Deep Learning

Sequence to Sequence models:

Connectionist Temporal
Classification

Spring 2025
Attendance: @787



Sequence-to-sequence modelling

* Problem:
— Asequence X; ... Xy goesin
— A different sequence Y; ... Yy, comes out
* E.g.
— Speech recognition: Speech goes in, a word sequence comes out

* Alternately output may be phoneme or character sequence

— Machine translation: Word sequence goes in, word sequence comes
out

— Dialog : User statement goes in, system response comes out
— Question answering : Question comes in, answer goes out

* Ingeneral N # M

— No synchrony between X and Y.



Sequence to sequence

I ate an apple - Ich habe einen apfel gegessen

* Sequence goes in, sequence comes out
* No notion of “time synchrony” between input and output

— May even not even maintain order of symbols

 E.g. “late an apple” = “Ich habe einen apfel gegessen”

— Or even seem related to the input

* E.g. “My screen is blank” = “Please check if your computer is plugged in.”



Sequence to sequence

I ate an apple - Ich habe einen apfel gegessen

e Sequence goes in, sequence comes out

* No notion of “time synchrony” between input and output

— May even not even maintain order of symbols

 E.g. “late an apple” = “Ich habe einen apfel gegessen”

— Or even seem related to the input

* E.g. “My screen is blank” = “Can you check if your computer is plugged in?”



Case 1: Order-aligned but not time
synchronous

. .-

[ [ [ [ '
» » » »

A A A A A A A

X(t)

t=0

Time

 The input and output sequences happen in the same
order

— Although they may not be time synchronous, they can be
“aligned” against one another

— E.g. Speech recognition

 The input speech can be aligned to the phoneme sequence output

5




Problems

* How do we perform inference on such a
model

— How to output time-asynchronous sequences

* How do we train such models



Problems

* How do we perform inference on such a
model Partially addressed

— How to output time-asynchronous sequences

* How do we train such models




The inference problem

/B/ /1Y/ [F/ /1Y/

t I 1 t

t ¢+ ¢t 1 ¢t ¢+ ¢+ ¢+ t 1

Xo| [X1| [X2| | X3| [Xa| | Xs| [Xe| [X7| | Xs| [Xo

* Objective: Given a sequence of inputs, asynchronously output a
sequence of symbols

— “Decoding”

* Find most likely symbol sequence given inputs

So ... Sk_1 = argmax prob(S; ...Sg_11Xo - Xn—1)

! !
So--Sk-1



Problems

* How do we perform inference on such a
model

— How to output time-asynchronous sequences

* How do we train such models




Recap: Training with alighment

/B/ /AH/ /T/
1 1 1

t ¢+ + 1 t ¢+ ¢t t t 1

Xo| [X1| [X2| | X3| [Xa| | Xs| [Xe| [X7| | Xs| [Xo

* Training data: input sequence + output sequence

— Output sequence length <= input sequence length

* Given the alignment of the output to the input
— The phoneme /B/ ends at X,, /AH/ at X, /T/ at X,



Recap: Characterizing an alignment

LT T - e o  ,,ssm,s,smmmmsTTT T mmmm m m m m m m  mmrsTr,rrr, r mmm I M M M I I

* Given only the order-synchronous sequence and its time stamps

_ SO(TO)Jsl(Tl)J "'JSK—l(TK—l)
— Eg. So =/B/ (3), $1=/B/(7), S =/T/(9),

11



Recap: Characterizing an alignment

* Given only the order-synchronous sequence and its time stamps

_ SO(TO)Jsl(Tl)J "'JSK—l(TK—l)
— Eg. So =/B/ (3), $1=/B/(7), S =/T/(9),

* Repeat symbols to convert it to a time-synchronous sequence

— S0,S1) -, SN=1 = So, So, . (TO timeS), S]J Sl' ver ) (Tl timeS), ""SK—l

— E.8.50,51,...,8 =/B//B//B//B//AH//AH//AH//AH[/AH[[T[]T/



Recap: Characterizing an alignment

Given only the order-synchronous sequence and its time stamps

- SO(TO)!Sl(Tl)r'"rSK—l(TK—l)
- Eg. So=/B/(3), S1=/B/(7), S;=/T/(9),

Repeat symbols to convert it to a time-synchronous sequence

— S0 = So,Sl = So, '"’STO = SO'ST0+1 = Sl, ""STl = Sl, ST1+1 = 52, ey SN—1 = SK—l

— Eg.S0,51,..,8 =/B//B//B//B//AH//AH[//AH[//AH[//AH[[T[]T/

For our purpose an alighnment of Sj ... Sx_1 to an input of length N has the form
- 850,81, -, SN—1 = S(),So, ...,50,51,51, ...,51,52, ...,SK_1 (Of Iength N)

Any sequence of this kind of length N that contracts (by eliminating repetitions) to
So .- Sg—1 is a candidate alignment of S, ... Sk_1

13



Recap: Training with alignment
/B/

/1Y/

/F/

R

/IY/

* Given the order-aligned output sequence with
timing

1 | 1 1
t + £ 1T t ¢t ¢t t 1 1
X | | X 1 X% | X! [xa| | X | X | [ x| | Xs| | Xo

14



0 E (N B A T

6 Y, Ye Yq

r ¢+t tr tr t 1 1 1

t ¢+ ¢+ 7 t ¢+ + t t 1

Xo| [X1| [X2| | X3| [Xa| | Xs| [Xe| |[X7| | Xs| |Xo

* Given the order aligned output sequence with timing

— Convert it to a time-synchronous alignment by repeating symbols

 Compute the divergence from the time-aligned sequence

DIV = 2 KL(Y;, symbol;) = — z log Y (t,symbol,)
t t




/IY/

o (D EE O

v, Y, Ye Yo

r - +t t r 1 t+ 1 1 1

t ¢+ ¢+ 7 ¢+ ¢t ¢+ ¢+ t 1

Xo | [ x| [ X | | Xs| [ Xo| [ Xs| [Xs| | % | Xs| | Xo

DIV = 2 KL(Y;, symbol;) = — 2 log Y (t, symbol;)
t t

* The gradient w.r.t the t-th output vector Y;

—1
Vy. DIV =
r DIV [O 0 Y (t,symbol,) 0 O]

— Zeros except at the component corresponding to the target aligned to that
time



Problem: Alighment not provided
/B/ /N [ /Y]
? 2?2 2 2?2 ? 2?2 2?7

1 | | | | 1 | 1 1 |

| | | | 1 1 T 1 ||
Xo | [Xa| |X2| | X3| |Xa | |&s | |Xe | [X7 | [Xs | [Xo

* Only the sequence of output symbols is

provided for the training data

— But no timing information



Solution 1: Guess the alignment

/B/ /B JIY] [F/ /F/ /IY/ /Y[y, Y)Y/
P A e - B A A

Decode to obtain

Train model with
given alignments

Initialize
alignments

alignments

18



Poll 1 (@788, @789)

Viterbi training explicitly estimates the alignment of each training instance
and computes the divergence for the estimated alignment (T/F)

e True
e False

Viterbi training requires reestimation of alignments in every iteration (T/F)

e True
e False



Poll 1

Viterbi training explicitly estimates the alignment of each training instance and computes the
divergence for the estimated alignment (T/F)

e True
e False

Viterbi training requires reestimation of alignments in every iteration (T/F)

e True
e False



Iterative update: Problem

* Approach heavily dependent on initial
alignment

* Prone to poor local optima

e Alternate solution: Do not commit to an
alignment during any pass..



Recap: Training without alighment

 We know how to train if the alignment is
provided

* Problem: Alignment is not provided

e Solution:

1. Guess the alignment
< 2. Consider all possible alignments >

22



/B/
/IY/
/F/
/IY/

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

sequence of

Yo

Iy
Yo

Yo

Iy
Yo

AH
Yo

y&

ve

EH
Yo

1Y
Yo

Yo

v§

1

Recap: The “alighed” table

B B B B B B B
Y1 ) Y3 Y4 Vs Yo Y7
1Y 1Y 1Y 1Y 1Y 1Y 1Y
Vi Y2 Y3 Y4 Vs Y6 Y7
F F F F F F F
Vi Y2 Y3 Y4 Vs Ve Y7
1Y 1Y 1Y 1Y 1Y 1Y 1Y
Y1 ) Y3 Y4 Vs Ve Y7
yitH y3H y3H yiH yéH yéH yaH
yi v yE vi ye yE vy
vy 3 vy vy yo ve vy
yiH y5H vt Vi e Ve yEH
yi¥ vs¥ y3¥ vi© ye’ yver 7"
i 3 vy Vi v vé vy
v{ ys v§ vi vE vE g
Arrange the constructed table so that from top to bottom it has the exact
symbols required

| B



The reason for suboptimality

/B/ yB R | yB y5 yE Ve Ve y5 Ve

7B yi' \Y§Y Vi ye! Ve vy Ve
/Fl | Y6 % vi | N yE yE vy v

m [ ] ] ] ] [

We commit to the single “best” estimated alignment
— The most likely alignment

DIV = — z log Y(t, Symbolfeswath)
t

— This can be way off, particularly in early iterations, or if the model is poorly initialized

24



The reason for suboptimality
/8/ il

N7 yi©
/E) | vE Vi
/Y|yl yi’ vy

Iy Iy
Y3 Y4

*  We commit to the single “best” estimated alignment
— The most likely alignment

DIV = — Z log Y(t, SymbolfeStpath)
t

— This can be way off, particularly in early iterations, or if the model is poorly initialized

* Alternate view: there is a probability distribution over alignments of the target Symbol
seguence (to the input)
— Selecting a single alignment is the same as drawing a single sample from it
— Selecting the most likely alignment is the same as deterministically always drawing the most probable
value from the distribution

25



/B/
/IY/
/F/
/IY/

Averaging over all alignments

y8 k yE R vE : y5 ‘? yB K: vB Rl vE | |2 | | B
AR § v IS Pl S By K[ | [
Yo vi Vs §y§ 3yzf >‘ ve ¥ V6 xyé: Lol vs
y || [ | N N yiY Bq i Iyl N yiY Bq i
¢ 0 1 2 3 4 5 6 7 8 |

* |nstead of only selecting the most likely alignment, use the
statistical expectation over all possible alignments

DIV =FE

— z logY(t,s;)
_ t i

— Use the entire distribution of alignments

— This will mitigate the issue of suboptimal selection of alignment

26



Poll 2 (@790, @791)

The “training-without-alignment” procedure computes the average
divergence over all possible alignments of the label sequence to the input

(T/F)

e True
e False

The “training-without-alignment” requires explicit estimation of the
alignment of the label sequence to the input

e True
e False



Poll 2

The “training-without-alignment” procedure computes the average divergence over all possible
alignments of the label sequence to the input (T/F)

e True
e False

The “training-without-alignment” requires explicit estimation of the alighment of the label sequence
to the input

e True
e False



The expectation over all alignments

/B/
/IY/
/F/
/IY/

t

yé?kyf' y?iyf‘iyfty? v | | vE | | 8
Yo v § Vs v Sl Syl Iyl y7 Vg
Yo yi Vs §y§ 3 Vs 5‘ ys M V6 x v: L | ¥8
Yo v vy 3’ 3 Vs ¥ yg Ve B y7 5-1 Vg
0 1 2 3 4 5 6 7 8 |
DIV = E —z log Y (t, s; )]
t

Using the linearity of expectation

DIV = — ) EllogY(t,s;)]
Z :

— This reduces to finding the expected divergence at each input

DIV = —2 z P(s; = 5|§,X)logY(t,s; =S)

t

SES; ..

