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Generative vs. Discriminative

ÅGenerative models learn the data distribution
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Generative Models
ÅLearning to generate data

3https://cvpr2022-tutorial-diffusion-models.github.io/ 
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Denoising Diffusion Models
Åwhat we often see about diffusion models
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Åwhat we often see about diffusion models
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Denoising Diffusion Models
Åwhat we often see about diffusion models
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Denoising Diffusion Models
Åwhat we often see about diffusion models

Åthis lecture: denoising diffusion is a stack of VAEs
14

Forward diffusion process Reverse denoising process



Recap: Variational Autoencoders

ÅVAEs: a likelihood-based generative model 
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Recap: Variational Autoencoders

ÅVAEs: a likelihood-based generative model 

ÅEncoder: an inference model that 
approximates the posterior 
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Recap: Variational Autoencoders
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Recap: Variational Autoencoders

ÅVAEs: a likelihood-based generative model 

ÅEncoder: an inference model that 
approximates the posterior 

ÅDecoder: a generative model that 
transforms a Gaussian variable z to real data

ÅTraining: maximize the ELBO
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Recap: Variational Autoencoders
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Decoder: transforms a Gaussian 
variable to real data
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Encoder: an inference model 
approximates the posterior, i.e. 
Gaussian

VAE
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ÅBlurry results

Kingma et al. Auto-Encoding Variational Bayes



Limitations of VAEs
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way to the target distribution in one-step 
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Limitations of VAEs
ÅDecoder must transform a standard Gaussian all the 

way to the target distribution in one-step 

ïOften too large a gap

ïBlurry results are generated

ÅSolution: have some intermediate latent variables to 
reduce the gap of each step
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Hierarchical VAEs
ÅHierarchical VAEs ς Stacking VAEs on top of each other
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Hierarchical VAEs
ÅHierarchical VAEs ς Stacking VAEs on top of each other

ïMultiple (T) intermediate latent

ïJoint distribution
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Hierarchical VAEs
ÅHierarchical VAEs ς Stacking VAEs on top of each other

ïMultiple (T) intermediate latent

ïJoint distribution

ïPosterior
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Hierarchical VAEs
ÅHierarchical VAEs ς Stacking VAEs on top of each other

ïMultiple (T) intermediate latent

ïJoint distribution

ïPosterior

ÅBetter likelihood achieved!
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Stacking VAEs

ÅEach step, the decoder removes part of the noise
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Stacking VAEs

ÅEach step, the decoder removes part of the noise

ÅProvides a seed model closer to final distribution
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Stacking VAEs

ÅEach step, the decoder removes part of the noise

ÅProvides a seed model closer to final distribution
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Stacking VAEs

Å²Ŝ Ŏŀƴ ƘŀǾŜ Ƴŀƴȅ Ƴŀƴȅ ǎǘŜǇǎ όƛƴ ǘƻǘŀƭ ¢ύΧ

ÅEach step incrementally recovers the final distribution
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Diffusion Models are Stacking VAEs
ÅDiffusion models are special cases of Stacking VAEs
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Diffusion Models are Stacking VAEs
ÅDiffusion models are special cases of Stacking VAEs

ÅThe reverse denoising process is the stack of 
decoders
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Diffusion Models are Stacking VAEs
ÅDiffusion models are special cases of Stacking VAEs

ÅThe reverse denoising process is the stack of 
decoders

ÅWhat about encoders?
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Diffusion Models are Stacking VAEs
ÅDiffusion models are special case of Stacking VAEs
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Diffusion Models are Stacking VAEs
ÅDiffusion models are special case of Stacking VAEs

ÅIn VAEs, encoders are learned with KL-divergence 
between the posterior and the prior

Å{ǳŦŦŜǊǎ ŦǊƻƳ ǘƘŜ ΨǇƻǎǘŜǊƛƻǊ-ŎƻƭƭŀǇǎŜΩ ƛǎǎǳŜ
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Diffusion Models are Stacking VAEs
ÅDiffusion models are special case of Stacking VAEs

ÅIn VAEs, encoders are learned with KL-divergence 
between the posterior and the prior

Å{ǳŦŦŜǊǎ ŦǊƻƳ ǘƘŜ ΨǇƻǎǘŜǊƛƻǊ-ŎƻƭƭŀǇǎŜΩ ƛǎǎǳŜ

ÅDiffusion models use fixed inference encoders
37
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Poll 1

Diffusion Modelsô reverse process is the stack of 

o VAE encoders

o VAE decoders
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Poll 1

Diffusion Modelsô reverse process is the stack of 

o VAE encoders

o VAE decoders
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Denoising Diffusion Models

ÅDiffusion models have two processes

ÅForward diffusion process gradually adds noise to 
input 

ÅReverse denoising process learns to generate data 
by denoising
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Forward Diffusion Process

ÅForward diffusion process is stacking fixed VAE encoders
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Forward Diffusion Process

ÅForward diffusion process is stacking fixed VAE encoders

ïgradually adding Gaussian noise according to schedule 
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Forward Diffusion Process

ÅForward diffusion process is stacking fixed VAE encoders

ïgradually adding Gaussian noise according to schedule 
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Forward Diffusion Process

44



Forward Diffusion Process
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Forward Diffusion Process

