Large Language Models

& the Compound Al Systems they enable us to build

Guest Lecture for CMU 11-785 Introduction to Deep Learning (Spring 2025)

Omar Khattab

Mar 26, 2024

Adapted from material by Bhiksha Raj, Rita Singh, Chris Manning, Anna Goldie, John Hewitt, Tatsu Hashimoto, Yann Dubois, Archit
Sharma, Jesse Mu, Nathan Lambert, Michael Ryan, and Krista Opsahl-Ong.

It’s never been easier to prototype
impressive Al assistants & demos.

When was Stanford University founded?

Parallelize this loop for me with 16 threads.

Stanford University was founded in 1891. It was nai
[code here]

California governor who donated the land and fund

located in Stanford, California, near Palo Alto. , , , ,
To parallelize this loop with 16 threads, you can use the concurrent.futures module in Python,

specifically the ThreadPoolExecutor class. Here is an example of how to do it:

D Copy code

from concurrent import ThreadPoolExecutor

import tqdm

How deep learning got us to this stage — an outline

1. Neural Language Models: Using Transformers to model language and for autoregressive decoding.
2. Pre-Training: Giving the LMs broad knowledge of language, the world, and maybe some “reasoning”.
3. Post-Training for Alignment: Teaching assistants behavior to LMs: instruction-following, safe, etc.

4. RL* for Verifiable Tasks: Teaching the LMs how to solve math, programming, and similar problems.

*Reinforcement Learning

5. Compound Al Systems: Composing LM skills into modular systems (or agents) that use tools, scale

computation at inference time, and optimizing their prompts or weights for specialized downstream tasks.

Neural Language Models: Using Transformers for autoregressive decoding.

Transformer Architecture

e In the previous lecture, we learned about Transformers. * Word Tokenization

* Word Embedding

* (Masked) Multi-Head Attention
e Recap: Autoregressive decoding. " Position Encoding

* Feed-Forward

* Add & Norm
1. Tokenize the input prompt. B

2. Forward Pass: Computes attention keys/values for all tokens in prompt and cache theﬂrr‘\.

3. Autoregressive Generation Loop, until termination (e.g., EOS token):
a. Computes attention keys/values for new token. Reuse cached computations for prefixes.
b. Sample the next token from the output logits.

c. Append the new token to the sequence and update the cache accordingly.

This pattern can capture a lot of tasks. How do we train a Transformer to be able to do this well?

We’ll focus on decoders, but encoders are still the backbone of many
applications, like information retrieval!

Save term weights to
the inverted index

N\

Compute sum of
scores for the
matching terms!

=

1/

\
0
\

J

Lookup term
weights from
inverted index

\V/
"\

N/

Query Document Query Document
(a) Learned Term Weights (b) Representation Similarity (c) Query—-Document Interaction
+ Independent Encoding + Independent, Dense Encoding +/ Fine-Grained Interactions

X Bag-of-Words Matching X Coarse-Grained Representation X Expensive Joint Conditioning

Pre-Training: Giving the LMs broad knowledge by training

e On broad Web data — massive Web crawls, but with aggressive filtering and cleaning

e Via the task of Language Modeling, or next word prediction
o P(w_tIw_{1:1t-1}) with a standard classification cross-entropy loss

Composition of the Pile by Category

* Academic * Internet = Prose * Dialogue * Misc

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END ©/®8

Iroh goes to make tasty tea ... the movie was ...

Why does such pre-training on broad data help? Perhaps it helps the gradients flow better

during fine-tuning. Or maybe SGD likes to stick close to initialization parameters, so finding
a local minima during fine-tuning gives us parameters that would generalize well.

Illustration from CS224N Slides by Chris Manning et al.

What does pre-training teach a Transformer? It builds strong representations of

language and gives us a broad foundation that we can adapt to downstream tasks!

e Stanford University is located in , California. [Trivia]

 |put___ fork down on the table. [syntax]

 The woman walked across the street, checking for traffic over ___ shoulder. [coreference]
* | went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

* Overall, the value I got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was ___. [sentiment]

* Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning — this is harder]

* | was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonacci sequence]

Scaling helps: 100s of billions of parameters, trained on trillions of tokens.

Scaling predictably follows empirical patterns, which can help us make informed

choices — by tuning our hyperparameters at small scale.

Fundamental tradeoffs: Given a fixed budget for
pre-training compute (# of GPU-days), should
you increase parameters or tokens seen?

What if you want to minimize *total* compute,
including inference, instead?

