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Why Transformer?

• Almost everything today in deep learning is 
Transformer

4



But…Why Transformer?

• Flexibility and universality of handling all modality

• Scaling with data and parameters

• “Emergent” capability and In-context Learning

• Parameter Efficient Tuning

5



Transformer Architecture
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Transformer Architecture

• overview

7Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).



Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer
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Tokenization

• Maps a word into one/multiple tokens 

– Each token represented as an index/class

11https://platform.openai.com/tokenizer
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Embedding

• Represents each discrete token index as continuous 
token embeddings

13
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Embedding Layer

• The embedding layer is a look-up table that converts 
token index to continuous vectors

• In Pytorch, it is nn.Embedding

14

Token Index Token Embedding

0 [0.235, -1.256, 3.513, …, -0.187]

1 [1.291, -2.012, 0.624, …, -1.291]

2 [0.536, 0.012, -0.024, …, 2.345]

… …

Vocab Size |V| [0.131, 2.102, 0.935, …, -0.125]



Embedding Layer is a Linear Layer

• nn.Embedding is essentially a linear layer

15

One-Hot Vector 
Token Index 𝑋 𝜖 ℝ𝐿 × |𝑉| Weight Matrix 𝑊 𝜖 ℝ 𝑉  × 𝐷

Token Embedding Y 𝜖 ℝ𝐿 × 𝐷



Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

16

Tokenization



Self-Attention

• Attention Operation

• Query-Key-Value

– Linear affine from input X itself

• Weighted-sum of V based on 
similarity/correlation between Q and K

– Each token’s weights sum to one 

17

X



Self-Attention
• Query-Key-Value from Three Linear Affine of X

18

X

The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

ℝ𝐿 × 𝐷



Self-Attention

• Attention weights

19The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

ℝ𝐿 × 𝐷

ℝ𝐿 × 𝐿

https://jalammar.github.io/illustrated-transformer/


Self-Attention

• Output

20The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/



Self-Attention

21The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Embedding Dimension 

Value Vector 

Weighted-sum of V based on Attention Scores



Multi-Head Self-Attention

• Multiple self-attention operations 
over the channel dimension

• Different attention maps capture 
different relationships

22



Multi-Head Attention

• Each head captures different semantics

23https://www.tensorflow.org/text/tutorials/transformer



Attention Masking

24

Bi-Directional Causal

Bi-Directional

Causal

Credit to: Han Song. TinyML. Lecture 12 Transformers.



Attention Masking
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Bi-Directional Causal

Bi-Directional

Causal

Credit to: Han Song. TinyML. Lecture 12 Transformers.



Cross-Attention

26The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/



Cross-Attention

27
Wonsik Shin, Jessica Ruan, Aradhya Talan, and Brandon Dong. "3D Gaussian Splatting Editing with Diffusion Personalization." 
IDL Project - Carnegie Mellon University.
.

query, "a furry bear watches a bird."

The model iteratively denoise the noise vector based on the given 
text query to generate an Image 



Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

28

Tokenization



Position Encoding
• Why do we need them?

– Self-attention is permutation-invariant!

• Considering a sequence of 

– [A, B, C]  vs. [C, A, B]

• No position information!

29
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Position Encoding
• Captures the abs./relative distance between tokens

– A vector of sines and cosines of a harmonic series of frequencies

– Never Repeats

30
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Position Encoding
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No Position Info.

With Position Info.
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Feed-Forward Block

• Just a MLP!

34
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https://www.youtube.com/watch?v=KJtZARuO3JY&t=694s



Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer
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Residual and Normalization

• Each layer in Transformer has:

– A residual connection

– A normalization layer

• Layer Norm. normalize each token by its 
embedding size dimension

– For more stable training

36



Position of Normalization
• Post-Norm vs Pre-Norm

• Pre-Norm is easier and more stable to train

• Post-Norm tends to present better performance if 
properly trained 

37Credit to: Han Song. TinyML. Lecture 12 Transformers.



Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Feed-Forward

• Add & Norm

• Position Encoding

• Output Projection Layer

– Just a linear layer

38

Tokenization



Putting Them Together - Transformer

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

39

Transformer 
Block



Poll @967

Which of the following are true about self-attention?

•  Self-attention is permutation invariant without position information 

•  The attention weights are scaled by the dimension d before computing softmax 

•  The attention weights are scaled by sqrt d before computing softmax 

• In self-attention Q, K, V are copy of input X

40
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Overview

• Architecture
– Encoder-Decoder
– Encoder-Only
– Decoder-Only

• Position Encoding
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• Efficient Attention Mechanism
– Grouped Query Attention
– Multi Query Attention
– Flash Attention
– Multi-head Latent Attention
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Encoder-Decoder - T5

• Encoder-Decoder architecture as in the original 
transformer paper

• A text-to-text model on various NLP tasks

47Raffel et. al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2019



Encoder-Decoder - T5
• The prompt is fed into encoder, and the decoder 

generates answer

48Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/



Encoder-Only - BERT

• Bidirectional Encoder Representations from
Transformers (BERT)

– Encoder-only arch.

• Trained with

– Mask token prediction

– Next sentence prediction

49Jacob et. al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019



Pre-training and then Fine-Tuning

Pre-training on a proxy task

– Masked token prediction

– Next sentence prediction

50

Fine-tuning on specific 
downstream tasks

– Machine translation

– Question answering

Jacob et. al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019



Decoder-Only - GPT
• Generative Pre-training (GPT)

– Decoder-only

• Trained with next token prediction

– A language model!

51Radford et. al. Improving Language Understanding by Generative Pre-Training.
Illustrated GPT-2. 



Large Language Model

• GPT-2 
– Pre-training and fine-tuning on specific tasks

• GPT-3
– zero-shot capability

– in-context learning

– Foundation for ChatGPT!

• GPT-4

52



Overview
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Absolute Position Encoding

• Absolute position embedding fuses the position 
information into input embeddings

• Fixed length! Not generalize to longer input sequence

54



Relative Position Encoding
• Relative position embedding fuses position information into 

attention matrices

• Attention with linear bias

– Input length extrapolation!

55Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. 2021.



Relative Position Encoding

• Relative distance as offset added to attention matrix

• Absolute position embedding not needed

56Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. 2021.

Attention Weights Relative Position as Bias



Rotary Position Encoding
• Used in Large Language Models such as LLAMA

• Rotate the embedding in 2D space

57
Su et al. RoFormer: Enhanced Transformer with Rotary Position Embedding. 2021

How Rotary Position Embedding Supercharges Modern LLMs:  https://www.youtube.com/watch?v=SMBkImDWOyQ



Rotary Position Encoding

• General form

58
Su et al. RoFormer: Enhanced Transformer with Rotary Position Embedding. 2021.



Rotary Position Encoding

• Allows extension of the context window

59
Chen et al. Extending Context Window of Large Language Models via Positional Interpolation. 2023.
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Quadratic Complexity

• Self-attention has quadratic complexity to input length

–                 FLOPS

• Many attempts for reducing the quadratic complexity 
to linear
– Linear Attention

– Flash Attention

– Grouped Query Attention

– Multi Query Attention

– Multi-head Latent Attention
61



Linear Attention

• Modification on Softmax

• Kernel function

• Linear form of attention

62
Katharopoulos et al. Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention. 2020.



Flash Attention

63

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information 
Processing Systems 35 (2022): 16344-16359.

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention



Flash Attention

64
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Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing Systems 35 
(2022): 16344-16359.

How FlashAttention Accelerates Generative AI Revolution:  https://www.youtube.com/watch?v=gBMO1JZav44
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Flash Attention

65

Softmax 
Computation requires two loops: 
one to calculate the normalizing 
factor (the sum of exponentials) 
and another to compute the 
attention weights by dividing 
each exponentiated value by this 
factor.

Safe Softmax 
Requires three loops: one to 
find the maximum value (for 
numerical stability), one to 
compute the normalizing factor, 
and one to obtain the attention 
weights.

