 1000 x 1000 image 
With 1 M Hidden Neurons. 
 
 



HINT: For a 1000 x 1000 image 
(Grayscale) 
With 1 M Hidden Neurons. 
 
That is ~10^12 M Trainable 
Parameters 
 
 
 
 
 
 
 
 
We Also Lose Spatial Features 
 
 

Rather use something else… 



WHY NOT USE LINEAR LAYERS??? 

MLP sensitive to location of the image

Shared filters



OUR HERO: CNNs 

BUT WHY????? 



CNN  
1. They are good in capturing spatial patterns 

(1D,2D data)
2. Good at feature detection.
3. They share parameters across local region, 

reducing number of parameters
4. Translational Invariance
5. Computational efficiency(pooling)



ARE CNN’S ENOUGH ? 
 Strategy!!! 

Smile



NEED MORE COMPLEX 
ARCHITECTURES WITH 

DIFFERENT WAYS TO 
CONVERGE THE MODEL AND 

MITIGATE OVERFITTING 



GOOD MODELS (*for this homework) 

1. RESNET (here) 
2. SE-RESNET (here) 
3. ConvNext(here) 
4. (ANY MAGICAL ARCHITECTURE) 

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/2201.03545


LET’S TALK ABOUT 
RESNETS 



ResNet 

• To Convert Paper -> Code [understand the blocks + main aspects] 
• ResNet Blocks: [Basic Blocks and Bottleneck Blocks] 
• ResNet Main Aspect: Residual Connections 

 



Residual Connections 
In traditional feedforward neural networks, data flows through each layer 

sequentially: The output of a layer is the input for the next layer. 
 
Residual connection provides another path for data to reach latter parts of the 

neural network by skipping some layers.  

 

 



How do they help?? 
● For feedforward neural networks, training a deep network is usually very difficult, 

due to problems such as exploding gradients and vanishing gradients.  
● On the other hand, the training process of a neural network with residual 

connections is empirically shown to converge much more easily, even if the 
network has several hundreds layers. 

● Without Residual Connections, the gradients (signal for learning) get weaker as 
they flow backward to these layers. 



Residual Connections 

● The residual connection first applies identity mapping to x 
● Then it performs element-wise addition F(x) + x.  
● The whole architecture that takes an input x and produces output F(x) + x is 

usually called a residual block or a building block.  
● Quite often, a residual block will also include an activation function such as 

ReLU applied to F(x) + x. 



ResNet: BasicBlock 

•It’s just a regular 3x3 convolution (then BN, ReLU), another 3x3 
convolution (then BN). 

•Then, a skip connection adding input and output, then ReLU. 



ResNet: Bottleneck Block 

•A 256-channel input goes through a point-wise convolution, 
reducing channels to 64. 

•Then, a 3x3 regular convolution maintains channels at 64. 
•Then, a point-wise convolution expands channels back to 256. 
•Finally, the residual connection. 



Residual Connection - Basic Block 

class BasicBlock(torch.nn.Module):

  def __init__(self, n_h):

    self.linear0 = torch.nn.Linear(n_h, n_h)

    self.linear1 = torch.nn.Linear(n_h, n_h)

    self.bn0 = torch.nn.BatchNorm1d(n_h)

    self.bn1 = torch.nn.BatchNorm1d(n_h)

    self.relu = torch.nn.ReLU(inplace=True)

  def forward(self, A0):

    R0  = A0

    Z0  = self.linear0(A0)

    BZ0 = self.bn0(Z0)

    A1  = self.relu(BZ0)

    Z1  = self.linear1(A1)

    BZ1 = self.bn1(Z1)

    A2  = self.relu(BZ1 + R0)

    return A2

**Note: this is not the actual code, this is just an example :)**



Residual Connection - Bottleneck Block 

class Bottleneck(torch.nn.Module):

  def __init__(self, n_h):

    self.residual = torch.nn.Linear(n_h, n_h*4)

    self.linear0 = torch.nn.Linear(n_h, n_h  )

    self.linear1 = torch.nn.Linear(n_h, n_h  )

    self.linear2 = torch.nn.Linear(n_h, n_h*4)

        

    self.bn0 = torch.nn.BatchNorm1d(n_h  )

    self.bn1 = torch.nn.BatchNorm1d(n_h  )

    self.bn2 = torch.nn.BatchNorm1d(n_h*4)

    self.relu = torch.nn.ReLU(inplace=True)

  def forward(self, A0):

    R0  = self.residual(A0)

    Z0  = self.linear0(A0)

    BZ0 = self.bn0(Z0)

    A1  = self.relu(BZ0)

    Z1  = self.linear1(A1)

    BZ1 = self.bn1(Z1)

    A2  = self.relu(BZ1)

    Z2  = self.linear2(A2)

    BZ2 = self.bn2(Z2)

    A3  = self.relu(BZ2 + R0)        

    return A3

**Note: this is not the actual code, this is just an example :)**



ResNet: Overall Architecture 



AHHHHHHHHHH 



BREATHE!!!! 



General Architecture Flow 
•CNN architectures are divided into stages, which are divided 
into blocks. 

•Each “stage” consists of (almost) equivalent “blocks” 
•Each “block” consists of a few CNN layers, BN, and ReLUs. 

•To understand an architecture, we mostly need to understand its 
blocks. 