Scaling Law

For decoder-only models, the final performance is only
related to Compute, Data Size, and Parameter Size

— power law relationship for each factor

— w/o constraints by the others

4.2

\ 3.9
36
3 33

L= (Cmin/2.3 - 108)-0.050

L=(D/5.4-1013)-0.095 —— L=(N/8.8-10'3)70070

w A g o N

Test Loss

foo 107 10° 10 10 100 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

99

Emergent Behavior: Scaling (appears) to also create “sudden” jumps
like the capacity for In-Context Learning.

—e—LaMDA —s— GPT-3 —4— Gopher —#A— Chinchilla —@—PaLM - -- Random

(A) Mod. arithmetic (B) IPA transliterate

(C) Word unscramble (D) Persian QA
50 50 50 50
Q® 40 IS IS
s . . < IS
Traditional fine-tuning B @ w0 Boor]
g 20 22 E 20 g 20
g = =
"
1 sea otter => loutre de mer <0 10 510 2 510
0 0 0f -—ememn®®. ...

0
N2 108 1020 1022 10%4 1018 1020 1022 10%¢ 10'8 1020 1022 10%4 1018 1020 1022 1024
gradient update
N2

(E) TruthfulQA (F) Grounded

(G) Multi-task NLU (H) Word in context
70 70 70 70
60 60 60 60
& 50 & 50 & 50 & 50 -ﬂ-ap.é
1 peppermint => menthe poivrée ¢ %40' S 40 i 540
s |\ < . =21 /008 le-dgimpgl ...

> > 40
£ 30 i £ 20 £ 30 . £ 20
N <':820 S e gzo ___________ gzo §20
10 ,
gradient update
N4

10 = 10
Few-shot

0
Model scale (training FLOPs)
2

1020 1022 1024
Translate English to French:
1 cheese => ¢

sea otter => loutre de mer

1020 1022 1024 1020 1022 1024 1020 1022 1024

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese =>

Wei et al. (2020) 9

Emergent Behavior: Scaling (appears) to also create “sudden” jumps

like the capacity for Chain-Of-Thought Reasoning.

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?)

A: The answer is 27. x)

Chain-of-Thought Prompting

BT

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have? J
answer is9.

N s D
o o o

GSM8K
solve rate (%)

o

SVAMP
solve rate (%)

N B O
o O o o o

100

MAWPS
solve rate (%)
N Ot 3
o ot © O

—— Standard prompting
—6— Chain-of-thought prompting
- = = Prior supervised best

LaMDA GPT PalLM

04 8 137 04 7 175 8 62 540

Model scale (# parameters in billions)

Wei et al. (2022)

Post-Training: Teaching the LMs how to behave as assistants that are

instruction-following, safe, etc. How should we do that?
One approach is Instruction Fine-Tuning: labeling examples of <prompt, response>
pairs that spans many tasks and training on them.

/—[Model input]ﬁ /—[PaLM 540B output]—\ /—[Flan-PaLM 540B output]ﬁ

The square root of x is the cube root of y. What is y Q. The square root of x is the cube root of y. What is y to 64 @
to the power of 2, if x = 4? the power of 2, if x = 8?

Q. The square root of x is the cube root of y. What is y to

the power of 2, if x = 12? | >

Q. The square root of x is the cube root of y. What is y to
the power of 2, if x = 167

¥ (keeps asking more questions)

\ AN J \ J

Instruction finetuning

Please answer the following question.
What is the boiling point of Nitrogen?

Chain-of-thought finetuning

Answer the following question by

reasoning step-by-step. The cafeteria had 23 apples

originally. They used 20 to
1 make lunch. So they had 23 -

fl
/ 20 = 3. They bought 6 more
apples, so they have 3+ 6 =9.

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

Unfortunately, this is expensive and unscalable. It also doesn’t

quite teach the right thing for longer or open-ended generation:
poor credit assignment, encourages hallucination, etc.

Multi-task instruction finetuning (1.8K tasks) //

computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation

\
\
- L.
Inference: generalization to unseen tasks | \\
\
{togelher. So the answer is “no”.

Q: Can Geoffrey Hinton have a /
conversation with George Washington?

Geoffrey Hinton is a British-Canadian
Give the rationale before answering.

Chung et al. (2022)

As an alternative, what if we allow models to learn from trial and error?
Use our best models to sample responses and rely on human preferences as
sources of rewards. This is called Reinforcement Learning from Human Feedback.