Online Softmax 
Requires two loops: one to 
find the maximum value (and 
to compute the normalizing 
factor, and one to obtain the 
attention weights.

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing 
Systems 35 (2022): 16344-16359.

https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf



Flash Attention

66

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing 
Systems 35 (2022): 16344-16359.

https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf

Fused computation to one loop!



Flash Attention

67

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing 
Systems 35 (2022): 16344-16359.

https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf



Flash Attention

68
Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing 
Systems 35 (2022): 16344-16359.



Flash Attention

69Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information 
Processing Systems 35 (2022): 16344-16359.

IO complexity:

Flash Attention:  O
𝑵𝟐𝒅𝟐

𝑴

Standard Attention:  Ω 𝑵𝒅 + 𝑵𝟐

Where N is sequence length, d head dimensions and M the size of SRAM. 



KV- Caching

70Transformers KV Caching Explained: https://medium.com/@joaolages/kv-caching-explained-276520203249



Multi and Grouped Query Attention

71
Ainslie, Joshua, et al. "Gqa: Training generalized multi-query transformer models from multi-head checkpoints." arXiv preprint 

arXiv:2305.13245 (2023).

• Multi-head attention has H query, key, and value heads. 

• Multi-query attention shares single key and value heads across all query heads. 

• Grouped-query attention instead shares single key and value heads for each group of 
query heads.



Multihead Latent Attention

72Liu, Aixin, et al. "Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model." arXiv preprint arXiv:2405.04434 (2024)

• Low-rank key-value joint compression

• Caching compressed latent KV pairs during inference



Poll @968

73

Which of the following statements is true?

• FlashAttention is particularly effective for long sequences, as it stores the full 
attention matrix in memory, which would otherwise grow quadratically with 
sequence length due to a higher number of memory accesses.

• FlashAttention improves efficiency by splitting computations into blocks that fit in 
fast SRAM, reducing memory access overhead while maintaining mathematical 
equivalence to standard attention.

• FlashAttention performs worse than standard attention implementations because 
the block-wise computation approach introduces additional computational 
overhead that outweighs any memory benefits.

• FlashAttention is primarily designed for CPU optimization and shows minimal 
performance improvements when implemented on GPU hardware.



Poll @968
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sequence length due to a higher number of memory accesses.

• FlashAttention improves efficiency by splitting computations into blocks that fit in 
fast SRAM, reducing memory access overhead while maintaining mathematical 
equivalence to standard attention.

• FlashAttention performs worse than standard attention implementations because 
the block-wise computation approach introduces additional computational 
overhead that outweighs any memory benefits.

• FlashAttention is primarily designed for CPU optimization and shows minimal 
performance improvements when implemented on GPU hardware.
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Transformer in Vision and Audio

76



Overview

• Vision Transformer Architecture

• Transformer in Audio

• Tokenizer
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Vision Transformer (ViT)

• Transformer architecture can also be used for images

• How do we process an image into tokens?
79

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.



CNN

• Naturally fits to 2D images

80



ViT

• Split images into a sequence of patches

• Each patch is treated as one token as input to ViT

– A convolution layer with kernel P and stride P!

– Or a linear layer on the flatten pixels

81
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Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.



ViT

• The remaining is same as Transformer

– As an encoder-only model
82

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.



Image Classification

• Inferior performance compared to CNN when 
dataset size is limited – Why?

83
Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.
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Overview

• Vision Transformer Architecture

• Transformer in Audio

• Tokenizer
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Transformer in Audio

86
[1] Dong, Linhao, Shuang Xu, and Bo Xu. "Speech-transformer: a no-recurrence sequence-to-sequence model for speech 

recognition." 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) . IEEE, 2018.

[2]  Gong, Yuan, Yu-An Chung, and James Glass. "Ast: Audio spectrogram transformer." arXiv preprint arXiv:2104.01778 (2021).

Speech Transformer for ASR Audio Spectrogram Transformer



Conformer

87
Gulati, Anmol, et al. "Conformer: Convolution-augmented transformer for speech recognition." arXiv preprint 

arXiv:2005.08100 (2020).