Sk

29



The expectation over all alignments

8/ | B k yE & yE : y5 ‘? Y5 K: yE Rl vE | | vB | | vE
N7 o I ys" S vl Myl Myl x yi¥ ve'
/E) | vE Vi vy Vs | vs >‘ ve M v S vy L | vé
/Y|yl yi' yar ys' 3 /7l ¥ ye' Ve yi¥ 5-1 Ve
;0 1 2 3 4 5 6 7 g8

The probability of aligning the specific symbol s at time t,
given that unaligned sequence S = S, ... Sx_; and given the
input sequence X = X; ... Xy_1
We need to be able to compute this

— This reduces to finding the expected divergen

DIV = — Z EllogY(t,s;
t

each input

DIV = —z 2 P(s; = 5|§,X)logY(t,s; =S)

t

SES;..Sk




A posteriori probabilities of symbols

I I
8/ | B k y5 S yB Il vE (| vE il v o B | | vE | | a8
N7 yi¥ oyl ys' V¥ vg v | ve x yi¥ ve'
[Fl | Yo % Ys yi Y vi ¥ v M Ve S Y7 A | Y8
/WY | i yi' yar ys' ! /7l .\1 ye' Ve yi¥ 5-1 Ve
;0 1 2 3 4 5 6 7 8

P(s; = 5,18, X) x P(s; = S,, S|X)

 P(s; = S§,,8|X) is the total probability of all valid paths in
the graph for target sequence S that go through the symbol
S, (the rt" symbol in the sequence S, ...Sx_1) attime t

* We will compute this using the “forward-backward”
algorithm



A posterlorl probabilities of symbols

) | | |

/B/ |y k yr S Yz ys | | Vi ys | | Ye | |7 Ye
AR A N7 A e (Y ZHR ol A B x 3% A 7
TR AR AR S A N Vs § Y6 syé: | ¥ |
/Y| v i i | N 1 .\1 Vs Ve 7 5-1 Vs

;0 1 2 3 4 5 6 7 FE

P(s; = 5,|S,X) x P(s; = §,, S|X)

 P(s; = S§,,8|X) is the total probability of all valid paths in

the graph for target sequence S that go through the symbol
SK—l) attime t

S, (the r*" symbol in the sequence S ...

* We will compute this using the “forward-backward”
algorithm



A posteriori probabilities of symbols

Y2 : b l—— —

N/
/Fl | Y6 ,
/Y| v i v | o 1
;0 1 2 3 f ; —

* P(s; = 5,,S|X) can be decomposed as
P(s; = S,,SIX) = P(Sy, ..., Spy oo, Sk—1, St = S, 1X)
= P(Sy...S,,5; = S,,,‘stﬂ € succ(S,), succ(S;), ...,SK_1,|X)
* Using Bayes Rule |
= P(Sy...S,5; =S, |X)P(s;4q € succ(S,), succ(Sy), ..., Sk—1 |Sg - Sy, S¢ = S5, X)

* The probability of the subgraph in the blue outline, times the conditional
probability of the red-encircled subgraph, given the blue subgraph

33



Conditional independence

/AH/ | ¥&H ke vt yit Yo yéH yé y3H ygH
/B/ vé yi v$ vi vi y& vé vy vE
/D) | ¥& i vy vy vy yg vE vy vE
/EH/ | &2 v v yi" v y&" y&" y7H v
Ny, | vo© yi¥ ¥ vi© vi* yé" ver y7¥ va"
/F/ vé yvi Y5 vi Vi yé vé vy vé
/G | Y& v ys ys v yE vE 3% 4 v§

t t t t t t t t t

| | 1 1 | 1 1 | |

Fa X4 X, X5 X, X< X X, X4

The vector of probabilities at any time depends only on the hidden state, and not the
probability vector at other times

— l.e. the probabilities of the symbols at time t do not directly influence the probabilitiesatt + 1
or any other time

— If we were to draw a sample symbol from the probability distribution at time t, exactly which
symbol we drew at t has no influence on the symbol probabilities at other times

Given the input the symbol probabilities at time t are independent of symbol
probabilitiesatt’ # t

— The two are conditionally independent given the input 34



Conditional independence

X — XO X1 "'XN—l

A 4

H — HO H1 "'HN—l

Dependency graph: Input sequence X = Xy X; ... Xy_1 governs hidden
variables H = HO H1 "'HN—l

Hidden variables govern output predictions yg, y1, ... Yy—1 individually
Yo, Y1, - Yn—1 are conditionally independent given H

Since H is deterministically derived from X, yq, v1, ... Yy—1 are also
conditionally independent given X

— This wouldn’t be true if past ys affected future ys, i.e. if the ys at any time went

back into the net as inputs -



/B/
/IY/
/F/
/IY/

A posteriori symbol probability

t

yi ]

yég\k:

N

V1

Iy |

Vo

1

0%
Yo

Iy
Y1

0

1

P(s; = 5, S1X)
= P(Sy ...S,, 5 = S, |X)P(St+1 € succ(S;,), succ(S;), ...,Sk—1 |X)

* We will call the first term the forward probability a(t, r)

* We will call the second term the backward probability S(t, )

36



A posteriori symbol probability

8/ NG < i NI vi K| v ys N Ve y7 Vs

N7 it s e 7 Ve

F F | | F F

/F/ Yo Y1 V2 < V3 Vs

/| by yi’ yay yi¥ S‘ ya¥ 4
;0 1 2 3 4 5 6 7 X

P(St — ST,S|X)

= P(Sy ...S;, S¢ = S, |X)P(st41 € succ(S,), succ(Sy), ..., Sk—1 |1X)

* We will call the first term the forward probability a(t,r)
* We will call the second term the backward probability S(t, )

37




Computing a(t, r): Forward algorithm

a(t,r) = P(Sy..S,, 5 = S,-1X)
* The a(t,r) is the total probability of the subgraph
shown

— The total probability of all paths leading to the
alignment of S, to time t

38



Computing a(t, r): Forward algorithm

Y3

a(3,1Y) = P(S,..S., 5, = S,|X)
a(3,1Y) = P(subgraph ending at (2,B))yi’ + P(subgraph ending at (2,1Y))yY

a(t,r) = z P(subgraph ending at (t—l,q))YtS(r)
q:Sq€Epred(Sy)

* Where pred(S,) is any symbol that is permitted to come before an S,. and may include S,

.. . . . 39
e qisitsrow index, and can take values r and r — 1 in this example



Computing a(t, r): Forward algorithm

a(t,r) = P(Sy..Sy, s = Sy |X)

a(3,1Y) = a(2,B)yiY + a(2,1V)ylY

a(t,r) = Z a(t—1,q9) Yts(r)

q:Sq€pred(Sy)

* Where pred(S,) is any symbol that is permitted to come before an S,. and may include S,

- : L 40
e qisitsrow index, and can take values r and r — 1 in this example



Forward algorithm

a(t,r) = 2 a(t — 1, q)yf’"

q:SqEpred(Sy)
* The a(t,r) is the total probability of the subgraph
shown

41



Forward algorithm

B

/B | Yo K’ ve R V6 V3 Vg
/Y| o' S x y7 | |8
/F | Yo 5‘ ve ¥ Ve vy || vs
J1Y/ yéY ¥ yéY )’éy B yéy yéy
t 0 5 6 7 8
a(t—1,r—1)
a(t—1,7) a(t,r)

a(t,r) = (a(t—1,7) + at — 1,7 — 1))y’ "

42




Forward algorithm

B/ | yB I vE R vE I o8 ‘? yE K: yE R vE | | vE | | B
N7 o I ys" S V¥ i v | v x yi¥ ve'
/E) | vE Vi vy Vs vi ¥ vi N ve S vy L | vé
/Y|yl yi© |l ys¥ ys' 3 /7l ¥ ye' Ve yi¥ Ve
;0 1 2 3 4 5 6 7 8

* |nitialization:

a(0,0) — y(f(O)) a(o; T') — 0, r>0
1..T—-1
a(t,0) = a(t — 1,O)yts(0)
forl =1..K—-1
a(t,l) = (a(t—1,0) +a(t—1,1— 1)y "

e fort =

43



/B/
/IY/

/F/
/IY/

Forward algorithm

yE y?iyf‘iyfty? v | |y | | ¥8
i % Vo' v Sl Sl 1y y7 e
yi %4 §y§ 3 Ya 5‘ Ys ¥ V6 xyé: Vg
yi© | v s’ 3 Vs ¥ ys Yo B vy Vs
1 2 3 4 5 6 7 8 |

Initialization:

2(0,0) =y, «(0,7) =0, r>0 <=
fort = 1..T -1

a(t,0) = a(t —1,0)y;®
forl =1..K—-1
 a(t,l) = (alt—1,D)+a(t—1,1- 1)y "

44



Forward algorithm

vz O3 N 73 K’ ve RCLve | | v7 | | o8
vz ys' S Vs’ E vs Ve x v7° Vg
I DNy S‘\ i Py Dy o
2 3 4 5 6 7 8 .
* |nitialization:
a(0,0) = YOS(O), a(0,r) =0, r>0
e fort = 1..T—1
a(t,0) = a(t —1,0)y,®
forl =1..K—1  —

 a(t,l) = (alt—1,D)+a(t—1,1- 1)y "

45




Forward algorithm

K Y K’ NS % yE
S i Sl (Y \ v | Y
N ERNEANE: NEANE:
| Ny S‘\ & Py D Py
1 2 3 4 5 6 7 8 |
Initialization:
(0,0) = YOS(O), a(0,7) =0, >0

fort = 1..T—-1

a(t,0) = a(t —1,0)y;®

forl =1..K—1  —

 a(t,l) = (alt—1,D)+a(t—1,1- 1)y "

46



Forward algorithm

Ve vy Ve
Yéy x)’éy yéY
Ve S vy Ve
, : yéY yéY yéY
1 2 3 4 5 6 7 8
Initialization:
a(O’O) — yg(O)’ a(O; 7") — O; r > O
fort = 1..T—1
a(t,0) = a(t —1,0)y;®
forl =1..K—1  —

 a(t,l) = (alt—1,D)+a(t—1,1- 1)y "

47




Forward algorithm

1 2 3 4 5 g g

* |Initialization:
a(0,0) = yg(o), a(0,7r) =0, r>0
e fort =1..T—-1
a(t,0) = a(t - 1,0)y;"”

forl =1..K—1  —

 a(t,l) = (alt—1,D)+a(t—1,1- 1)y "

48



In practice..