Step 1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data and

train a reward model.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A promptis ’-':.'1 A prompt and ,.3 A new prompt is W 3
sampled from our Exolalnel several model . & sampled from Write a story
plain reinforcement Explain reinforcement the dataset. A Boutoters)
prompt dataset. learning to a 6 year old. outputs are learning to a 6 year old. ¢
¢ sampled. +
The PPO model is .o
Alabeler @ initialized from the .@,
demonstrates the supervised policy. o ¢
desired output 4 I
beh avior. We give treats and

punishments to teach...

A labeler ranks the
outputs from best

The policy generates
an output.

.SFT. to worst. 0°0-0°0
This data is used to N\ The reward model RM
. N 7 . _0O
fine-tune GPT-35 Y ‘ calculates a reward N
with supervised Z for the output. W
learning.)
EEE Ihipcalnisgses 0/.)?5{\0 The reward is used *
:gvtvr:rlg r%ugdel e to update the r
' 0-60-0-0 policy using PPO. ls

OpenAl (2022)

RLHF relied on a reward model to represent human preferences.
A simpler, orthogonal direction that has received renewed attention recently are
“verifiable rewards”, i.e. using rules to check model output.

Ground Truth RL

Ground Truth
Reward ——

- 1 if correct
~ |0 otherwise

S; [Agent a;

0t+1 = 9t + C!V(}J(ﬂ'g)

Al Lambert, Nathan etal. 2024. Tilu 3.
#A2 Lambert - Post-training Tutorial ©4

This became really popular starting with o1, r1, 03-mini, Gemini Thinking, etc. The
underlying ideas are pretty old. What changed?

Pretrained LLMs have gotten robust enough and developed (or were endowed with!)
“cognitive/reasoning behaviors” that we can rely on for successful RL exploration.

A contrast in behaviors explored by the two models @ 00
12 12
Verifications Subgoal Setting /A - htions il
“Let me check “Let's try to getto a El ot £” L o S
my answer ..." multiple of 10” § . 9%
5 oy
@, ®, no behaviors shown
Backtracking Backward Chaining =5 =
“Let’s try a different “Working backwards, 24 o Sl encken.ce Sh .
approach, what if we ...” is 8 times 3” 0 50 100 150 200 250 0 50 100 150 200 250

RL steps RL steps

Kanishk Gandhi et al. (2025)

It’s never been easier to prototype
impressive Al assistants & demos.

When was Stanford University founded?

Parallelize this loop for me with 16 threads.

Stanford University was founded in 1891. It was nai
[code here]

California governor who donated the land and fund

located in Stanford, California, near Palo Alto. , , , ,
To parallelize this loop with 16 threads, you can use the concurrent.futures module in Python,

specifically the ThreadPoolExecutor class. Here is an example of how to do it:

D Copy code

from concurrent import ThreadPoolExecutor

import tqdm

Turning monolithic LMs into reliable Al
systems remains challenging.

When was Stanford University founded?

Parallelize this loop for me with 16 threads.

| Stanford University was founded in 1891.Jit was nar
California governor who donated the land and fund

[code here]

located in Stanford, California, near Palo Alto. , _ _ ,
To parallelize this loop with 16 threads, you can use the concurrent.futures module in Python,

specifically the ThreadPoolExecutor classjHere is an example of how to do it:

D Copy code

from concurrent import ThreadPoolExecutor

import tqdm

Air Canada must pay damages after chatbot lies
to grieving passenger about discount

Airline tried arguing virtual assistant was solely responsible for its own actions

17

Every Al system will make mistakes.

But the monolithic nature of LMs
makes them hard to control, debug,
and improve.

To tackle this, Al researchers increasingly
build Compound Al Systems,

i.e. modular programs that use LMs as
specialized components

19

Compound Al Systems, i.e. modular programs that use LMs as specialized components
Example: Retrieval-Augmented Generation

comvi:ztnds The stomach s
1thi protected by
= =
p;?t:::if,:e M 0n0|.|th ic LM gastric acid and
sygstem7 proteases.

