
Deep Learning

Transformer and Newer
Architectures

Dareen Alharthi, Hao Chen

Spring 2025
Attendance:@964

1

Content

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities

• Parameter Efficient Tuning

• Scaling Laws

2

Content

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities

• Parameter Efficient Tuning

• Scaling Laws

3

Why Transformer?

• Almost everything today in deep learning is
Transformer

4

But…Why Transformer?

• Flexibility and universality of handling all modality

• Scaling with data and parameters

• “Emergent” capability and In-context Learning

• Parameter Efficient Tuning

5

Transformer Architecture

6

Transformer Architecture

• overview

7Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

8

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

9

Transformer
Block

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

10

Tokenization

Tokenization

• Maps a word into one/multiple tokens

– Each token represented as an index/class

11https://platform.openai.com/tokenizer

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

12

Tokenization

Embedding

• Represents each discrete token index as continuous
token embeddings

13

CMU’s
11785
is the
best
deep

learning
course

3,
5,

100,
57,
…,
1

Embedding
Layer

[0.125, 1.256, …, 3.56]

[0.321, -0.26, …, -0.56]

…

Tokenization

Embedding

Embedding Layer

• The embedding layer is a look-up table that converts
token index to continuous vectors

• In Pytorch, it is nn.Embedding

14

Token Index Token Embedding

0 [0.235, -1.256, 3.513, …, -0.187]

1 [1.291, -2.012, 0.624, …, -1.291]

2 [0.536, 0.012, -0.024, …, 2.345]

… …

Vocab Size |V| [0.131, 2.102, 0.935, …, -0.125]

Embedding Layer is a Linear Layer

• nn.Embedding is essentially a linear layer

15

One-Hot Vector
Token Index 𝑋 𝜖 ℝ𝐿 × |𝑉| Weight Matrix 𝑊 𝜖 ℝ 𝑉 × 𝐷

Token Embedding Y 𝜖 ℝ𝐿 × 𝐷

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

16

Tokenization

Self-Attention

• Attention Operation

• Query-Key-Value

– Linear affine from input X itself

• Weighted-sum of V based on
similarity/correlation between Q and K

– Each token’s weights sum to one

17

X

Self-Attention
• Query-Key-Value from Three Linear Affine of X

18

X

The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

ℝ𝐿 × 𝐷

Self-Attention

• Attention weights

19The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

ℝ𝐿 × 𝐷

ℝ𝐿 × 𝐿

https://jalammar.github.io/illustrated-transformer/

Self-Attention

• Output

20The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Self-Attention

21The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Embedding Dimension

Value Vector

Weighted-sum of V based on Attention Scores

Multi-Head Self-Attention

• Multiple self-attention operations
over the channel dimension

• Different attention maps capture
different relationships

22

Multi-Head Attention

• Each head captures different semantics

23https://www.tensorflow.org/text/tutorials/transformer

Attention Masking

24

Bi-Directional Causal

Bi-Directional

Causal

Credit to: Han Song. TinyML. Lecture 12 Transformers.

Attention Masking

25

Bi-Directional Causal

Bi-Directional

Causal

Credit to: Han Song. TinyML. Lecture 12 Transformers.

Cross-Attention

26The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Cross-Attention

27
Wonsik Shin, Jessica Ruan, Aradhya Talan, and Brandon Dong. "3D Gaussian Splatting Editing with Diffusion Personalization."
IDL Project - Carnegie Mellon University.
.

query, "a furry bear watches a bird."

The model iteratively denoise the noise vector based on the given
text query to generate an Image

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

28

Tokenization

Position Encoding
• Why do we need them?

– Self-attention is permutation-invariant!

• Considering a sequence of

– [A, B, C] vs. [C, A, B]

• No position information!

29

0 .3
6

0 .3
6

0 .3
8

0 .3
8

Position Encoding
• Captures the abs./relative distance between tokens

– A vector of sines and cosines of a harmonic series of frequencies

– Never Repeats

30

Position Encoding
• Captures the abs./relative distance between tokens

– A vector of sines and cosines of a harmonic series of frequencies

– Never Repeats

31

Position Encoding

32

No Position Info.

With Position Info.