* The recursion
a(t,)) = (at—1,0)+a(t—1,1—1)y P
will generally underflow

* Instead we can do it in the log domain
loga(t,l)
— lOg(elOg a(t-11) 4 plog a(t—l,l—l)) log ytS(l)

— This can be computed entirely without underflow



Forward algorithm: Alternate
statement

 The algorithm can also be stated as follows which separates the graph probability
from the observation probability. This is needed to compute derivatives

e |nitialization:
(00 =1, @a(0,r)=0,r>0

a(0,r) = a(o, r)y(f(r), 0<r<K-1

e fort =1..T—-1
a(t,0) =a(t—1,0)
forl =1..K—-1
e a(t,) =a(t—-1,D)+a(t—-1,1—-1)

a(t,r) = atr)y, ", o0<r<Kk-1

50



The final forward probability a(t, r)

/B/
/IY/
/F/
/IY/

t

y& k RN N yE N yE K: vE Rl vE | | v8 | | vE
Yo i §y£Y v S Sl (vl 7 vg
Yo Y1 %4 §y§ B' Ya B‘ Y5 1 Ve x y: N | Y&
v yi¥ || vs | N d 3 v S\ ye My s e B
0 1 2 3 4 5 6 7 8 .

a(T — 1,K — 1) — P(So..SK_1|X)

* The probability of the entire symbol sequence is the
alpha at the bottom right node

51




SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output

#S(i) is the ith symbol in target output

#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N
s(l:T,1) = y(1:T, S(1))

#The forward recursion
# First, at t =1
alpha(l,1) = s(1,1)
alpha(l1,2:N) = 0

for t = 2:T

alpha(t,1) = alpha(t-1,1)*s(t,1)
for 1 = 2:N
alpha(t,i) = alpha(t-1,1i-1) + alpha(t-1,1i)

alpha(t,1) *= s(t,1)

Can actually be done without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



SIMPLE FORWARD ALGORITHM

#N is the number of symbols in the target output

#S (i) is the ith symbol in target output

#y (t,1i) is the network output for the ith symbol at time t
#T = length of input

#The forward recursion
# First, at t =1
alpha(1l,1) = y(1,5(1))
alpha(l,2:N) = 0

for t = 2:T

alpha(t,1) = alpha(t-1,1)*y(t,S (1))
for 1 = 2:N
alpha(t,i1) = alpha(t-1,1i-1) + alpha(t-1,1)

alpha(t,i) *= y(t,S(1))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



A posteriori symbol probability

RN 4 5

/B |\ye i %1 § V2 v K| Vi ys K| ve y7 Vs

% va' vs' Ve
/F/ Vo Vi | ¥ s

F F
/Y|y yi yar yar S‘ Vi
;0 1 2 3 4 5 6 7 X

P(St — ST,S|X)

— E(SO oSS = S, |X)P(sp41 € succ(S,), succ(Sy), ..., Sk—1 |X)

* We will call the first term the forward probability a(t, r)
We will call thefnd term the backward probability B(t, 1)

We have seen how to compute this y




A posteriori symbol probability

/B [\ve i N g v K| e A y7 Vs

| N N v 2 Y ys 4 Vs

F \ L L F F

/Fl | ¥s Vi 97z Vs

|yl v y2 | w3 S‘ Vi 4
;0 1 2 3 4 5 6 7

P(s; =S,,8|X) = a(t,r)P(st+1 € succ(S,),succ(S;), ..., Sk_1 |X)

* We will call the first term the forward probability a(t,r)

e We will call t ond term the backward probability

B(t,r)

We have seen how to compute this 55



A posteriori symbol probability

/Bl N\ < P vy SX v KL ys yE K| yé % Y
/Y| v R o I ys' 7 Vg
/E | ¥ ¥‘5/’{“ > T Ve
N | ydY i s 5 >4 Vs 4

;0 1 2 3 4 5 6 7 -

PG5, = 5,50 = . PSS

* We will call the first term the forward probability a(t,r)

—r—
Lets look at this 56




/B/
/IY/
/F/
/IY/

t

Backward probability

Vi t vl k| ve S
Vi ve M 6 3 V7 |
\ e yi¥ yiY 5-1 yi¥
0 1 2 3 4 5 6 7 8

»
»

B(t,r) is the probability of the exposed subgraph, not including the orange

shaded box

57




Backward probability

/B/

/1Y/ i R I\ =

/F/ Vi B‘ v M V6 xyﬁ |

/1Y/ \yéy Ve s vy 5-1 Vg
;0 1 2 3 4 5 6 7 8

B(t,r) is the probability of the exposed subgraph, not including the orange
shaded box

For convenience, let us include the box in the graph, and factor it out later
A (t,r) = probability of graph including node at (t,r)

1 .
pt,r) = —pB(tr)
Yt

We will develop an algorithm to compute 3 (t, ) and compute B(t,7) from it by
dividing out yts’” later 58



Backward probability

> Ve
Ve § 7
ve' ¥y N Ys'

AN N
yE ) ¥E iﬁ vE b v o vE o v
Yo' 7" N V' ys' Ve " N V8"
e Using the same logic as in the forward algorithm:
B@3,1Y)

= yiY P(subgraph starting at (4,1Y)) + yi' P(subgraph starting at (4,F))

59




Backward probability

1Y
Yo

Ve

IY
Ve

§ vy
yi¥

N Ys'

y&

1Y
Ve

Ve

Ye

X

Iy
Ve

Y5
y;*

N vg'

. B

YVa

Vs

*» Ve

> V7

1Y
Vs

Iy
Ve

Y7

Iy |

Iy
Vs

e Using the same logic as in the forward algorithm:

B(3,1Y)

= yiY P(subgraph starting at (4,1Y)) + yi' P(subgraph starting at (4,F))

* We recognize these terms:

BB, 1Y) = y§ (B4 1Y) + (4, F))




Backward algorithm

/B/
/IY/
/F/

/IY/

Blt,r) =" z Bt +1,q)
qgesucc(r)
 The B(t,7) is the total probability of the subgraph shown
— Including the node at (t,r)

* The B(t, r) terms at any time t are defined recursively in terms
of the f(t + 1, q) terms at the next time

61



/B/
/IY/

/F/
/IY/

t

Backward algorithm

v Kl vP 1 B § y5 ‘? yB K: yB 1 vE 1| vE 1| vE
it | Ny Dyl (Nl Oyl Oy Oy kel ||yl
Yo vi Vs Vs 3 Vi 5‘ Ve Ve x ys A vg
) Dl D N D N N Doy N
0] 1 2 3 4 5 6 / 8

Entire backward algorithm:

— Note : some nodes (bottom row) have more successors than others

Initialization:

BT —1,K—1) =y3&D,

fort =T — 2downto 0
forr =K—1..0

Bt,r)=y'"

B(T-1,1r)=0 r<K-1

Bt+1,q)

qesucc(r)

62

v




/B/
/IY/

/F/
/IY/

Backward algorithm

v& K| vP R vE : y5 ‘? yE K: y8 1 vE 1| B
v vi¥ N v’ vs' S Vs’ JS: v v x yi¥
Yo vi Vs vy ¥ yi ¥ yvi M Ve S vy
vo' | |1 | |ve | s 3 Vi' ¥ vs PMye Py
0 1 2 3 4 5 6 7
Initialization:
BT-1,K-1) =y &V pT-1,7r =0 r<K-1

fort =T — 2downto 0
forr =K—1..0

Bt,r) =y "

2 B(t+1,q)

qesucc(r)

63



/B/
/IY/

/F/
/IY/

Backward algorithm

v& K| vP R vE : y5 ‘? yE K: v 1| vE
vo' A o vs S V' JS: ve' M ve
Yo vi Vs vy ¥ yi ¥ yvi M Ve
vo' yi' vy ys' 3 Vs’ ¥ Vs Ve
0 1 2 3 4 5 6 ]
Initialization:
BT-1,K-1) =y 5D -1, =0 r<k-1

fort =T — 2downto 0
forr =K—1..0

S(r)

B(t,?") — yt

B(t+1,q)

qesucc(r)



Backward algorithm

/8/ ygk Tl ) yft:y?‘
1Y/ Iy IY Iy Iy Iy J_, Iy |

Yo V1 Y2 Y3 ‘S’ V4 Vs
/Fl | Y6 yi %4 § Vs > Ya 54 s
| v v’ vy 3’ 3 Vs S\ yg : :
;0 1 2 3 4 5 6 7 8 |

* |nitialization:

BT-1,K-1) =y 5D -1, =0 r<k-1

e fort =T — 2downto 0
forr =K—1..0

B =¥ ) B+10)

qesucc(r)



Backward algorithm

B/ | yE k yE 1 yE : yE ‘? yE
R AR R R ‘S VY
/E) | vE Vi Vs vy ¥ ys
Lyl Ly || Y | Ny N vy ] .
¢ 0 1 2 3 4 5 6 7 8 ,

* |nitialization:

BT-1,K-1) =y 5D -1, =0 r<k-1

e fort =T — 2downto 0
forr =K—1..0

B =¥ ) B+10)

qesucc(r)



Backward algorithm

e [|nitialization:
BT-1,K-1) =y ¥V 3T -1,1n=0r<Kk-1

e fort =T — 2downto 0
forr =K—1..0

Bt r) =y Z Bt+1,q)

qesucc(r)



/B/
/IY/
/F/
/IY/

Backward algorithm

1Y

‘ Ve SJ/
' yg s y'l;‘ 1
Yo y7 M g
2 6 / 8

e This recursion gives us 3 (t, ) which includes the node at

(t,7)

* The actual backward probability is obtained as

B(t,r) =

1

Sy
Vi

B(t,r)

68




/B/
/IY/

/F/
/IY/

t

Backward algorithm

y8 K| vE R vE : y5 ‘? yB K: yB ] vE 1| vE 1| B
v | N Lyl S Dy Oyl Dy Ly |y
Yo vi Vs Vs 3 Vi 5‘ Ve Ve x ys A vg
) Dl D N D N N Doy N
0 1 2 3 4 5 6 7 8 |
Initialization:

BT —1,K—1) =y 8™V

fort =T — 2downto 0
forr =K—-1..0

A

B(t,r) =

B, =y

)

B(T—1,7r)=0,r<K-1

A

Bt+1,q)

qesucc(r)

1 _
BT
t

69




A posteriori symbol probability

Bl INGE i: yB |
v | yENN v

N | 1
/Fl | Y6 yi
| y” v
;0 1

P(s; = S,,S|X) = a(t,r)P(blue graph)

* We will call the first term the forward probability a(t,r)
* We will call the second term the backward probability S(t, )

70



The joint probability

/Bl |\ i N Y A /4 e y7 Vs
Ly NP R Ko | |
AN EER Y 7 | Vs
7S I P 5* v’

;0 1 2 3 4 5 6 7 8

P(s; =S,,S|X) = a(t, r).

rd pr. lity a(t, 1)

e We will call the first term the

 We will call the second term t ackwar@robability

B(t,r)

Forward algo Backward algo
71



SIMPLE BACKWARD ALGORITHM

#N is the number of symbols in the target output

#S(i) is the ith symbol in target output

#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#First create output table
For i = 1:N
s(l:T,1) = y(1:T, S(1))

#The backward recursion to compute betahat
# First, at t = T

betahat (T,N) = s (T,N)

betahat (T,1:N-1) = 0

for t = T-1 downto 1

betahat (t,N) = s (t,N) *betahat (t+1,N)
for 1 = N-1 downto 1
betahat (t,1) = s(t,1)* (betahat (t+1l,1i) + betahat (t+1,1i+1))

#Compute beta from betahat
for t = T downto 1
for 1 = N downto 1
beta(t,1) = betahat(t,1i)/s(t,1)

Can actually be done without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



BACKWARD ALGORITHM

#N is the number of symbols in the target output

#S(i) is the ith symbol in target output

#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#The backward recursion for betahat
# First, at t = T

betahat (T,N) = y(T,S(N))

betahat (T,1:N-1) = 0

for t = T-1 downto 1

betahat (t,N) = y(t,S(N)) *betahat (t+1,N)
for 1 = N-1 downto 1
betahat (t,i) = vy (t,S(1)) * (betahat(t+l,1) + betahat (t+1l,1i+1))