Transparency: can debug traces & offer user-facing attribution

Efficiency: can use smaller LMs, offloading knowledge & control flow

20
Literature: DrQA (Chen et al., 2017), ORQA (Lee et al., 2019), RAG (Lewis et al., 2020), ColBERT-QA (Khattab et al., 2020)

Compound Al Systems, i.e. modular programs that use LMs as specialized components
Example: Multi-Hop Retrieval-Augmented Generation

=S
T
c
—

ir

(,Query FLIPR Two-Stage _ IE\
- Retriever Condenser Coridenisad Facts
' o l |

| Updated Query, Q,

s D T T
| Passages N

No,t<T
Task-Specific Reader = Prediction

Baleen T-Hop
Retriever

Control: can iteratively improve the system & ground it via tools

21
Literature: GoldEn (Qi et al., 2019), DecompRC (Min et al., 2019), MDR (Xiong et al., 2020), Baleen (Khattab et al., 2021)

Compound Al Systems, i.e. modular programs that use LMs as specialized components
Example: Com positional Report Generation, je. brainstorming an outline, collecting references, etc.

Table of contents

Background and Motivation
Question q © Understanding Contextual Embeddings

“The TOpiC t Late Interaction in Information Retrieval
ColBERT @ Survey

°
/\ @ Split Queries o Visual and Cognitive Inspiration
Wikipedia : o Influence of BERT
i » ! 0 earch & Sift
retrlever Writer Expert ® e & o Challenges and Innovations
|:> EE | 4 @ Synthesize |:> o Emergence of Alternative Approaches
— I @ Read & Ask : * ColBERT Architecture

@ Identify
Perspectives

Related Articles | I Answer a \ ° Overview
I I ‘\ o Late Interaction Mechanism
_________ ‘\ Add Trusted © Model Components and Training
Add Spedﬁc Perspective ‘ Gather Na Sources © Advancementsin ColBERTv2
@ Direct Generate A * Training ColBERT
Draft Outline Op Conversations {Cy, ..., Cy} Al o Initial Training

Refine o Retrieval and Ranking

E o Refinement with Naive Retrievers
| Outline O | o Iterative Training
—_— References R © Leveraging Cross-Encoders

© Fine-Tuning and Distillation

* Advancements in Retrieval Efficiency and Accuracy

o Efficiency in Late Interaction Retrieval

Quality: more reliable composition of better-scoped LM capabilities

22
STORM: Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models (Shao et al., 2024)

Compound Al Systems, i.e. modular programs that use LMs as specialized components

Pre-processing

Generate
! Rank
Possible Solutions
Solutions
. Generate
Problem Public Tests Additional Al —
Reflection Reasoning Tests

Input -
Problem
Description +
Public Tests

Code iterations

A4
Iterate on Iterate on Al :
Public Tests Tests i
Initial Code | : Final
Solution : Solution
A

..
Table singer, columns = [singer_ID, ...]
: Table concert, columns = [concert_ID, ...]:

Q: “What are the names of the singers
who are not French citizens?”

SQL generation

)

Select name from singer :
: Where Citizenship!= ‘French’ :

_ J

:{ Self-correction \

+ Task-agnostic prompting strategies, e.g. Best-of-N,

Chain Of Thought, Program of Thought, ReAct,

Reflexion, Archon, ...

Inference-time Scaling: systematically searching for better outputs

Literature: AlphaCodium (Ridnik, 2024), DIN-SQL (Pourreza & Rafiei, 2023), RARR (Gao et al., 2023), and many others

23

Unfortunately, LMs are highly sensitive to how they’re
instructed to solve tasks, so under the hood...

J.5. Object Counting

" 1100CC . S il 1100 L,'\AU..L,_,‘.‘»:

vegetables_to_count = {
‘potatots 2,
'cauliflower': 1

} Blame 1 lines (1 loc) - [FeMMeEN:

pri

1 {"react_put_0": "You are in the middle of a room. Looking quickly

musy

[5111 mEp-am—
YElare' s 1,
'clarinet': 1,
24 vielin!: 1,

'acocaordion ' . 4

Unfortunately, LMs are highly sensitive to how they’re
instructed to solve tasks, so under the hood...

Each “prompt” couples five very different roles:
1. The coreinput- output behavior, a Signature.
The computation specializing an inference-time strategy to the signature, a Predictor.

The computation formatting the signature’s inputs and parsing its typed outputs, an Adapter.

2
3
4. The computations defining objectives and constraints on behavior, Metrics and Assertions.
5

The process of finding the strings & weights that teach LMs desired behavior, an Optimizer.

Existing Compound Al Systems are modular in principle, but are too “stringly-typed”:
they couple the fundamental system architecture with incidental choices
not portable to new LMs, objectives, or pipelines.

‘;
e 1y
" “~~rAarAdin T o

We know how to build controllable
systems & improve them modularly.

That is called...

What if we could abstract Compound Al Systems

as programs with fuzzy natural-language-typed
modules that learn downstream behavior?