0 .3
6

0 .3
6

0 .3
8

0 .3
8

0 .1
5

0 .0
6

0 .0
3

0 .0
8

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

33

Tokenization

Feed-Forward Block

• Just a MLP!

34

d 4d d4d
R

eLU
/G

ELU

https://www.youtube.com/watch?v=KJtZARuO3JY&t=694s

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

35

Tokenization

Residual and Normalization

• Each layer in Transformer has:

– A residual connection

– A normalization layer

• Layer Norm. normalize each token by its
embedding size dimension

– For more stable training

36

Position of Normalization
• Post-Norm vs Pre-Norm

• Pre-Norm is easier and more stable to train

• Post-Norm tends to present better performance if
properly trained

37Credit to: Han Song. TinyML. Lecture 12 Transformers.

Transformer Architecture

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Feed-Forward

• Add & Norm

• Position Encoding

• Output Projection Layer

– Just a linear layer

38

Tokenization

Putting Them Together - Transformer

• Word Tokenization

• Word Embedding

• (Masked) Multi-Head Attention

• Position Encoding

• Feed-Forward

• Add & Norm

• Output Projection Layer

39

Transformer
Block

Poll @967

Which of the following are true about self-attention?

• Self-attention is permutation invariant without position information

• The attention weights are scaled by the dimension d before computing softmax

• The attention weights are scaled by sqrt d before computing softmax

• In self-attention Q, K, V are copy of input X

40

Poll @967

Which of the following are true about self-attention?

• Self-attention is permutation invariant without position information

• The attention weights are scaled by the dimension d before computing softmax

• The attention weights are scaled by sqrt the dimension d before computing
softmax

• In self-attention Q, K, V are copy of input X

41

Content

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities

• Parameter Efficient Tuning

• Scaling Laws

42

Overview

• Architecture
– Encoder-Decoder
– Encoder-Only
– Decoder-Only

• Position Encoding
– Relative Position Encoding
– Rotary Position Encoding

• Efficient Attention Mechanism
– Grouped Query Attention
– Multi Query Attention
– Flash Attention
– Multi-head Latent Attention

43

Overview

• Architecture
– Encoder-Decoder
– Encoder-Only
– Decoder-Only

• Position Encoding
– Relative Position Encoding
– Rotary Position Encoding

• Efficient Attention Mechanism
– Grouped Query Attention
– Multi Query Attention
– Flash Attention
– Multi-head Latent Attention

44

46

DE DE

[MASK]

D
E

D
E

Encoder-Decoder Decoder-Only Encoder-Only

𝑦1 𝑦2 𝑦3 𝑦3 .𝑦1 𝑦2 𝑦3 𝑦3 .

𝑦0 𝑦1 𝑦2 𝑦3 𝑦3

𝑦0 𝑦1 𝑦2

Encoder-Decoder - T5

• Encoder-Decoder architecture as in the original
transformer paper

• A text-to-text model on various NLP tasks

47Raffel et. al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2019

Encoder-Decoder - T5
• The prompt is fed into encoder, and the decoder

generates answer

48Illustrated Transformer. https://jalammar.github.io/illustrated-transformer/

Encoder-Only - BERT

• Bidirectional Encoder Representations from
Transformers (BERT)

– Encoder-only arch.

• Trained with

– Mask token prediction

– Next sentence prediction

49Jacob et. al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019

Pre-training and then Fine-Tuning

Pre-training on a proxy task

– Masked token prediction

– Next sentence prediction

50

Fine-tuning on specific
downstream tasks

– Machine translation

– Question answering

Jacob et. al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019

Decoder-Only - GPT
• Generative Pre-training (GPT)

– Decoder-only

• Trained with next token prediction

– A language model!

51Radford et. al. Improving Language Understanding by Generative Pre-Training.
Illustrated GPT-2.

Large Language Model

• GPT-2
– Pre-training and fine-tuning on specific tasks

• GPT-3
– zero-shot capability

– in-context learning

– Foundation for ChatGPT!

• GPT-4

52

Overview
• Architecture

– Encoder-Decoder
– Encoder-Only
– Decoder-Only

• Position Encoding
– Relative Position Encoding
– Rotary Position Encoding

• Efficient Attention Mechanism
– Grouped Query Attention
– Multi Query Attention
– Flash Attention
– Multi-head Latent Attention

53

Absolute Position Encoding

• Absolute position embedding fuses the position
information into input embeddings

• Fixed length! Not generalize to longer input sequence

54

Relative Position Encoding
• Relative position embedding fuses position information into

attention matrices

• Attention with linear bias

– Input length extrapolation!

55Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. 2021.

Relative Position Encoding

• Relative distance as offset added to attention matrix

• Absolute position embedding not needed

56Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. 2021.

Attention Weights Relative Position as Bias

Rotary Position Encoding
• Used in Large Language Models such as LLAMA

• Rotate the embedding in 2D space

57
Su et al. RoFormer: Enhanced Transformer with Rotary Position Embedding. 2021

How Rotary Position Embedding Supercharges Modern LLMs: https://www.youtube.com/watch?v=SMBkImDWOyQ

Rotary Position Encoding

• General form

58
Su et al. RoFormer: Enhanced Transformer with Rotary Position Embedding. 2021.

Rotary Position Encoding

• Allows extension of the context window

59
Chen et al. Extending Context Window of Large Language Models via Positional Interpolation. 2023.

Overview
• Architecture

– Encoder-Decoder
– Encoder-Only
– Decoder-Only

• Position Encoding
– Relative Position Encoding
– Rotary Position Encoding

• Efficient Attention Mechanism
– Linear Attention
– Flash Attention
– Grouped Query Attention
– Multi Query Attention
– Multi-head Latent Attention

60

Quadratic Complexity

• Self-attention has quadratic complexity to input length

– FLOPS

• Many attempts for reducing the quadratic complexity
to linear
– Linear Attention

– Flash Attention

– Grouped Query Attention

– Multi Query Attention

– Multi-head Latent Attention
61

Linear Attention

• Modification on Softmax

• Kernel function

• Linear form of attention

62
Katharopoulos et al. Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention. 2020.

Flash Attention

63

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information
Processing Systems 35 (2022): 16344-16359.

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention

Flash Attention

64

C1,1 C1,2

C2,1 C2,2

1 2 0 5

4 8 2 -1

3 1 6 3

-7 5 0 8

3 1 6 3

-7 5 0 8

1 2 0 5

0 3 5 1

C1,1 C1,2 C1,3 C1,4

C2,1 C2,2 C2,3 C2,4

C3,1 C3,2 C3,3 C3,4

C4,1 C4,2 C4,3 C4,4

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing Systems 35
(2022): 16344-16359.

How FlashAttention Accelerates Generative AI Revolution: https://www.youtube.com/watch?v=gBMO1JZav44

3 1

-7 5

6 3

0 8

1 2

0 3

0 5

5 1

3 1

-7 5

6 3

0 8

1 2

4 8

0 5

2 -1

x

x =

=

Without Tiling 32 access

With Tiling 16 access

C₁,₁ = 1 × 1 + 2 × 5 + 3 × 9 + 4 × 13
C₁,₂ = 1 × 2 + 2 × 6 + 3 × 10 + 4 × 14
C₂,₁ = 5 × 1 + 6 × 5 + 7 × 9 + 8 × 13
C₂,₂ = 5 × 2 + 6 × 6 + 7 × 10 + 8 × 14
………………………………….
………………………………….

A B C

A B C

C₁₁ = A₁₁ × B₁₁ + A₁₂ × B₂₁
C₁₂ = A₁₁ × B₁₂ + A₁₂ × B₂₂
C₂₁ = A₂₁ × B₁₁ + A₂₂ × B₂₁
C₂₂ = A₂₁ × B₁₂ + A₂₂ × B₂₂

Flash Attention

65

Softmax
Computation requires two loops:
one to calculate the normalizing
factor (the sum of exponentials)
and another to compute the
attention weights by dividing
each exponentiated value by this
factor.

Safe Softmax
Requires three loops: one to
find the maximum value (for
numerical stability), one to
compute the normalizing factor,
and one to obtain the attention
weights.

Online Softmax
Requires two loops: one to
find the maximum value (and
to compute the normalizing
factor, and one to obtain the
attention weights.

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing
Systems 35 (2022): 16344-16359.

https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf

Flash Attention

66

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing
Systems 35 (2022): 16344-16359.

https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf

Fused computation to one loop!