• The Conformer architecture augments 
a transformer by
embedding convolution layers within 
the transformer blocks.

• Transformers capture global 
dependencies, CNNs capture local 
features efficiently.



Overview

• Vision Transformer Architecture

• Transformer in Audio: Conformer

• Tokenizer

88



Tokenizers

89

Zhang, Xin, et al. "Speechtokenizer: Unified speech tokenizer for speech language models." The Twelfth International Conference on 

Learning Representations. 2024.

Chen, Yongwei, et al. "SAR3D: Autoregressive 3D object generation and understanding via multi-scale 3D VQVAE." arXiv preprint 

arXiv:2411.16856 (2024).

Yu, Qihang, et al. "An Image is Worth 32 Tokens for Reconstruction and Generation." arXiv preprint arXiv:2406.07550 (2024).

Wang, Junke, et al. "OmniTokenizer: A Joint Image-Video Tokenizer for Visual Generation." arXiv preprint arXiv:2406.09399 (2024).



Poll @965 and @966

90

Which ones of the following are properties of ViT, compared 
to CNN? 

• Weight sharing
• Dynamic weights from data 
• Locality 
• Global dependency from data

Which of the following statements about the Conformer architecture is 
correct?

• The Conformer uses convolution layers to replace self-attention entirely
•  Conformer blocks have convolutional modules placed after the self-attention module
• The Conformer architecture eliminates the need for Feed Forward modules  
• Conformer was primarily designed for computer vision tasks rather than speech 

recognition 
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Parameter Efficient Tuning
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Overview

• Parameter Efficient Tuning Methods

– Prefix Tuning

– Prompt Tuning

– Adapter

– LoRA

94



Parameter Efficient Tuning

• Traditionally, you need to fine-tune entire network 
on specific downstream tasks

• Parameter Efficient Tuning – Only tune a small
proportion of parameters of the pre-trained 
transformer 
– Prefix Tuning

– Prompt tuning

– Adapter

– LoRA

95



Prefix Tuning

• Only learns a set continuous prefixes)added to the 
input and transformer layers for each task.

96
Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).



Prompt Tuning

• Only learns a set of ‘prompt’ or ‘token’ for each task

97
Lester et al. The Power of Scale for Parameter-Efficient Prompt Tuning. 2021.



Adapter

• Insert MLP at Feed-forward layers

98
Houlsby et al. Parameter-Efficient Transfer Learning for NLP. 2022.



LoRA

• Low-rank Adaptation (LoRA)

• No activation in-between

• A and B can be fused into W

99
Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. 2022.



Parameter-Efficient Tuning
• Performance close to full fine-tuning while 

just train less than 15% of original parameters

100
He, Junxian, et al. "Towards a unified view of parameter-efficient transfer learning." arXiv preprint arXiv:2110.04366 (2021).
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Scaling Laws

102



“Magic” of Transformer - Scaling

• Performance gets better as transformer scales up

103
Xiao et al. SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models. 2024.



Scaling Law

• For decoder-only models, the final performance is only 
related to Compute, Data Size, and Parameter Size

– power law relationship for each factor

– w/o constraints by the others

104
Kaplan et al. Scaling Laws for Neural Language Models. 2020.



Scaling Law

105
Hoffmann, Jordan, et al. "Training compute-optimal large language models. arXiv 2022." arXiv preprint arXiv:2203.15556 10 (2022).



Scaling Law

106
Bi, Xiao, et al. "Deepseek llm: Scaling open-source language models with longtermism." arXiv preprint arXiv:2401.02954 (2024).



“Emergent” Capability

107
Wei et al. Emergent Abilities of Large Language Models. 2020.



In-Context Learning

• Scaled models can generalize to new tasks without 
fine-tuning!

– Zero-shot

– Few-shot

108
Language Models are Few-shot Learners.



We learned…

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities 

• Tokenizers 

• Parameter Efficient Tuning

• Scaling Laws
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