#Compute beta from betahat
for t = T downto 1
for 1 = N downto 1
beta(t,i) = betahat(t,i)/y(t,S (1))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



The posterior probability

/8 | vE k RN
/IY/ 1Y 1Y { 1Y

B

Vi K’ ys | Ve Y7 Vs
Iy J_, Iy | IY Iy Iy

Yo Vi ) Ya 33’5 Ye $3’7 Ys
/| Yo Vi vy vi ¥ vi N ve vy | v§

/Y|yl yi’ vy
;0 1 2

Vi’ ¥ Vs Ve s 7' 5-1 Ya'

4 5 6 7 8 |

P(s; =S,S|X) =a(t,r)B(t, 1)

* The posterior is given by
P(s; =S,,S|X) a(t,r)B(t, 1)

P(St — STlS' X) = ZS;P(St — S;,Slx) - Zr/ C((t, T’),B(t, 7"’)



The posterior probability

/B/ | ¥ k YN K’ ys [ Ye y7 Vs
1Y/ Iy IY | 0% J_, Y Iy 0% 0%

Yo Y1 ) 3 Y5 Y6 x Y7 Ys

/| Yo vy vy S yi N ve 3 vy | v§

/Y|yl yi' yar ¥ ye' Ve yi¥ 5-1 Ve
;0 1 2 5 6 7 8

* Let the posterior P(s; = S.|S, X) be represented
by y (¢, 7)
a(t,v)B(t, 1)
dra(t,r)B(E, 1)

y(t,r) =



COMPUTING POSTERIORS

#N is the number of symbols in the target output

#S(i) is the ith symbol in target output

#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma (t) = 0

for 1 = 1:N
gamma (t,1) = alpha(t,i) * beta(t,i)
sumgamma (t) += gamma (t, 1)

end

for 1=1:N
gamma (t,1) = gamma(t,i) / sumgamma (t)

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



/B/
/IY/
/F/
/IY/

The expected divergence

y8 k yE R vE : y5 ‘? yB K: vB Rl vE | |2 | | B
AR § v IS Pl S By K[ | [
Yo vi Vs §y§ 3yzf 5‘ ve ¥ V6 xyé‘* Lol vs
y || [ | N N yiY Bq i Iyl N v ISyl
0] 1 2 3 4 5 6 / 8

DIV = —2 z P(s; =5s|S,X)logY(t,s; =s)

t SESO "'SK—l

DIV = —zz y(t,7)logy; "
t r

v

77



Poll 3 (@792)

Select all that are true

e The forward-backward algorithm is used to compute the a posteriori
probability of aligning each symbol in the compressed sequence to each input

e These probabilities are required to compute the expected divergence across
all alignments of the compressed symbol sequence to the input



Poll 3

Select all that are true

e The forward-backward algorithm is used to compute the a posteriori probability of aligning
each symbol in the compressed sequence to each input

e These probabilities are required to compute the expected divergence across all alignments of
the compressed symbol sequence to the input

79



/B/
/IY/

/F/
/IY/

/AH/
/B/
/D/
/EH/
/1Y/
/F/
/G/

Recap: The “alighed” table

yé”‘kyf yfiyf‘iyftyf‘ y& | |y
Yo i v Y Sl Sl Y 7
Yo yi Vs v 3 Ya 5‘ Vs Ye x v L |y
Yo v y2 | w3 3 Va ¥ s Yo B 7 5-1 y

We want loss derivatives for these terms

v§H yiH v y3H yiH yéH yéH yaH yv§H

v5 yi v yE Vi yg yE vy v
ve vy 3 vy vy yo ve vy
EH EH EH
Yo_ i - [dDIV dDIV dDIV] vr
Yo Yl Y, = AH B G Y7
= = ‘ dy;” dy; dy; =
Yo Yi Y2 y3 Y4 s Y6 Y7 ys
v§ 3% 4 ys v§ vi vE vE 3% 4 v§
| | | | | | | | |
| | | | | | | |
Xo X X, X X, X< X X, X4o




The expected divergence

/B/ yc’?kyf' yfiyf‘iyfty?" Ve Y7
| | Syl ¥

Yo yi' yar ys' 3 5‘ ve' ¥ ve' x vy Vg
/F/ | Yo Vi vy vs v ¥ vi N ve S V7 |
ys' 3 /7l ¥ ye' Ve yi¥ 5-1 Vg

/Y|yl yi’ vy

;0 1 2 3 4 5 6 7

DIV = —2 z P(s; =s|S$,X)logY(t,s; =s)

t SESO "'SK—l

DIV = —ZZ y(t,7)logy; "
t r

* The derivative of the divergence w.r.t the output Y; of the net at any time:
dDIV dDIV dDIV

o aF T D

VYtDIV — [

— Components will be non-zero only for symbols that occur in the training instance

v



/B/
/IY/
/F/
/IY/

The expected divergence

y8 k yE R vE : y5 ‘? yB K: vB Rl vE | |2 | | B
VAR B R g g s N A
Yo vi Vs Vs 3 Vi 5‘ Ve Ve x vy Vg
y || [ | N N yiY Bq i Iyl N v ISyl
0] 1 2 3 4 5 6 / 8

v

DIV = —2 z P(s; =5s|S,X)logY(t,s; =s)

t SESO "'SK—l

DIV = —ZZ y(t,7)logy; "
t r

The derivative of the divergence w.r.t the output Y; of the net at any time:
1)

VYtDIV —

)

d

Must compute these terms
from here

— Components will be non-zero only for symbols that occur in the training instance

82




The expected divergence

/8/ | yE k yE = vE : y5 ‘? yE K: vE Rl vE | |2 | | yE
/| v vi¥ N v’ ys' S Vs’ t v v x yi¥ Vg
/E) | vE vi vy vy ¥ yi ¥ yvi M Ve S vy L | vs
/WY | i yi' vy ys' 3 Vs’ ¥ Vs Ve yi¥ 5-1 Vg
t 0 1 o] o] A C r~ 7 8 N
dDI1V d l
Lol T oo -y (t,7) logy;

DIV = —ZZ y(t,7)logy; "
t r

* The derivative of the divergence w.r.t the output Y; of the net at any time:

) [) N 7
Vy. DIV = : : ... [— Must compute these terms
t d from here

— Components will be non-zero only for symbols that occur in the training instance
83



The expected divergence

/8l | ¥ k Y1 Y5 i y3 K Ve y7 Ys
/vyl | Y 1y v b Vo' x y7' || vs
/F | ¥ yi Vs Vs Ve v: L | ¥8
7R v’ vy 3’ Ve B e
;0 1 2 3// 6 7 8 |
The derivatives at both these locations must be summed to get Z’;K
4
dDI1V d ,
d l — = d l)/(t,‘r) logyt
Yt r:S(r)=1 Yt

The derivative of the divergence w.r.t the output Y; of the net at any time:

— Components will be non-zero only for symbols that occur in the training instance

84



The expected divergence

/8l | ¥ k Y1 Y5 y3 K Ve y7 Ys
/vyl | Y 1y v b Vo' x y7' || vs
/Fl| Y % V2 Vs Y6 S y7 | | Vs
v | i | vz | Vs Yo MV7 5-1 Vs

;0 1 2 3// 6 7 8 .

The derivatives at both these locations m

any time:

— Components will be non-zero only for symbols that occur in the training instance

85



The expected divergence

/8 | yE k v 1l e v | | v2 | | v2
/Y| ve" vi© vy’ Ve x yi¥ vg'
/K| v vi Vs Ve vy Ve
N7 y1* ys' Ve B y7° Vg
i 0 1 2 6 7 8 .
The derivatives at both these locations must be summed to get ];IV
dDIv l
d T — T ly(t,r) logyt
d Y dy(tr) | anviime
T y(t,7r)logy;: = Tt log y;
V¢ Yt

\_/\/ "

— Components will be non-zero only for symbols that occur in the training instance

86



The expected divergence

/8l | ¥ k i Nl Vs i y3 K Ve y7 Ys
/vyl | Y 1y v b Vo' x y7' || vs
/F | ¥ yi Vs § v Ve v: L | ¥8
7R v’ vy 3’ Ve B e
;0 1 2 3// 6 7 8 |
The derivatives at both these locations must be summed to get 3’;55
4
dDIV d ,
d l — = d l)/(t,‘r) logyt
Yt r:S(r)=1 Yt

* The derivative of 1 y(t, r) retatany time:

d
——v(t,r)logy; ~ —
dy; Yt
Nt /N /N /S
The approximation is exact if we think of this as a maximum-likelihood estimate




Derivative of the expected divergence

/B/
/IY/
/F/
/IY/

The derivatives at both these locations must be summed to get -

t

Yo k R vl
Yo' i+ o s
Yo yi Vs
Yo v’ vy
0 1 2

DIV = —ZZy(t,r) logyts(r)
t T

The derivative of the divergence w.r.t any particular output of the network must sum over
all instances of that symbol in the target sequence

aniv.

dy}

1

Ve vy Vg
Ve x yi¥ Ve
Ve S ) Ve
Ve yi¥ Ve
6 7 8 .
abDlv
3’4

— E.g. the derivative w.r.t y/” will sum over both rows representing /1Y/ in the above figure

88



COMPUTING DERIVATIVES

#N is the number of symbols in the target output

#S(i) is the ith symbol in target output

#y(t,i) is the output of the network for the ith symbol at time t
#T = length of input

#Assuming the forward are completed first
alpha = forward(y, S) # forward probabilities computed
beta = backward(y, S) # backward probabilities computed

# Compute posteriors from alpha and beta
gamma = computeposteriors(alpha, beta)

#Compute derivatives
for t = 1:T

= 0 # Initialize all derivatives at time t to O

dy(t,S(i)) -= gamma(t,1i) / y(t,S(i))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Overall training procedure for

Seq2Seq case 1
/B/ /Y] [F WY/
2 2 2 P 2P 2 2?7

| 1 1 1 1 | 1 | | 1

| t { t t { t | | t
Xo | [x0] 1X% | | x| (X0 [ x| (X | 1% | 1% | | Xo

* Problem: Given input and output sequences
without alignment, train models



Overall training procedure for
Seqg2Seq case 1

e Step 1: Setup the network

— Typically many-layered LSTM ,\.| -

* Step 2: Initialize all parameters of the network

91



Overall Training: Forward pass

* Foreach training instance
e Step 3: Forward pass. Pass the training instance through
the network and obtain all symbol probabilities at each

time

/AH/ | Y87 yit? y3H y3H vit yéH yéH y3H
/B/ | ¥§ vy vy y3 vi y& e y7
/D/ | Y& vy vy vy vy y& vE y7
/EH/ | y§H yi vy yiH yi y& yéH yiH
Ny | v vi¥ vs© vs* vi© y&* vé* v’

/F/ & yi Vs yi yi ye ye y7
/G/ | VS yi v %3 v ys ve %4

1 1 1 1 1 1 1 1




/B/
/IY/
/F/
/IY/

/AH/

* Foreach training instance
e Step 3: Forward pass. Pass the training instance through
the network and obtain all symbol probabilities at each

Overall training: Backward pass

V6

Iy
Yo

Yo

Iy
Yo

AH
Yo

P

time

B B B B B B B B
Y1 Y2 Y3 V4 Vs Ve Y7 YVs
Iy Iy Iy Iy 8% Iy 3% Iy
V1 Y2 Y3 V4 Vs Ve Y7 B4:
F F F F F F F F
41 Y2 Y3 Y4 Vs Ve Y7 Vs
Iy Iy Iy /0% Iy Iy Iy Iy
Y1 Y2 Y3 Y4 Vs Ve Y7 Vs
yiH y3H y5H yit vy yé i vy

P

r

P

e Step 4: Construct the graph representing the specific
symbol sequence in the instance. This may require having

multiple rows of nodes with the same symbol scores

oL T | "\.J|"~.U

[ — —_— |"g.j|"l



Overall training: Backward pass

/8 | ¥8 k N N yE N yE K: vE ]lvE | [ vE | | 98
I\ /AR i § v Sl Sl (Sl 7 vg
/Fl | Yb Y1 %4 §y§ 3 Ya >‘ Ys ¥ V6 x y: L | vé
| v v vy s’ 3 Vi ¥ ys Ve B e

0 1 2 3 4 5 6 7 8

t

* Foreach training instance:

— Step 5: Perform the forward backward algorithm
to compute a(t,r) and B(t,r) at each time, for
each row of nodes in the graph. Compute y(t, ).