26

DSPy

Pre-processin Code iterations ,—W
e T LM program @ : X —), with X and) in natural language.
Problem *‘E In the course of its execution, ® makes calls to modules (M, ..., M),y). p—
irst series
_ . _ . bor 2014,
Each module M; : X; —)Y; is a declarative LM invocation, defined via o
hbetween.
inherently fuzzy natural-language descriptions of: (1) a sub-task D! (optional), Stk
N—— _ _ _ e
e (2) input domain type(s) D:, and (3) output co-domain type(s) D, . A

Q: “What are the names&
H who are not French citi

oetween
- premiered on 24 L, premiered on 1 L premiered on 1

October 2014

| February 2014 October 2014
on CBBC. on CBBC. on CBBC.
Input Passage X Output Passage)
J

'
) 4

fact_checking = dspy.ChainOfThought('claims —> verdicts: list[bool]')
fact_checking(claims=["Python was released in 1991.", "Python is a compiled language."])

Prediction(

reasoning="'The first claim states that "Python was released in 1991," which is true.
Python was indeed first released by Guido van Rossum in February 1991. The second claim s
tates that "Python is a compiled language." This is false; Python is primarily an interpr
eted language, although it can be compiled to bytecode, it is not considered a compiled 1
anguage in the traditional sense like C or Java.',

verdicts=[True, Falsel

)

For each module M;, determine the:

1. String prompt II; in which inputs &; are plugged in.
2. Weights ©; assigned to the LM.

in the optimization problem defined by:

1
arg max —— Z w(®eo n(x),m)
onm |X| i
(z,m)eX
given a small training set X = {(z1,m1),..., (x|, m|x)))}

and a metric ¢ : Y X M — R for labels or hints M.

This is hard. We may not have gradients or intermediate labels

to optimize each module! How should we go about this?

As an example, let’s say we wanted to build this simple
pipeline for multi-hop retrieval-augmented generation

SN N
def multihop_ga(question:str)

How can we translate these
into high-quality prompts?

for i in range(2):

question
context

query = (

context =

question
context

30

First, modules are translated into basic prompts
using Adapters and Predictors.

self.generate_query =| dspy.ChainOfThought("context, question -> query")

dspy.Adapter(self.generate_query) ‘ Predefined Adapters are used to
translate modules into basic prompts

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:

Context: <context>

Question: <question>

Reasoning: Let’s think step by step to <..>
Query: <query>

31

Then, Prompt Optimizers (or RL) can tune the modules
i.e., tune the prompts and/or weights for all modules in your program

Given the fields “context” and “question”, respond with the field “query”.

Follow the following format:

Context: <context>

Question: <question>

Reasoning: Let’s think step by step to <..>
Query: <query>

Program Score: 37%

optimizer = MIPROv2(metric=..., trainset=...)
optimized_program = optimizer.compile(program)

Carefully read the provided ‘context’ and "question . Your task is to formulate a concise
and relevant ‘query that could be used to retrieve information from a search engine to
answer the question most effectively. The "query should encapsulate...

Follow the following format:

Context: <context>

Question: <question>

Reasoning: Let’s think step by step to <..>

Query: <query>

Here are some examples: <...> Program Score: 55% 39

Instead of tweaking brittle prompts...

Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and
Action can be three types:

(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar
entities to search.

(2) Lookup[keyword], which returns the next sentence containing keyword in the current passage.

(3) Finish[answer], which returns the answer and finishes the task.
Here are some examples. SCO res

i Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny exteng

Thought 1: | need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogé 0
elevation range of the area. 0

Action 1: Search[Colorado orogeny]
Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and
Thought 2: It does not mention the eastern sector. So | need to look up eastern sector.

Action 2: Lookup[eastern sector] W|th G PT'3.5
Observation 2: (Result 1/ 1) The eastern sector extends into the High Plains and is called the Central Plg

on a multi-hop
O QA task _

99

Multi-Hop Retrieval-Augmented Generation (HotPotQA)

Program Optimized GPT 3.5 Llama2-13b-Chat

34

Multi-Hop Retrieval-Augmented Generation (HotPotQA)

Program Optimized GPT 3.5 Llama2-13b-Chat
dspy.Predict("question -> answer") |)¢ 34.3 27.5

X 36.4 34.5
dspy.RAG (with CoT)

V| 42.3 38.3

) ¢ 36.9 34.7
MultiHop

4 54.7 50.0

Compiling MultiHop into a (T5-770M) with

dspy.BootstrapFinetune, starting from 200 answers, scores

35

Optimizing Instructions and Demonstrations
for Multi-Stage Language Model Programs