Flash Attention

67

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing
Systems 35 (2022): 16344-16359.

https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf

Flash Attention

68
Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing
Systems 35 (2022): 16344-16359.

Flash Attention

69Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information
Processing Systems 35 (2022): 16344-16359.

IO complexity:

Flash Attention: O
𝑵𝟐𝒅𝟐

𝑴

Standard Attention: Ω 𝑵𝒅 + 𝑵𝟐

Where N is sequence length, d head dimensions and M the size of SRAM.

KV- Caching

70Transformers KV Caching Explained: https://medium.com/@joaolages/kv-caching-explained-276520203249

Multi and Grouped Query Attention

71
Ainslie, Joshua, et al. "Gqa: Training generalized multi-query transformer models from multi-head checkpoints." arXiv preprint

arXiv:2305.13245 (2023).

• Multi-head attention has H query, key, and value heads.

• Multi-query attention shares single key and value heads across all query heads.

• Grouped-query attention instead shares single key and value heads for each group of
query heads.

Multihead Latent Attention

72Liu, Aixin, et al. "Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model." arXiv preprint arXiv:2405.04434 (2024)

• Low-rank key-value joint compression

• Caching compressed latent KV pairs during inference

Poll @968

73

Which of the following statements is true?

• FlashAttention is particularly effective for long sequences, as it stores the full
attention matrix in memory, which would otherwise grow quadratically with
sequence length due to a higher number of memory accesses.

• FlashAttention improves efficiency by splitting computations into blocks that fit in
fast SRAM, reducing memory access overhead while maintaining mathematical
equivalence to standard attention.

• FlashAttention performs worse than standard attention implementations because
the block-wise computation approach introduces additional computational
overhead that outweighs any memory benefits.

• FlashAttention is primarily designed for CPU optimization and shows minimal
performance improvements when implemented on GPU hardware.

Poll @968

74

Which of the following statements is true?

• FlashAttention is particularly effective for long sequences, as it stores the full
attention matrix in memory, which would otherwise grow quadratically with
sequence length due to a higher number of memory accesses.

• FlashAttention improves efficiency by splitting computations into blocks that fit in
fast SRAM, reducing memory access overhead while maintaining mathematical
equivalence to standard attention.

• FlashAttention performs worse than standard attention implementations because
the block-wise computation approach introduces additional computational
overhead that outweighs any memory benefits.

• FlashAttention is primarily designed for CPU optimization and shows minimal
performance improvements when implemented on GPU hardware.

Content

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities

• Parameter Efficient Tuning

• Scaling Laws

75

Transformer in Vision and Audio

76

Overview

• Vision Transformer Architecture

• Transformer in Audio

• Tokenizer

77

Overview

• Vision Transformer Architecture

• Transformer in Audio

• Tokenizers

78

Vision Transformer (ViT)

• Transformer architecture can also be used for images

• How do we process an image into tokens?
79

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.

CNN

• Naturally fits to 2D images

80

ViT

• Split images into a sequence of patches

• Each patch is treated as one token as input to ViT

– A convolution layer with kernel P and stride P!

– Or a linear layer on the flatten pixels

81

𝑊

𝐻

𝑃

𝐻

𝑃
 ×

𝑊

𝑃
 patches

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.

ViT

• The remaining is same as Transformer

– As an encoder-only model
82

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.

Image Classification

• Inferior performance compared to CNN when
dataset size is limited – Why?

83
Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.

84

Overview

• Vision Transformer Architecture

• Transformer in Audio

• Tokenizer

85

Transformer in Audio

86
[1] Dong, Linhao, Shuang Xu, and Bo Xu. "Speech-transformer: a no-recurrence sequence-to-sequence model for speech

recognition." 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) . IEEE, 2018.

[2] Gong, Yuan, Yu-An Chung, and James Glass. "Ast: Audio spectrogram transformer." arXiv preprint arXiv:2104.01778 (2021).

Speech Transformer for ASR Audio Spectrogram Transformer

Conformer

87
Gulati, Anmol, et al. "Conformer: Convolution-augmented transformer for speech recognition." arXiv preprint

arXiv:2005.08100 (2020).

• The Conformer architecture augments
a transformer by
embedding convolution layers within
the transformer blocks.

• Transformers capture global
dependencies, CNNs capture local
features efficiently.