— Step 6: Compute derivative of divergence 'y, DIV
for each Y;



Overall training: Backward pass

e Foreach instance

— Step 6: Compute derivative of divergence Vy DIV for each Y;
dDIV dDIV dDIV]

d)’to d)’tl d)’tL_l
dDIV y(t r)

d)’t

Vy, DIV = [

r:S(r)=l

e Step 7: Backpropagate d;;:/ and aggregate derivatives
t

over minibatch and update parameters




Story so far: CTC models

Sequence-to-sequence networks which irregularly output symbols can be
“decoded” by greedy decoding

— Which assumes that a symbol is output at each time and merges adjacent
symbols

They require alignment of the output to the symbol sequence for training
— This alignment is generally not given

Training can be performed by iteratively estimating the alignment by
Viterbi-alignment and time-synchronous training

Alternately, it can be performed by optimizing the expected error over all
possible alignments

— Posterior probabilities for the expectation can be computed using the forward
backward algorithm



A key decoding problem

* Consider a problem where the output symbols
are characters

e We have adecode: RRREEEED

* |s this the compressed symbol sequence RED
or REED?



We’ve seen this before

VA 7 177w B U2 ol I 7o I 5 - T 577 O U2 O B o
/B/ | ¥ yr % y3 Vi g Ve el
/o) | Yo VP %4 ys 74 e Ve y7

ve | 1y | v8"

(v | | g

Ye y; Vs

Ve Ve Vs

1 1 1

X, X, X, X, X, X< X, X, Xq

* /G/ /F/ [}/ /Y] /D] or [G/[F/ /\Y/ [D/?

98



A key decoding problem

* Wehaveadecode: RRREEEEED
* |s this the symbol sequence RED or REED?

e Solution: Introduce an explicit extra “invisible’ symbol which serves to
separate discrete versions of a symbol

— A “blank” (represented by “-”)
— RRR---EE---DDD = RED

— RR-E--EED = REED

— RR-R---EE---D-DD = RREDD

— R-R-R---E-EDD-DDDD-D =

* The next symbol at the end of a sequence of blanks is always a new character
* When a symbol repeats, there must be at least one blank between the repetitions

 The symbol set recognized by the network must now include the extra
blank symbol

— Which too must be trained



A key decoding problem

* Wehaveadecode: RRREEEEED
* |s this the symbol sequence RED or REED?

e Solution: Introduce an explicit extra “invisible’ symbol which serves to
separate discrete versions of a symbol

— A “blank” (represented by “-”)

— RRR---EE---DDD = RED

— RR-E--EED = REED

— RR-R---EE---D-DD = RREDD

— R-R-R---E-EDD-DDDD-D = RRREEDDD
* The next symbol at the end of a sequence of blanks is always a new character
 When a symbol repeats, there must be at least one blank between the repetitions

 The symbol set recognized by the network must now include the extra
blank symbol

— Which too must be trained



Poll 4 (@793)

Which of the following are valid expansions of the character string “BILLY”?

e BBIILLY
e B-BIL-LY
e B-I-LLY

e B-I-L-LYY



Poll 4

Which of the following are valid expansions of the character string “BILLY”?

e BBIILLY
e B-BIL-LY
e B-I-LLY

e B-I-L-LYY



* Note the extra “blank” at the output

/AH/
/B/
/D/
/EH/
1Y/
/F/
/G/

The modified forward output

b b b b b b b b b
Yo Y1 ) Y3 Ya Vs Yo Y7 B4
v yiH y3H y§H yiH y&t y&H yaH ys
v§ vy vy vy vi ye vE 33 Ve
o vy v 3 i e Ve vy vE
yo yi? ysH y5H yiH yet yeH yiH Y-
yg¥ yi¥ yaY yiY vi¥ y&¥ veY ¥ v&Y
v§ vy V5 vy Vi ye v& vy vE
v§ y{ v§ v§ vi y§ Ve 3% 4 v§

t t 1 1 t t t 1 t

| | | | | | | | |
Xo X1 X5 X3 X4 X5 Xe X7 Xg

103




/AH/
/B/
/D/
/EH/
1Y/
/F/
/G/

The modified forward output

* Note the extra “blank” at the output

/B/ /Y[ [F[ /1]

b b b b b b b b b
Yo Y1 ) Y3 Ya Vs Yo Y7 B4
v yiH y3H y§H yiH y&t y&H yaH ys
vy yE ye ye vE yE vE
Yo Vi v 3 i e Ve vy vE
y&H yiH FH FH yviH yet yeH yEH y&H
yg¥ yi¥ VY vi¥ y&¥ veY ¥
vi vi V3 vi Vs
v§ y{ v§ v§ Vi Vs Ve vy v§

t t 1 1 t t t 1 t

| | | | | | | | |
Xo X1 X5 X3 X4 X5 Xe X7 Xg

104




/AH/
/B/
/D/
/EH/
1Y/
/F/
/G/

The modified forward output

* Note the extra “blank” at the output

/B/ /Y[ [F[ /1]

b b b b b b
Yo V1 V2 V3 m @ Ve V7 Vg
v§ yiH y3H y§H yiH y&t y&H yaH ys
vE vy % vi yE & yE yE
o Vi v 3 i e Ve vy vE
y&H yiH FH EH yiH yeH yeH yEH y&H
VX V1Y yaY yi¥ yi¥ yeY Y
y& vi y5 i Vi ve va
v§ y{ v§ v§ vi y§ Ve vy v§
1 1 t t t t 1 t t
| | | | | | | | |
Xo X1 X X3 X4 X5 Xe X7 Xg

105




/AH/
/B/
/D/
/EH/
1Y/
/F/
/G/

The modified forward output

* Note the extra “blank” at the output

/B /Y[ [ [F]]IY/

b b b b b b b
Yo V1 V2 V3 V4 @ Ve V7 Vg
v§ yiH y3H y§H yiH y&t y&H yaH ys
vE vy % vi yE & yE yE
o Vi v 3 i e Ve vy vE
y&H yiH FH FH yviH yet yeH yEH y&H
yg¥ yi¥ VY vi¥ y&¥ veY ¥
vl yF v o EY yE Ve
v§ y{ v§ v§ vi yE Ve vy v§
t t 1 1 t t t 1 t
| | | | | | | | |
Xo X1 X5 X3 X4 X5 Xe X7 Xg

106




Composing the graph for training

/EH/
/D/
/D/
/IY/

t

yé”’k v yf”i ys" K K’ ve ! &l vé" | | vit| | vs”
Y6 Vi § Vs y2 P | yP Ve y7 Vg
Y6 Vi Vs §y3’? 3 /4 B‘ ve Ve x 7 | | ¥8
Yo yi v s 3 Vs ¥ ys Yo B vy 5-1 Vg
0 1 2 3 4 6 8

* The original method without blanks

* Changing the example to /EH/ /D/ /D/ /1Y/ for illustration

107




How blanks change the graph

[B] =——b [|Y] =——ep [F] =i [|Y/

* Regular order: Each symbol must be followed by
the next one

T T~ T~

- ———p/B] —b . — [|Y] —> - —p [[[ — - ) [|Y]—p -

 New pattern: Each symbol may optionally be
followed by a blank (explicitly shown)



How blanks change the graph

/EH/ =——=> /D] =———b [D] =——> [1Y/

* Regular order: Each symbol must be followed by
the next one

/\ /\

- ———p[EH] = - —p [D] =— - — [D]—— - — ] ]— -

 New pattern: Each symbol may optionally be
followed by a blank (explicitly shown)

* Unless the next symbol is the same

— E.g. /D//D/
— In this case an intermediate black is mandatory
— Blanks may also occur in the first and last positions



Composing the graph for training

Vr Ve Ve y7 Vg
v JyET L e | (v |y
yr ye e y7 Y8
/4 e Ve y7 Ve
Vr ye e y7 Vg
Vs Vs Ve y7 Vs
Vr ye e y7 Vs
Vs s Ve y7 Ve
Vi Ve Ve y7 Vg

- | ¥ yY V7 y3
A I I e B I A I 2
- )| ¥8 y7 V3 V3
/D/¥ | ¥o VP %4 s
- | ¥ y7 V3 y3
/DA | Yo VP Y2 s
- )| ¥8 y7 V3 y3
IYF | v i v | |5
- | ¥4 Y V3 y3

* With blanks

* Follows the graph we just saw
* Note: a row of blanks between any two symbols

* Also blanks at the very beginning and the very end




/E

/D/

/DA

/1Y,

Composing the graph for training

b
Yo

EH
Yo

v8

Vo

v8

Vo

v8

8%
Yo

v8

y7 Y7 y3 Vi Ve Ve y7 Vg
ST o IR S o B A s 57 W 177 B 6 7 B 16 A I S
yy V3 3 yr ye e y7 Y8
yr %4 s Vs e Ve y7 Vg
yy 3 3 yr ye é e N y7 Vg
VP Y2 Y3 R4 ve NC1Ye NC1Y7 \ s
y7 Y3 y3 kyi’ ye §yé’ §y§’ INYBZ:
i’ v | |5 i’ v Hye &yt
% %3 V3 Vi ys Ve y7 51 Vs

e Add edges such that all paths from initial node(s) to final
node(s) unambiguously represent the target symbol sequence

* |f thereis an edge on the left graph, there is a corresponding
arrow between columns




Composing the graph for training

- y7 Y7 y3 Vi Ve Ve y7 Vg
/E I~ R A~ Al 7 W 5 S I 1577 S B 2 AL B I 3
- 10> y7 3 3 yr ye e y7 Y8
/D/¥ | ¥o VP %4 s Vs e Ve y7 Ve
- | ¥ y7 3 3 yr ye é e N y7 Vg
/DA | Yo VP Y2 Y3 R4 ve NC1Ye NC1Y7 \ s
- )| ¥8 y7 V3 y3 &yi’ ye §yé’ §yé’ \\ L%
/Y| v i v | |5 i’ v e Ny M e
- | ¥ Y V3 y3 Vi Ve Ve y7 Vg