Krista Opsahl-Ong!*, Michael J Ryan'*, Josh Purtell?,
David Broman®, Christopher Potts', Matei Zaharia!, Omar Khattab'

IStanford University, *Basis, ’KTH Royal Institute of Technology “UC Berkeley

Slides adapted from

Krista Opsahl-Ong & Michael Ryan

Fine-Tuning and Prompt Optimization:
Two Great Steps that Work Better Together

Dilara Soylu Christopher Potts Omar Khattab

Stanford University

GROUNDING BY TRYING: LLMS WITH REINFORCE-
MENT LEARNING-ENHANCED RETRIEVAL

Sheryl Hsu!, Omar Khattab'2, Chelsea Finn'?® & Archit Sharma'*
IStanford University,?Databricks,’Physical Intelligence,*Google DeepMind
{sherylh, architsh}@stanford.edu

Problem Setting

Training/ Validation / Optimized LM Program P \

Inputs:

Outputs:

om Em Emm Emm o o o Em EE o o =y,

Input
]

Metric

+ il

Question: The Victorians is a documentary series written by an author born in what year?

for i in range(2): *

query =

context.append(,O retrieve “search_query”)

answer =

S

—-— e o e e o .y,
- e e s e e

Given the question and context passages, generate the correct answer.

Context: [1] The Victorians - Their Story In Pictures is
[2] Jeremy Dickson Paxman (born 11 May 1950) is an English...
Rationale: The Victorians was written by Jeremy Paxman. Jeremy Paxman was born—-e—LQL0
Answer: 1950 Few-Shot

Examples

\\Suestion: Which actor played in both..

Constraints / Assumptions

1. No access to log-probs or model weights: Developers may want to
optimize LM programs for use on APl only models.

2. No intermediate metrics / labels: We assume no access to manual
ground-truth labels for intermediate stages.

3. Budget-Conscious: We want to limit the number of input examples
we require and the number of program calls we make.

1. Bootstrap Few-shot

Methods 2. Extending OPRO

3. MIPRO

1. Bootstrap Few-shot

» Bootstrap Few-shot examples with simple rejection

Bootstrap Few-Shot Examples

O. Khattab, A. Singhvi, P. Maheshwari, Z. Zhang, K. Santhanam, S. Vardhamanan, S. Haq, A. Sharma, T. T. Joshi, H. Moazam, H. Miller, M.
Zaharia, C. Potts “DSPY: COMPILING DECLARATIVE LANGUAGE MODEL CALLS INTO SELF-IMPROVING PIPELINES”

Bootstrap Few-Shot Examples

oo
for i in range(2):

query = ,J"‘ ‘

context.append(,O retrieve “search_query”)]

answer =

Bootstrap Few-Shot Examples

Training Input

oo
for i in range(2):

|

context.append(,O retrieve “search_query”)]

answer =

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

,—:> query = e ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

|

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

- query = ‘ Sue ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

|

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

|

,—:> query =‘ . ‘ f ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Bootstrap Few-Shot Examples

Training Input

Metric
o0

for i in range(2):

|

,—:> query =‘ . ‘ f ‘ |:>
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Bootstrap Few-Shot Examples

Training Input

—

|

Metric
o0

for i in range(2):

b] “search query” | =)
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Search Query Output 2

Bootstrap Few-Shot Examples

Training Input

—

|

Metric
o0

for i in range(2):

b] “search query” | =)
context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1

Search Query Output 2

Bootstrap Few-Shot Examples

Training Input Metric

7 “context, question->
—> G search query” —>

|

2 “context, question->
‘ answer”

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input Metric

7 “context, question->
—> G search query” =)

|

2 “context, question->
‘ answer”

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input Metric

7 “context, question->
—> G search query” —>

|

2 “context, question->
‘ answer”

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input Metric

ad || K<

oo
for i in range(2):

— query = frf Eivarsmebeiitg]

|

context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1
Search Query Output 2

Answer Output

Bootstrap Few-Shot Examples

Training Input

—

|

Task
Demonstration <
Candidate

oo
for i in range(2):

query = ‘ - 7 ‘ ; ‘

context.append(,O retrieve “search_query”)]

answer =

Search Query Output 1
Search Query Output 2

Answer Output

Metric

ad || K<

Bootstrap Few-Shot (w/ Random Search)

Training Input

—

|

Task

Metric

ad || K<

Search for the best set
using random search!

oo
for i in range(2):

query = [ieh 7‘ |

context.append(,O retrieve “search_query”)]

answer =

T pre—p—

Search Query Output 1

Demonstration < Search Query Output 2 /

Candidate

Answer Output

Bootstrap Few-Shot (w/ Random Search)

//;iven the context passages and a question, generate the correct answer.