Overview

• Vision Transformer Architecture

• Transformer in Audio: Conformer

• Tokenizer

88

Tokenizers

89

Zhang, Xin, et al. "Speechtokenizer: Unified speech tokenizer for speech language models." The Twelfth International Conference on

Learning Representations. 2024.

Chen, Yongwei, et al. "SAR3D: Autoregressive 3D object generation and understanding via multi-scale 3D VQVAE." arXiv preprint

arXiv:2411.16856 (2024).

Yu, Qihang, et al. "An Image is Worth 32 Tokens for Reconstruction and Generation." arXiv preprint arXiv:2406.07550 (2024).

Wang, Junke, et al. "OmniTokenizer: A Joint Image-Video Tokenizer for Visual Generation." arXiv preprint arXiv:2406.09399 (2024).

Poll @965 and @966

90

Which ones of the following are properties of ViT, compared
to CNN?

• Weight sharing
• Dynamic weights from data
• Locality
• Global dependency from data

Which of the following statements about the Conformer architecture is
correct?

• The Conformer uses convolution layers to replace self-attention entirely
• Conformer blocks have convolutional modules placed after the self-attention module
• The Conformer architecture eliminates the need for Feed Forward modules
• Conformer was primarily designed for computer vision tasks rather than speech

recognition

Poll @965 and @966

91

Which ones of the following are properties of ViT, compared
to CNN?

• Weight sharing
• Dynamic weights from data
• Locality
• Global dependency from data

Which of the following statements about the Conformer architecture is
correct?

• The Conformer uses convolution layers to replace self-attention entirely
• Conformer blocks have convolutional modules placed after the self-attention module
• The Conformer architecture eliminates the need for Feed Forward modules
• Conformer was primarily designed for computer vision tasks rather than speech

recognition

Content

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities

• Parameter Efficient Tuning

• Scaling Laws

92

Parameter Efficient Tuning

93

Overview

• Parameter Efficient Tuning Methods

– Prefix Tuning

– Prompt Tuning

– Adapter

– LoRA

94

Parameter Efficient Tuning

• Traditionally, you need to fine-tune entire network
on specific downstream tasks

• Parameter Efficient Tuning – Only tune a small
proportion of parameters of the pre-trained
transformer
– Prefix Tuning

– Prompt tuning

– Adapter

– LoRA

95

Prefix Tuning

• Only learns a set continuous prefixes)added to the
input and transformer layers for each task.

96
Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).

Prompt Tuning

• Only learns a set of ‘prompt’ or ‘token’ for each task

97
Lester et al. The Power of Scale for Parameter-Efficient Prompt Tuning. 2021.

Adapter

• Insert MLP at Feed-forward layers

98
Houlsby et al. Parameter-Efficient Transfer Learning for NLP. 2022.

LoRA

• Low-rank Adaptation (LoRA)

• No activation in-between

• A and B can be fused into W

99
Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. 2022.

Parameter-Efficient Tuning
• Performance close to full fine-tuning while

just train less than 15% of original parameters

100
He, Junxian, et al. "Towards a unified view of parameter-efficient transfer learning." arXiv preprint arXiv:2110.04366 (2021).

Content

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities

• Parameter Efficient Tuning

• Scaling Laws

101

Scaling Laws

102

“Magic” of Transformer - Scaling

• Performance gets better as transformer scales up

103
Xiao et al. SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models. 2024.

Scaling Law

• For decoder-only models, the final performance is only
related to Compute, Data Size, and Parameter Size

– power law relationship for each factor

– w/o constraints by the others

104
Kaplan et al. Scaling Laws for Neural Language Models. 2020.

Scaling Law

105
Hoffmann, Jordan, et al. "Training compute-optimal large language models. arXiv 2022." arXiv preprint arXiv:2203.15556 10 (2022).

Scaling Law

106
Bi, Xiao, et al. "Deepseek llm: Scaling open-source language models with longtermism." arXiv preprint arXiv:2401.02954 (2024).

“Emergent” Capability

107
Wei et al. Emergent Abilities of Large Language Models. 2020.

In-Context Learning

• Scaled models can generalize to new tasks without
fine-tuning!