•All that changes for blocks in different stages is the base # of 
channels 



ConvNeXt 
•This is a very new paper, a state-of-the-art architecture. 
•However, its intuitions are very similar to MobileNetV2. 
•Again, remember that to understand a paper, we just really need 
to understand its blocks. 

•Just a single block type for ConvNeXt 
•Read the paper for details on stages/channel sizes, etc. 

•We recommend ConvNeXt-T size which has less than 35M parameters. 



General Architecture Flow 
•However, you do need to piece these blocks together into 
a final model. 

•The general flow is like this: 
•Stem 
•Stage 1 
•Stage 2 
•… 
•Stage n 
•Classification Layer 

STAGE BLOCK

STEM

FC/ CLASSIFICATION LAYER



Summary 

•A normal convolution mixes information from both different 
channels and different spatial locations (pixels) 

•A depth-wise convolution only mixes information over 
spatial locations 

•Different channels do not interact. 

•A point-wise convolution only mixes information over 
different channels 

•Different spatial locations do not interact 
• Remember parameter limit for this HW is 30 million. 

 



3. Training, monitoring, and testing 



Monitoring Training vs Validation Acc
•The standard intuition of “overfitting” is – if the training & validation 
gap is too large, you should stop training as it’s overfitting.

•However, in modern DL, this intuition is not as relevant.

•XELoss != Accuracy
•Model can keep improving after training accuracy hits 100%.

•There is recent research that finds that on some problems, training accuracy 
hits 100% at epoch 10 while validation accuracy is <50%. Then, on epoch 
1000,
validation hits 100%.

•Of course, we can’t train for that long, but train until validation 
stops improving.

•Or just set a standard LR schedule/setup like “CosineAnnealingLR for 50 epochs” 
and just let it run.



How to tackle overfitting?

•There are a lot of different trick to 
improving your CNN model.

•From the recent ConvNeXt paper
•What we recommend trying first:

•Label Smoothing (huge boost)
•Stochastic Depth
•DropBlock (paper)
•Dropout before final classification layer

•Then you can try the others

•Check out “Bag of Tricks for Image 
Classification with Convolutional Neural 
Networks”

•https://arxiv.org/abs/1812.01187



4. Different loss functions and training 
strategies 



How is this different from Face Classification? 

same?



How is this different from Face Classification? 



How is this different from Face Classification? 



Why classification cannot do verification?

Classifier can only perform closed-set recognition 

● Need to re-train with open-set new identities everytime 

 

But…we can just use the backbone to extract features and 
compare features, which does not require classifier 

 

 



Zero Shot Losses

● In Classification problems, the objective is maximize the 
classification accuracy of specific classes seen

● In Zero shot problems, we intend to derive representations where 
each instance of same class is clustered together, and far away 
from the other classes
○ The training classes are example classes and model should 

learn generic concepts of clustering these classes together 
from these examples

○ Zero shot losses use used for such tasks



Cross Entropy Loss

● CE is a zero shot loss
● Features learned by the classifier with Cross-Entropy is not 

discriminative enough
● Also needs sufficiently large number of classes to converge



A Closer Look into Cross-Entropy



Feature Visualization of Cross-Entropy

NormFace: L2 Hypersphere Embedding for Face Verification. Feng Wang et al.



A Closer Look into Cross-Entropy



What are better features?

Larger intra-class similarity 

(Smaller intra-class distance) 

 

Smaller inter-class similarity 

(Larger inter-class distance) 

 



What are better features?

Larger intra-class similarity 

(Smaller intra-class distance) 

 

Smaller inter-class similarity 

(Larger inter-class distance) 

 

Human language? 

Features of the same class have larger similarity 
(smaller distance) than other classes 



Contrastive Losses 
Let’s compute a similarity metric between 
model embeddings to learn more discriminative 
features between the input data. 

Recommended Watch: Rec 0.18 and Rec 0.19

https://www.youtube.com/watch?v=_kVxbL_nyBk&list=PLp-0K3kfddPwIuz75RlYScpaP0z78u9pP&index=25
https://www.youtube.com/watch?v=ih3v4lZSozk&list=PLp-0K3kfddPwIuz75RlYScpaP0z78u9pP&index=26


How do we enforce the model to learn these 
discriminative features? 
 
How do we maximize the similarity between “positive”  
pairs and minimize the similarity between “negative” pairs? 
 



Two Paradigms

● Metric Learning/Pairwise Learning

● Margin-based Softmax



Metric Learning/Pairwise Learning

Centre Loss

Triplet Loss

N-Pair Loss

Contrastive Loss…



Margin-based Softmax

AM-Softmax

SphereFace

CosFace

ArcFace

CombinedMarginFace

…



PyTorch Metric Learning

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/

https://kevinmusgrave.github.io/pytorch-metric-learning/losses/


How to Get Started 

● Use a simple network and cross-entropy loss for early deadline
● Try better architectures with cross-entropy loss
● Try data augmentation 
● Try other loss functions
● Fine-tune your cross-entropy loss with other loss functions







Types of 
Contrastive 

Losses 

Centre Loss

ArcFace Loss

SphereFace Loss

https://arxiv.org/pdf/1707.07391.pdf
https://arxiv.org/pdf/1801.07698.pdf
https://arxiv.org/pdf/1704.08063.pdf












FAQ   



Thanks! 
 

See you on Piazza and in OHs! 