 The first and last co

final blanks

umn are allowed to also end at initia

112




/E

/D/

/DA

/1Y,

Composing the graph for training

b
Yo

EH
Yo

v8

Vo

v8

Vo

v8

8%
Yo

v8

vy V7 V3 Vi Ve e y7 Ve
TR~ I 2R~ BT ~ 57 W 177 I 1577 S N 2 B 7
yy 3 3 yr e e y7 Vs
vy %4 v 74 yE W y7 %4
yy 3 3 Vr e é e N y7 Ve
yr V5 ys  RCVx ve f1Ve N_1V7 Vs
yy V3 y3 & Vi ye e y7 S Vs
i vi' | |yd" Vi v Nve v Ve
% %3 V3 Vi ys Ve y7 ; Vs
umn are allowed to also end at initial and

* The first and last co
final blanks
e Skips are permitted across a blank, but only if the symbols on

either side are different

Because a blank is mandatory between repetitions of a symbol but not
required between distinct symbols




Composing the graph

#N is the number of symbols in the target output
#S (i) is the ith symbol in target output

#Compose an extended symbol sequence Sext from S, that has the blanks
#in the appropriate place

#Also keep track of whether an extended symbol Sext(j) is allowed to
connect
#directly to Sext(j-2) (instead of only to Sext(j-1)) or not

function [Sext] = extendedsequencewithblanks (S)
J =1
for 1 = 1:N
Sext (j) = ‘b’ # blank
j = 3+l
Sext (j) = S (i)
j = 3+l
end

Sext (§) = ‘b’

return Sext

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Example of using blanks for alignment: Viterbi alignment with blanks

MODIFIED VITERBI ALIGNMENT WITH BLANKS

[Sext] = extendedsequencewithblanks (S)

N = length (Sext) # length of extended sequence
# ‘(’it‘?):bi s‘farts here Without explicit construction of output table
Bscr( 1) = y(1,Sext(l)) # Blank
Bscr(1l,2) = y(1,Sext(2))
Bscr(l,2. ) = —-infty
for t = 2:T
BP(t,1) (t 1,1);
Bscr(t,l) = Bscr(t-1,1)*y(t,Sext (1))
for 1 = 2:N
if (1 > 2 && Sext (i) != Sext(i-2))
BP(t,1) = argmax 1i(Bscr(t-1,1i), Bscr(t-1,1-1), Bscr(t-1,1-2))
else
BP(t,1) = argmax 1(Bscr(t-1,1), Bscr(t-1,1-1))
Bscr(t,1) = Bscr(t-1,BP(t,1))*y(t,Sext (1))

# Backtrace

AlignedSymbol (T) =

for t = T downto 1
AlignedSymbol (t-

Bscr (T,N) > Bscr(T,N-1) ? N, N-1;

1) = BP(t,AlignedSymbol (t))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Modified Forward Algorithm

yi % Vs Vi Ve Ve y7 Vg
it K v vt R v\ | vET | |wET | |yiT | | ve”
y7 Y7 y3 Vi ye Ve y7 Vs
VP Vs 3 Vs Ve Ve y7 Vs
y7 Y7 y3 Vi ye é Ve N y7 Vg
Vi Vs vy ROL4 Ve RO Rol7 Vs
yy y3 vy &yi’ ye % e %yé’ Y8
1" v | |3 i’ ys' e vy g
7 Y3 y3 Vi Ve Ve Y7 V8

\ 4

* |nitialization:
—a(0,0) = y¢,a(0,1) =y, 2, a(0,r) =0 r>1

S (k) refers to the extended sequence with blanks included




Modified Forward Algorithm
- CL 0O G G G ) G

EH EH EH EH L yEH
H§ Nem) mﬁ‘m%m{m majirallra
o/ b, BSN e
N Beale lI mgm‘ o
> raReE\ ra ) re \\m\\im\m
4 BEAREARE kiii
- y? Y3 Y5 @ Ly Ll | m

t
a(t,r) =Y, z a(t—1,q)
q:SqEpred(Sy)

* [terationt=1:N:
at,r)=a(t—1,r)+a(t—1,r—1)

117



Modified Forward Algorithm

mmmmkmmmmm
' l\m
‘ kl&!ﬂ\lﬂ:m

A :
m“ Y6

'm

/D/

Mﬂ

Y Y

k‘

. | m L2 ) [

/D P | |yE ll lﬂ‘ﬂ ‘ ra
- )\ v | | v3 | (93 & \:"msﬂk A
/1Y, v 2 s “““
- y? yi | |»3 @ Ly L2 m

t

a(t,r) =Y, z a(t—1,q)
q:SqEpred(Sy)

* [terationt=1:N:
at,r)=a(t—1,r)+a(t—1,r—1)
e IfS(r)+S(r—2)
a(t,r) +=a(t—1,r— 2)
a(t,r) x=y; "

118



FORWARD ALGORITHM (with blanks)

[Sext] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#The forward recursion
# First, at t =1
alpha(l,1) = y(1,Sext(l)) #This is the blank
alpha(l,2) = y(1,Sext (2))
alpha(l,3:N) = 0
for t = 2:T
alpha(t,1) = alpha(t-1,1)*y(t,Sext (1))
for 1 = 2:N
alpha(t,i1) = alpha(t-1,1) + alpha(t-1,1i-1)
if (1 > 2 && Sext (i) != Sext(i-2))
alpha(t,i) += alpha(t-1,1i-2)
alpha(t,1) *= y(t,Sext (1))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Modified Backward Algorithm

R 3 3 yr ye e y7

VR S BGR  B o ~ad R i P 2 W R A B R R

—H§ Yo y7 V7 y3 Vi ye Ve y7

/D/” | ¥ VP Vs 3 Vs Ve Ve y7

- | ¥ y7 V7 y3 Vi ye é Ve N V7

/DA | ¥& VP Vs vy ROL4 ve RO ROz

- )| ¥ y7 V3 vy &yi’ ye %yé’ %yé’ ;

/Y| v v v s’ Ya s Ve vy 2
- | ¥ Y V3 y3 Vi Ve Ve V7 4

\ 4

t

* [nitialization:
A A S K—
B(T —1,2K = 1) = yp_; B(T — 1,2k —2) = ;¥
F(T—1r)=0 r<2K-—2

S (k) refers to the extended sequence with blanks included




Modlfled Backward Algorithm

SRR 2 ] 2 [
} N mia S N AT

\m\ RE
) &‘ 5 6

Ve y7
g E yé’
m m‘m
ll ll \\m\:‘-n\\i\
En‘\m
> GO GO caloa)oaNeacal e

* |[teration: . s ,
. 3 3 pem=y" ) p+1q
ﬁ(t, T‘) — ﬁ(t + 1, T) —+ ﬁ(t + 1, r + 1) q:Sq€succ(Sy)

e IfS(r)#=S(r+2)
B(t,r)+=B(t+1,7r+2)

\
O
\

|
A 4. Av “ i

~ S~
= | O
\)-
<

|
=
)

Btr) »= y. "

« pt,r)= ,B(t T)/)’S(T) 121



BACKWARD ALGORITHM WITH BLANKS

[Sext] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#The backward recursion

# First, at t = T

betahat (T,N) = y (T, Sext (N))
betahat (T,N-1) = y(T,Sext (N-1))

betahat (T,1:N-2) = 0
for t = T-1 downto 1
betahat (t,N) = betahat (t+1,N) *y (t, Sext (N))
for 1 = N-1 downto 1
betahat (t,1) = betahat(t+l,1i) + betahat (t+1,1i+1))
if (i<=N-2 && Sext (i) != Sext (i+2))

betahat (t,1) += betahat (t+1,i1i+2)
betahat (t,1) *= y(t,Sext(i))

#Compute beta from betahat
for t = T downto 1

for i = N downto 1
beta(t,i) = betahat (t,1i)/y(t,Sext(i))

Without explicitly composing the output table

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



The rest of the computation

* Posteriors and derivatives are computed
exactly as before

* But using the extended graphs with blanks



COMPUTING POSTERIORS

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

#Now compute the posteriors
for t = 1:T

sumgamma (t) = 0

for i = 1:N
gamma (t,1) = alpha(t,1) * beta(t,1i)
sumgamma (t) += gamma (t, 1)

end

for i=1:N
gamma (t,1) = gamma (t,i) / sumgamma (t)

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



COMPUTING DERIVATIVES

[Sext, skipconnect] = extendedsequencewithblanks (S)
N = length(Sext) # Length of extended sequence

#Assuming the forward are completed first
alpha = forward(y, Sext) # forward probabilities computed
beta = backward(y, Sext) # backward probabilities computed

# Compute posteriors from alpha and beta
gamma = computeposteriors (alpha, beta)

#Compute derivatives
for t = 1:T
dy(t,1:L) = 0 #Initialize all derivatives at time t to O
for 1 = 1:N
dy (t,Sext (i)) -= gamma(t,i) / y(t,Sext (i))

Using 1.N and 1..T indexing, instead of 0..N-1, 0..T-1, for convenience of notation



Overall training procedure for

Seqg2Seq with blanks
/EH/ /D/ /D] 1Y/
P P QP P22 2 2 7?7

| 1 1 1 1 | 1 | | 1

| t { t t { t | | t
Xo | [x0] 1X% | | x| (X0 [ x| (X | 1% | 1% | | Xo

* Problem: Given input and output sequences
without alignment, train models

126



Overall training procedure

e Step 1: Setup the network

— Typically many-layered LSTM ,\.| -

* Step 2: Initialize all parameters of the network

— Include a “blank” symbol in vocabulary



Overall Training: Forward pass

* Foreach training instance

e Step 3: Forward pass. Pass the training instance through
the network and obtain all symbol probabilities at each

time, including blanks
- ¥ yr 3 vy vy Ve Ve Y7 Vs
/AH/ | 87 yitf yst y3 it yét yé yi v
/B/ | ¥& yi vy y5 yi y& vé vy vE
/D/ | ¥8 vy v vy v yg vE vy vg
JEH/ | y§! yi vy y3H yi y&" vy vy v
/Y, | vo© yi¥ vs© yi¥ vi© yi* vé¥ vy’ vs©
/F/ v6 yi v vi Vi y& vé vy s
/G/ | ¥§ yi vy %3 573 ys ve vy v§

1 1 I I I I I I I

|
|
|
|

I I I I I | I I I
X X il R N bos X b i

128



Overall training: Backward pass

- y5 v vz ys Vi ye Ve y7 Vs
/E yo ! S v yiH ik ygH yvéH yiH v
—HS v yP v v ya ye Ve y? v
/D/* | V8 yi vy y3 v ys Ve y7 v8
= vE vy y3 vy Vi ye Ve N y7 %
/DA, | ¥5 yi ys y3 v yg yé R y7 y8
—> v y? vy v § yi ye ve Rvl v7 %
/WY oY yi¥ vs" y3¥ v’ ys’ vé¥ SR S I A
= Ve vy y3 v3 /4 ye VEé V7 Vs

* Foreach training instance
e Step 3: Forward pass. Pass the training instance through
the network and obtain all symbol probabilities at each
time
e Step 4: Construct the graph representing the specific
symbol sequence in the instance. Use appropriate
connections if blanks are included



J/E
—}13 &
/D% | ¥5

/DA, | ¥&
—> Ve
/1Y vor

Overall training: Backward pass

y5 v vz ys Vi ye Ve y7 Vs
5 S v yiH ik ygH yvéH yit vg '
y¥ vy v vy ye v v v
%Y vy y3 v ys Ve y7 v8
vE vy y3 vy Vi ye é‘ Ve y7 %
yi v y3 Vi yg yé y7 vs
yy vy v § yi ye § ye %4 %
yi¥ vs" y3¥ v’ ys’ vé¥ v & v
Ve vy y3 v3 /4 ye VEé V7 Vs