– Zero-shot

– Few-shot

108
Language Models are Few-shot Learners.

We learned…

• Transformer Architecture

• Improvements on Transformers

• Transformer for different modalities

• Tokenizers

• Parameter Efficient Tuning

• Scaling Laws

109

	Default Section
	Slide 1: Deep Learning Transformer and Newer Architectures Dareen Alharthi, Hao Chen Spring 2025 Attendance:@964
	Slide 2: Content
	Slide 3: Content
	Slide 4: Why Transformer?
	Slide 5: But…Why Transformer?
	Slide 6: Transformer Architecture
	Slide 7: Transformer Architecture
	Slide 8: Transformer Architecture
	Slide 9: Transformer Architecture
	Slide 10: Transformer Architecture
	Slide 11: Tokenization
	Slide 12: Transformer Architecture
	Slide 13: Embedding
	Slide 14: Embedding Layer
	Slide 15: Embedding Layer is a Linear Layer
	Slide 16: Transformer Architecture
	Slide 17: Self-Attention
	Slide 18: Self-Attention
	Slide 19: Self-Attention
	Slide 20: Self-Attention
	Slide 21: Self-Attention
	Slide 22: Multi-Head Self-Attention
	Slide 23: Multi-Head Attention
	Slide 24: Attention Masking
	Slide 25: Attention Masking
	Slide 26: Cross-Attention
	Slide 27: Cross-Attention
	Slide 28: Transformer Architecture
	Slide 29: Position Encoding
	Slide 30: Position Encoding
	Slide 31: Position Encoding
	Slide 32: Position Encoding
	Slide 33: Transformer Architecture
	Slide 34: Feed-Forward Block
	Slide 35: Transformer Architecture
	Slide 36: Residual and Normalization
	Slide 37: Position of Normalization
	Slide 38: Transformer Architecture
	Slide 39: Putting Them Together - Transformer
	Slide 40: Poll @967
	Slide 41: Poll @967
	Slide 42: Content
	Slide 43: Overview
	Slide 44: Overview
	Slide 46
	Slide 47: Encoder-Decoder - T5
	Slide 48: Encoder-Decoder - T5
	Slide 49: Encoder-Only - BERT
	Slide 50: Pre-training and then Fine-Tuning
	Slide 51: Decoder-Only - GPT
	Slide 52: Large Language Model
	Slide 53: Overview
	Slide 54: Absolute Position Encoding
	Slide 55: Relative Position Encoding
	Slide 56: Relative Position Encoding
	Slide 57: Rotary Position Encoding
	Slide 58: Rotary Position Encoding
	Slide 59: Rotary Position Encoding
	Slide 60: Overview
	Slide 61: Quadratic Complexity
	Slide 62: Linear Attention
	Slide 63: Flash Attention
	Slide 64: Flash Attention
	Slide 65: Flash Attention
	Slide 66: Flash Attention
	Slide 67: Flash Attention
	Slide 68: Flash Attention
	Slide 69: Flash Attention
	Slide 70: KV- Caching
	Slide 71: Multi and Grouped Query Attention
	Slide 72: Multihead Latent Attention
	Slide 73: Poll @968
	Slide 74: Poll @968
	Slide 75: Content
	Slide 76: Transformer in Vision and Audio
	Slide 77: Overview
	Slide 78: Overview
	Slide 79: Vision Transformer (ViT)
	Slide 80: CNN
	Slide 81: ViT
	Slide 82: ViT
	Slide 83: Image Classification
	Slide 84
	Slide 85: Overview
	Slide 86: Transformer in Audio
	Slide 87: Conformer
	Slide 88: Overview
	Slide 89: Tokenizers
	Slide 90: Poll @965 and @966
	Slide 91: Poll @965 and @966
	Slide 92: Content
	Slide 93: Parameter Efficient Tuning
	Slide 94: Overview
	Slide 95: Parameter Efficient Tuning
	Slide 96: Prefix Tuning
	Slide 97: Prompt Tuning
	Slide 98: Adapter
	Slide 99: LoRA
	Slide 100: Parameter-Efficient Tuning
	Slide 101: Content
	Slide 102: Scaling Laws
	Slide 103: “Magic” of Transformer - Scaling
	Slide 104: Scaling Law
	Slide 105: Scaling Law
	Slide 106: Scaling Law
	Slide 107: “Emergent” Capability
	Slide 108: In-Context Learning
	Slide 109: We learned…