Context: [1] The Victorians - Their Story In Pictures is ...

[2] Jeremy Dickson Paxman (born 11 May 1950) is an English...
Question: The Victorians is a documentary series written by an author born in what year?
Rationale: The Victorians was written by Jeremy Paxman. Jeremy Paxman was born in 1950.

Answer: 1950

\\;..

Search Query Output 1
Task

Demonstration < Search Query Output 2
Candidate

Answer Output

2. Extending OPRO

» Extend existing instruction opt. method (OPRQ) to multi-stage

What is OPRO? Optimization through Prompting

Prompt Proposals

“Think step by step”

“Take a deep breath
and think step by step”

“Carefully solve the
problem”

“Let’s do the math”

“Proposer LM”

Evaluate

Given prompts/scores
propose more prompts.

“Think step by step”
Score: 31

“Take a deep breath and
think step by step”
Score: 42

C. Yang*, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, X. Chen* “Large Language Models as Optimizers”

Initial extension to multi-stage: CA-OPRO

Coordinate-Ascent OPRO

. Iterate D times .

In a given iteration, optimize each prompt sequentially.

PromptOpt
Subroutine

This is expensive to run...

O(NxD*xM)
=

4

F1=18

Module-Level OPRO

Module-Level OPRO

Key Idea: Coordinate-Ascent was expensive, maybe we don’t need explicit
credit assignment? Let’s just change both prompts at a time in parallel!

>
E

Given a question generate a search query

E

Given the context answer the question

:
|
|

I
> =2
=

-

~

Given a question generate a
comprehensive search query that will

retrieve pertinent information.

:f}
> ==
=

=

Score: 30 J

(.

Given the context answer the question by
identifying the relevant information and
providing a concise response

T
|

Score: 30

LM Program
-

\

Updated LM Program

)

Score: 30

Finally, Grounding!

L

(History of Instructions and h
Scores (and static task
S demos))

4)

Training set examples
(input/output pairs from

Y training set))

Proposer LM

7 | [New Instruction]

Finally, Grounding!

L

(History of Instructions and h
Scores (and static task
S demos))

4)

Training set examples
(input/output pairs from

Y training set))

Proposer LM

7 | [New Instruction]

Finally, Grounding!

(History of Instructions and h
Scores (and static task
L demos))

()

Bootstrapped demos
demos for a particular

L module in program)

7 | [New Instruction]

Bootstrapped demo example:

Question: The Victorians - Their Story In
Pictures is a documentary series written
by an author born in what year?

Reasoning: Let's think step by step in
order to find the search query. We need
to find the author's birth year. We can
search for the author's name along with
the phrase "birth year" or "birthday" to
get the desired information.

Search Query: "author of The Victorians
- Their Story In Pictures birth year" or
"author of The Victorians - Their Story In
Pictures birthday"

Finally, Grounding!

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

(History of Instructions and h
Scores (and static task
L demos))

4)

Bootstrapped demos
demos for a particular

L module in program)

7 | [New Instruction]

Dataset summary example:

"The dataset consists of
factual, trivia-style
questions across a wide
range of topics, presented in a
clear and concise manner.
These questions are likely
designed for use in trivia
games..”

Finally, Grounding!

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

(History of Instructions and h
Scores (and static task
L demos))

4)

Bootstrapped demos
demos for a particular

L module in program)

-

’

Summary of a Reflexive
View of the LM Program

Code itself

7 | [New Instruction]

Program Summary example:

“The program code appears to
be designed to answer
complex questions by
retrieving and processing
information from multiple
sources or passages. In this
case, the program is set up for
two hops, ... The module
‘self.generate_query’ in this
program is responsible for
generating a search query
based on the context and
question provided.”

Finally, Grounding!

Tip for instruction generation
(be creative, be succinct, etc.)

Dataset Summary (Loop
over the data and use an
LLM to write a summary)

(History of Instructions and A
Scores (and static task
L demos))

4)

Bootstrapped demos
demos for a particular

L module in program)

-

7

Summary of a Reflexive

View of the LM Program

Code itself

o | [New Instruction]

Tip example:

“Don’t be afraid to be creative
when generating the new
instruction”

“Keep the instruction clear and
concise."