 Foreach training instance:

— Step 5: Perform the forward backward algorithm to compute
a(t,r) and f(t,r) at each time, for each row of nodes in the

graph using the modified forward-backward equations. Compute a
posteriori probabilities y(t, ) from them

— Step 6: Compute derivative of divergence 'y, DIV for each Y;

130



Overall training: Backward pass

* Foreach instance
— Step 6: Compute derivative of divergence Vy DIV for each Y;
dDIV dDIV dDIV
dy? dyt dytH]
abiv. y(t, 1)

l - S(r)
dyt r:S(r)=l Yt

Vy, DIV = [

e Step 7: Backpropagate djﬁ/ and aggregate derivatives
t

over minibatch and update parameters




CTC: Connectionist Temporal
Classification

e The overall framework we saw is referred to as
CTC

* Applies to models that output order-aligned,
but time-asynchronous outputs



&

Returning to an old problem:
Decodin

VA 7 177w B U2 ol I 7o I 5 - T 577 O U2 O B o
/B/ Vs Vi Vs Y6 y7 Y8
/o) | ¥8 vy V7 v y7 v 4
R A R A N A A I A A L A
A AREARES Y ARES
[Fl | ¥ y1 Vs 3 Va Vs Ye y; Vs
/G | Yo yi %4 v Vi %3 v Ve Vs

I I 1 1 1 1 I I 1

X, X, X, X, X, X< X, X, Xq

The greedy decode computes its output by finding the most likely symbol at each time and merging
repetitions in the sequence

This is in fact a suboptimal decode that actually finds the most likely time-synchronous output
sequence

Which is not necessarily the most likely order-synchronous sequence

133




Greedy decodes are suboptimal

Consider the following candidate decodes

— RR—EED(RED, 0.7)

— RR—-——-—ED(RED, 0.68)

— RREEED(RED, 0.69)

— TTEEED(TED, 0.71)

— TT-EED(TED, 0.3)

— TT——ED(TED, 0.29)

A greedy decode picks the most likely output: TED

A decode that considers the sum of all alignments of
the same final output will select RED

Which is more reasonable?

134



Greedy decodes are suboptimal

Consider the following candidate decodes

— RR—EED(RED,0.7)

— RR—-——-ED(RED, 0.68)

— RREEED(RED, 0.69)

— TTEEED(TED, 0.71)

— TT-EED(TED, 0.3)

— TT—--—ED(TED, 0.29)

A greedy decode picks the most likely output: TED

A decode that considers the sum of all alignments of the
same final output will select RED

Which is more reasonable?

And yet, remarkably, greedy decoding can be surprisingly
effective, when using decoding with blanks



Wlhat a CTC system outputs

: Waveform

> 1 :
i) . ”
= . Framewise
0 -
¥
2
o,
—> 2|
S s CTC

1
=

Figure 1. Framewise and CTC networks classifying a speech signal. The shaded lines are the output activations,
corresponding to the probabilities of observing phonemes at particular times. The CTC network predicts only the
sequence of phonemes (typically as a series of spikes, separated by ‘blanks’, or null predictions), while the framewise
network attempts to align them with the manual segmentation (vertical lines). The framewise network receives an error
for misaligning the segment boundaries, even if it predicts the correct phoneme (e.g. ‘dh’). When one phoneme always
occurs beside another (e.g. the closure ‘del’ with the stop ‘d’), CTC tends to predict them together in a double spike.
The choice of labelling can be read directly from the CTC outputs (follow the spikes), whereas the predictions of the
framewise network must be post-processed before use.

e Ref: Graves

* Symbol outputs peak at the ends of the sounds
— Typical output: --R---E---D
— Model output naturally eliminates alignment ambiguities

e But this is still suboptimal.. 136




Actual objective of decoding

 Want to find most likely order-aligned symbol sequence
— RED

— What greedy decode finds: most likely time synchronous
symbol sequence

* —/R//R/--/EH/[EH//D/

* Which must be compressed

* Find the order-aligned symbol sequence § = S, ..., Sx_1,
given an input X = X, ..., X7_4, that is most likely

= argmax P(S,, ..., Sx_1|X)
S



Recall: The forward probability a(t, )

/B/
/IY/
/F/
/IY/

t

V8 k v 'l vE N y5 N yE K: vE Rl vE | | vE | | vE
ve" v §y£Y Y Syl Syl Iyl vy Ve
Yo vi Vs §y§ B'yf B‘ ve ¥ V6 xyé‘* L vs
v yi¥ v | Nyl 3 iy S\ yY v s ¥ g
0 1 2 3 4 5 6 7 8 .

aSO..SK_l(T —1,K—1) = P(S)..Sk-11X)

* The probability of the entire symbol sequence is the
alpha at the bottom right node

138




Actual decoding objective

* Find the most likely (asynchronous) symbol sequence

S = argmax ag(Sx_1, T — 1)
S



Poll 5 (@794, @795)

The actual objective of decoding is to identify the compressed/unaligned
sequence that has the highest probability given the input

e True
e False

This is the same as finding the compressed sequence with the highest forward
probability (alpha) for aligning the final symbol in the sequence to the final input

e True
e False



Poll 5

The actual objective of decoding is to identify the compressed/unaligned sequence that has the
highest probability given the input

e True
e False

This is the same as finding the compressed sequence with the highest forward probability (alpha) for
aligning the final symbol in the sequence to the final input

e True
e False



Actual decoding objective

* Find the most likely (asynchronous) symbol sequence

S = argmax ag(Sx_1, T — 1)
S

* Unfortunately, explicit computation of this will require
evaluate of an exponential number of symbol
sequences

* Solution: Organize all possible symbol sequences as a
(semi)tree



Hypothesis semi-tree

Highlighted boxes represent
possible symbols for first frame

<Sl
S,

 The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

* Every symbol connects to every symbol other than itself
— It also connects to a blank, which connects to every symbol including itself

 The simple structure repeats recursively
 Each node represents a unique (partial) symbol sequence!



Hypothesis semi-tree

Highlighted boxes represent
possible symbols for first frame

<S1
S,

 The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

* Every symbol connects to every symbol other than itself
— It also connects to a blank, which connects to every symbol including itself

 The simple structure repeats recursively
 Each node represents a unique (partial) symbol sequence!



Hypothesis semi-tree

Highlighted boxes represent
possible symbols for first frame

</ =)

 The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

* Every symbol connects to every symbol other than itself
— It also connects to a blank, which connects to every symbol including itself

 The simple structure repeats recursively
 Each node represents a unique (partial) symbol sequence! 145



Hypothesis semi-tree

Highlighted boxes represent
possible symbols for first frame

<S1
5

 The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

* Every symbol connects to every symbol other than itself
— It also connects to a blank, which connects to every symbol including itself

 The simple structure repeats recursively
 Each node represents a unique (partial) symbol sequence! 146



Hypothesis semi-tree

Highlighted boxes represent
possible symbols for first frame

51%'52
_<SZ
\’Sl

 The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

* Every symbol connects to every symbol other than itself
— It also connects to a blank, which connects to every symbol including itself

 The simple structure repeats recursively
 Each node represents a unique (partial) symbol sequence! 147



Hypothesis semi-tree

Highlighted boxes represent
possible symbols for first frame 3
1

51%52
_<SZ
\’Sl

—y

1

 The semi tree of hypotheses (assuming only 3 symbols in the vocabulary)

* Every symbol connects to every symbol other than itself
— It also connects to a blank, which connects to every symbol including itself

 The simple structure repeats recursively
 Each node represents a unique (partial) symbol sequence! 148



The decoding graph for the tree

A

\ /1 4 !/ 4

\ / III / III /

A

\\\ / /I If /I If

\ _I / / / Iy,
I 7 'I 7 ,I
/ / 7 / 7,

7 11

/) ,. |
// / / / /
/

— > > T

X, X, X, X3 Xy
Graph with more than 2 symbols will be similar
but much more cluttered and complicated

149



The decodlng graph for the tree

af
/ /f ’If

/
/ /If /If

 The figure to the left is the tree, drawn in a vertical line

 The graph is just the tree unrolled over time

— For a vocabulary of V symbols, every node connects out to V other
nodes at the next time

* Every node in the graph represents a unique symbol sequence

150



The decodlng graph for the tree

<4
/f ’/f|

1 !/ ’/I
/ /If ry 114

‘ Lty i a(S,S5)
’/ :I III//'/ II’I/'a(stl)
/ CZ(SZ—)
a(5152)
a(5151)
a(51-)
a(S2)
a(S1)

/|
/
//

Xo X1 X2 X3 X4

* The forward score a (7, T) at the final time represents the full forward

score for a unigue symbol sequence (including sequences terminating in
blanks)

e Select the symbol sequence with the largest alpha at the final time

151



Recall: Forward Algorithm

yy 3 3 yr ye e y7 Vg
yr % y3 Vi %3 Ve % Vs
y7 Y7 y3 Vi ye Ve y7 Vs
i’ vy R vi i’ ye N |y %l g
y7 Y7 y3 Vi ye é Ve N y7 Vg
i’ R PR P v lve wolvr | v
yy y3 vy &yi’ NV %yé’ %yé’ N | V8
i i s i yE vE 7 Vs
y? % % V3 ye ¥ % >1 Vs

\ 4

e P(Sy, ., Sk_11X) = a(T —1,2K) + a(T — 1,2K + 1)



The decodlng graph for the tree

I, b lI fa
/ ’r / ’/ /
/ ‘1, 18 ry 114

' L s +—tt a(S,S,)
q — '/ s '/a(5251)
/T )
r 3 a(S5152)
| z

a(S1—)
/ /ﬂa(sz)
/‘//ja(sl)
~ ~ a(-)

il 3 i
Xo X1 X2 X3 X4

-

* The forward score a (7, T) at the final time represents the full forward
score for a unigue symbol sequence (including sequences terminating in

blanks)
* Select the symbol sequence with the largest alpha

— Sequences may two alphas, one for the sequence itself, one for the sequence
followed by a blank

— Add the alphas before selecting the most likely 153



CTC decoding

/ /I' ! 4 f
/ t ! 7
/ ly 1 f ry 114
’ / 2 2 2 Py

7
/

* This is the “theoretically correct” CTC decoder
* In practice, the graph gets exponentially large very quickly

* To prevent this pruning strategies are employed to keep the graph (and
computation) manageable

— This may cause suboptimal decodes, however

— The fact that CTC scores peak at symbol terminations minimizes the damage
due to pruning 154



CTC decodlng

/
4

/
//
)/ A
.