“Make sure your instruction is
very informative and
descriptive."

1. Bootstrap Few-shot

Methods 2. Extending OPRO

3. MIPRO

« Co-optimize instructions & few-shot examples efficiently

MIPRO works in 3 steps:

Multi-prompt Instruction PRoposal Optimizer

Prompt
Proposal

Credit
Assignment

Step 3: Optimize with Bayesian Learning

L

Set of instructions / fewshot

candidates for each module: |

Bayesian
Opt.

LM Program

[Basic Instruction

[N/A

[Basic Instruction]

[N/A

]

)
]

J

Step 3: Optimize with Bayesian Learning

L

LM Program

Trial 1

e
Score: 75%

Bayesian
Opt.

Evaluate on

minibatches of data to
learn efficiently!

Step 3: Optimize with Bayesian Learning

LM Program

Trial 2

-
Score: 50%

Bayesian
Opt.

Step 3: Optimize with Bayesian Learning

LM Program

Trial 3

e
Score: 80%

Bayesian
Opt.

Step 3: Optimize with Bayesian Learning

LM Program

4)

Bayesian
Opt.

v
" oemoseczn |

S J

Step 3: Optimize with Bayesian Learning

L

LM Program

CEWCNET :
Opt. Every N trials, evaluate

on our full val set!

Step 3: Optimize with Bayesian Learning

Bayesian
Opt.

LM Program

-

" insmictonze_ |
" oemoserza |

J

Score

Trial=N
—:—
Score: 45%

Trial

Step 3: Optimize with Bayesian Learning

L

Bayesian
Opt.

LM Program

v
" oemoserz. |

-

J

Score

Return LM Program
with best score!

Trial

That works well in practice...

e May’24: U of Toronto researchers won the MEDIQA competition via DSPy.

e Jun’24: U of Maryland researchers ran a direct case study.

Rank Team Error Sentence Detection Accuracy — =
earn Prompting
1 WangLab 83.6% @ @learnprompting
& EM_Mixers 64.0%))
3 knowlab_AIMed 61.9% @'We also put our expert prompt engineer against an Al prompt
4 hyeonhwang 61.5% aRmest
S Edinburgh Clinical NLP 61.1% Expert human prompt engineer, @sanderschulhoff faced off against
6 IryoNLP . 61.0% @lateinteraction's DSPy on a labeling task.
7 PromptMind 60.9%
8 MediFact 60.0% DSPY outperformed our expert Human Prompt Engineer by 50% on our
9 IKIM 59.0% test set and saved over 20 hours!
10 HSE NLP 52.0%

78

... and has enabled many SoTA systems

like PATH (Jasper Xia, UWaterloo); IReRa (Karel D’Oosterlink, UGhent), STORM (Yijia Shao, Stanford), EDEN & PAPILLON (Siyan

Li, Columbia), Efficient Agents (Sayash Kapoor, Princeton), ECG-Chat (Yubao Zhao, Beijing Normal U), ...

Questiqn q
@ ldentify - :
@ Survey Perspectives @ Split Queries
{ W'k'ped'a @ Expert |® Search & Sift
»(Writer
T / / (® Synthesize
| @ Read & Ask |) - L
Related Articles | | Answer a ‘\

Add Specific Perspective

\
\\ Add Trusted
. Sources

‘ Gather

@ Direct Generate

(oot ot e oo | I

Draft Outline Op |
L = 7l l Refine

\\
Conversations {Cy, ..., Cy} | Al

Outline O

=

References R

Doc

Propose/v

Prompt

Optimizer

o

Prompts and validation
scores

4. Update and Optimize

1. Generate Synthetic
Training Data with LM

2. Train Reranker

Reranker

X

Finetuned

Relevance /
Ranking

Validate reranker on 10

relevance judgements

Reranker

Development
Retrievals

abstract module 1

@ input

Learning

In-Context ' queries

EE Elj knowledge base
~L abstract module 2
A S re-ranked
Frozen | documents ' In-Context documents St
Retriever : Learning

n iterations

79

DSPy makes it possible to program LMs

Hand=-writterprompts = Signatures
trference-teehniguesandpromptehatrs— = Modules

ga = dspy.Predict("question -> answer")
mt = dspy.ChainOfThought("english_document -> french_translation")
rc = dspy.ProgramOfThought("contexts, question -> answer_found: bool")

Manuvatpremptengireerg = Optimizing program
Optimizer(metric).compile(proEFQHUpﬁé@@@%%?ts

80