Xo X1

* This is the “theoretically correct” CTC decoder
* In practice, the graph gets exponentially large very quickly

* To prevent this pruning strategies are employed to keep the graph (and
computation) manageable

— This may cause suboptimal decodes, however

— The fact that CTC scores peak at symbol terminations minimizes the damage
due to pruning 155



CTC decoding

/ 1, ¢
/

f
,I /
/

This is the “theoretically correct” CTC decoder
In practice, the graph gets exponentially large very quickly

To prevent this pruning strategies are employed to keep the graph (and
computation) manageable

— This may cause suboptimal decodes, however

— The fact that CTC scores peak at symbol terminations minimizes the damage
due to pruning 156



CTC decoding

/ 1, ¢
/

f
,I /
/

This is the “theoretically correct” CTC decoder
In practice, the graph gets exponentially large very quickly

To prevent this pruning strategies are employed to keep the graph (and
computation) manageable

— This may cause suboptimal decodes, however

— The fact that CTC scores peak at symbol terminations minimizes the damage
due to pruning 157



CTC decoding

;)

a(S251)

a(S5152)
a(5151)
a(S1—)

a(S1)

This is the “theoretically correct” CTC decoder
In practice, the graph gets exponentially large very quickly
To prevent this pruning strategies are employed to keep the graph (and
computation) manageable
— This may cause suboptimal decodes, however

— The fact that CTC scores peak at symbol terminations minimizes the damage
due to pruning 158



Beamsearch Pseudocode Notes

Retaining separate lists of paths and pathscores for paths
terminating in blanks, and those terminating in valid symbols

— Since blanks are special
— Do not explicitly represent blanks in the partial decode strings

Pseudocode takes liberties (particularly w.r.t null strings)

— l.e. you must be careful if you convert this to code

Key
— PathScore : array of scores for paths ending with symbols
— BlankPathScore : array of scores for paths ending with blanks
— SymbolSet : Alist of symbols not including the blank



BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, yI[:,0])

# Subsequent time steps
for t = 1:T
# Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
# First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, y[:,t])

# Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, y[:,t])

end

# Merge identical paths differing only by the final blank

MergedPaths, FinalPathScore = MergeldenticalPaths (NewPathsWithTerminalBlank, NewBlankPathScore
NewPathsWithTerminalSymbol, NewPathScore)

# Pick best path
BestPath = argmax (FinalPathScore) # Find the path with the best score

160



BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, y[:,0])

161



BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, yI[:,01])

# Subsequent time steps
for t = 1:T
# Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)

/
/AN /A

e X X X Xy

162



BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, yI[:,01])

# Subsequent time steps
for t = 1:T

# Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =

Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,
NewBlankPathScore, NewPathScore, BeamWidth)
# First extend paths by a blank
NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, y[:,t])

163



BEAM SEARCH

Global PathScore = [], BlankPathScore = []

# First time instant: Initialize paths with each of the symbols,
# including blank, using score at time t=1

NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol, NewBlankPathScore, NewPathScore =
InitializePaths (SymbolSet, yI[:,01])

# Subsequent time steps
for t = 1:T
# Prune the collection down to the BeamWidth

PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore =
Prune (NewPathsWithTerminalBlank, NewPathsWithTerminalSymbol,

NewBlankPathScore, NewPathScore, BeamWidth)
# First extend paths by a blank

NewPathsWithTerminalBlank, NewBlankPathScore = ExtendWithBlank (PathsWithTerminalBlank,
PathsWithTerminalSymbol, y[:,t])

# Next extend paths by a symbol

NewPathsWithTerminalSymbol, NewPathScore = ExtendWithSymbol (PathsWithTerminalBlank,
PathsWithTerminalSymbol, SymbolSet, y[:,t])

)

164

)



BEAM SEARCH InitializePaths: FIRST TIME INSTANT

function InitializePaths (SymbolSet, V)

InitialBlankPathScore = [], InitialPathScore = []

# First push the blank into a path-ending-with-blank stack. No symbol has been invoked yet
path = null

InitialBlankPathScore[path] = y[blank] # Score of blank at t=1

InitialPathsWithFinalBlank = {path}

# Push rest of the symbols into a path-ending-with-symbol stack
InitialPathsWithFinalSymbol = {}
for ¢ in SymbolSet # This is the entire symbol set, without the blank

path = ¢
InitialPathScore[path] = y[c] # Score of symbol c at t=1
InitialPathsWithFinalSymbol += path # Set addition

end

return InitialPathsWithFinalBlank, InitialPathsWithFinalSymbol,
InitialBlankPathScore, InitialPathScore

[
Gcg

) &) & &

.
) &)

165



BEAM SEARCH: Extending with blanks

Global PathScore, BlankPathScore

function ExtendWithBlank (PathsWithTerminalBlank, PathsWithTerminalSymbol, vy)

UpdatedPathsWithTerminalBlank = {}

UpdatedBlankPathScore = []

# First work on paths with terminal blanks

# (This represents transitions along horizontal trellis edges for blanks)

for path in PathsWithTerminalBlank:
# Repeating a blank doesn’t change the symbol sequence
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = BlankPathScore[path]*y[blank]

end

# Then extend paths with terminal symbols by blanks
for path in PathsWithTerminalSymbol:
# If there is already an equivalent string in UpdatesPathsWithTerminalBlank
# simply add the score. If not create a new entry
if path in UpdatedPathsWithTerminalBlank
UpdatedBlankPathScore[path] += Pathscore[path]* y[blank]

else
UpdatedPathsWithTerminalBlank += path # Set addition
UpdatedBlankPathScore[path] = PathScore[path] * y[blank]
end o o LA
'm//% g l //f A?f /d
return UpdatedPathsWithTerminalBlank, = _ = /// Qﬁﬁa%ﬁz
UpdatedBlankPathScore hhxﬁ; e 5, //;j /37/’%//’
rN<g—a= ol P 2 O B
452l X X X, X X,

166



BEAM SEARCH: Extending with symbols

Global PathScore, BlankPathScore

function ExtendWithSymbol (PathsWithTerminalBlank,

UpdatedPathsWithTerminalSymbol = {}
UpdatedPathScore = []

PathsWithTerminalSymbol, SymbolSet,

v)

# First extend the paths terminating in blanks. This will always create a new sequence
for path in PathsWithTerminalBlank:

for

end
end

c in SymbolSet: # SymbolSet does not include blanks
newpath = path + ¢ # Concatenation
UpdatedPathsWithTerminalSymbol += newpath # Set addition
UpdatedPathScore[newpath] = BlankPathScore[path] * y(c)

# Next work on paths with terminal symbols
for path in PathsWithTerminalSymbol:
# Extend the path with every symbol other than blank

for

end

end

return UpdatedPathsWithTerminalSymbol,
UpdatedPathScore

c in SymbolSet: # SymbolSet does not include blanks

newpath = (c == path[end]) ? path : path + ¢ # Horizontal transitions don’t extend the sequence
if newpath in UpdatedPathsWithTerminalSymbol: # Already in list, merge paths

UpdatedPathScore[newpath] += PathScore[path] * y[c]
else # Create new path

UpdatedPathsWithTerminalSymbol += newpath # Set addition

UpdatedPathScore[newpath] = PathScorel[path] * yI[c]
end

y 2V 2

A,
i T s
s

167



BEAM SEARCH: Pruning low-scoring entries

Global PathScore, BlankPathScore

function Prune (PathsWithTerminalBlank, PathsWithTerminalSymbol, BlankPathScore, PathScore, BeamWidth)
PrunedBlankPathScore = []

PrunedPathScore = []

# First gather all the relevant scores

i=1

for p in PathsWithTerminalBlank
scorelist[i] = BlankPathScore([p]
i++

end

for p in PathsWithTerminalSymbol
scorelist[i] = PathScorelp]
i++

end

# Sort and find cutoff score that retains exactly BeamWidth paths
sort (scorelist) # In decreasing order
cutoff = BeamWidth < length(scorelist) ? scorelist[BeamWidth] : scorelist[end]

PrunedPathsWithTerminalBlank = {}
for p in PathsWithTerminalBlank
if BlankPathScore[p] >= cutoff
PrunedPathsWithTerminalBlank += p # Set addition
PrunedBlankPathScore[p] = BlankPathScore([p]
end
end

PrunedPathsWithTerminalSymbol = {}
for p in PathsWithTerminalSymbol
if PathScore[p] >= cutoff
PrunedPathsWithTerminalSymbol += p # Set addition
PrunedPathScore[p] = PathScorelp]
end
end

return PrunedPathsWithTerminalBlank, PrunedPathsWithTerminalSymbol, PrunedBlankPathScore, PrunedPathScore

168



BEAM SEARCH: Merging final paths

# Note : not using global variable here

function MergelIdenticalPaths (PathsWithTerminalBlank, BlankPathScore,
PathsWithTerminalSymbol, PathScore)

# All paths with terminal symbols will remain
MergedPaths = PathsWithTerminalSymbol
FinalPathScore = PathScore

# Paths with terminal blanks will contribute scores to existing identical paths from
# PathsWithTerminalSymbol if present, or be included in the final set, otherwise
for p in PathsWithTerminalBlank
if p in MergedPaths
FinalPathScore[p] += BlankPathScorel[p]
else
MergedPaths += p # Set addition
FinalPathScore[p] = BlankPathScore[p]
end
end

return MergedPaths, FinalPathScore

169



Story so far: CTC models

Sequence-to-sequence networks which irregularly produce output
symbols can be trained by

— lteratively aligning the target output to the input and time-synchronous
training

— Optimizing the expected error over all possible alignments: CTC training

Distinct repetition of symbols can be disambiguated from repetitions

representing the extended output of a single symbol by the introduction
of blanks

Decoding the models can be performed by
— Best-path decoding, i.e. greedy decoding

— Optimal CTC decoding based on the application of the forward algorithm to a
tree-structured representation of all possible output strings



CTC caveats

 The “blank” structure (with concurrent modifications to the
forward-backward equations) is only one way to deal with
the problem of repeating symbols

* Possible variants:

— Symbols partitioned into two or more sequential subunits
* No blanks are required, since subunits must be visited in order

— Symbol-specific blanks
* Doubles the “vocabulary”

— CTC can use bidirectional recurrent nets
* And frequently does

— Other variants possible..



Most common CTC applications

* Speech recognition
— Speech in, phoneme sequence out
— Speech in, character sequence (spelling out)

* Handwriting recognition



Speech recognition using Recurrent

Nets
EEEEEEE
FA
X(t)

* Recurrent neural networks (with LSTMSs) can be
used to perform speech recognition
— Input: Sequences of audio feature vectors
— Output: Phonetic label of each vector

173



Speech recognition using Recurrent
Nets

Wi W,
.—> . . > . . > . > . > .

-

X(t)

t=0

Time

* Alternative: Directly output phoneme,
character or word sequence

174



Next up: Attention models



CNN-LSTM-DNN for speech recognition

5 B
L Ensembles of RNN/LSTM, DNN, & Conv
; Nets (CNN) :
L4 T. Sainath, O. Vinyals, A. Senior, H. Sak.
N Q “Convolutional, Long Short-Term Memory,
@lem L Fully Connected Deep Neural Networks,”
; ~)  ICASSP 2015.
_____________ I.......
C (1)
=] - —
s
I e

Fig. 1. CLDNN Architecture 176



Translating Videos to Natural Language Using Deep
Recurrent Neural Networks

Input Video Convolutional Net Recurrent Net Output
CNN N\ | LSTM LSTM A
CNN — | LSTM — LSTM boy

LSTM is

— | LSTM

CNN

j u
: _I +
<

playing

_.Tistv b—{ L5

]
<
Q

CNN

CNN _K — | LSTM

EEES

LSTM ball

:

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko 177
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015.



f . W e,
"man in black shirt is playing ‘construction worker in orange “two young girls are playing with

guitar.’ safety vest is working on road.’ lego toy.” wakeboard.”

‘a young boy is holding a "a cat is sitting ona couchwitha  "a woman holding a teddy bearin ~ "a horse is standing in the middle
baseball bat.’ remote control.’ front of a mirror.” of aroad.’

178



Not explained

e Can be combined with CNNs

— Lower-layer CNNs to extract features for RNN

* Can be used in tracking

— Incremental prediction