ÅThe forward process allows sampling of ὼ at 
arbitrary timestep ὸ in closed form:
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Forward Diffusion Process

ÅThe forward process allows sampling of ὼ at 
arbitrary timestep ὸ in closed form:

ÅThe noise schedule ( values) is designed such that
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Reverse Denoising Process

ÅGeneration process

ïSample 

ïIteratively sample
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Reverse Denoising Process

ÅGeneration process

ïSample 

ïIteratively sample

Å                 not directly tractable
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Reverse Denoising Process

ÅGeneration process

ïSample 

ïIteratively sample

Å                 not directly tractable

ÅBut can be estimated with a Gaussian 
distribution if  is small at each step

ïThe purpose of our stack of VAE decoders! 
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Reverse Denoising Process
ÅReverse diffusion process is stacking learnable VAE decoders
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Reverse Denoising Process
ÅReverse diffusion process is stacking learnable VAE decoders

ïPredicting the mean and std of added Gaussian Noise
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Reverse Denoising Process
ÅReverse diffusion process is stacking learnable VAE decoders

ïPredicting the mean and std of added Gaussian Noise
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Reverse Denoising Process
ÅReverse diffusion process is stacking learnable VAE decoders

ïPredicting the mean and std of added Gaussian Noise
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Trainable Network, Shared Across All Timesteps



Learning the Denoising Model

ÅDenoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

55Ho et al. Denoising Diffusion Probabilistic Models. 2020.
Slide credit to: Ruiqi Gao CS231N
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Learning the Denoising Model

ÅDenoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

Åwhich derives to:

Åtractable posterior distribution (closed-form)
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Slide credit to: Ruiqi Gao CS231N

constant Scaling



Learning the Denoising Model

ÅDenoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

Åwhich derives to:

58Ho et al. Denoising Diffusion Probabilistic Models. 2020.
Slide credit to: Ruiqi Gao CS231N

constant Scaling



Learning the Denoising Model
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Learning the Denoising Model

ÅDenoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

Åwhich derives to:

Åtractable posterior distribution (closed-form)

60Ho et al. Denoising Diffusion Probabilistic Models. 2020.
Slide credit to: Ruiqi Gao CS231N



Parameterizing the Denoising Model

ÅKL divergence has a simple form between Gaussians

61



Parameterizing the Denoising Model

ÅKL divergence has a simple form between Gaussians

ÅRecall that:
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Parameterizing the Denoising Model

ÅKL divergence has a simple form between Gaussians

ÅRecall that:

ÅTrainable network predicts the noise mean
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Parameterizing the Denoising Model

ÅKL divergence has a simple form between Gaussians

ÅRecall that:

ÅTrainable network predicts the noise mean

ÅFinal Objective
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Simplified Training Objective

Å‗ ensures the weighting for correct maximum 
likelihood estimation

ÅIn DDPM, this is further simplified to:
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‗



Summary: Training and Sampling
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Summary: Noise Schedule

67Str̈ umke et al. Lecture Notes in Probabilistic Diffusion Models. 2020.



Connection with Hierarchical VAEs

ÅDiffusion models are special case of Hierarchical VAEs

ïFixed inference models in forward process

ïLatent variables have same dimension as data

ïELBO is decomposed to each timestep: faster to train

ïModel is trained with some weighting of ELBO
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Poll 2

Whatôs the neural network predicting in diffusion models at x_t

o Mean of added Gaussian noise

o The denoised latent x_{t-1}

o Std of the added Gaussian noise

o The added Gaussian noise \epsilon_{t-1}
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Why SDEs?

ÅA unified framework for interpreting diffusion 
models and score-based generation models

ïVariants of diffusion-based and flow-based models
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Ordinary Differential Equations
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Stochastic Differential Equations
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Score Matching
ÅGeneral form of probability density function

ÅMaximizing the log-likelihood requires us to know 

ïOften intractable

ÅInstead, we can model the score function
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Forward Diffusion Process as SDEs

Å Consider a forward process with many many small steps (continuous time) 
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Taylor expansion

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Forward Diffusion Process as SDEs

Å Consider a forward process with many many small steps 
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Taylor expansion
Step sizeAllows different size along t

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Forward Diffusion Process as SDEs

Å Consider a forward process with many many small steps 
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Taylor expansion

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Forward Diffusion Process as SDEs

ÅAn iterative update that can be viewed as SDEs
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 

Stochastic Differential Equation (SDE)



Forward Diffusion Process as SDEs
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 

Drift Term
(Pulls toward the mode)

Diffusion Term
(Injects Noise)
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Figure credit to: https://yang-song.net/blog/2021/score/



Generative Reverse SDEs

ÅThe forward SDE has a reverse form:
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 
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Figure credit to: https://yang-song.net/blog/2021/score/



Generative Reverse SDEs

ÅThe forward SDE has a reverse form:
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Score function

How to get it?
Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Denoising Score Matching
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Figure credit to: https://yang-song.net/blog/2021/score/



Denoising Score Matching
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Figure credit to: https://yang-song.net/blog/2021/score/



Denoising Score Matching

87Looks similar?
Figure credit to: https://yang-song.net/blog/2021/score/



Denoising Score Matching
ÅDenoising score matching objective

ÅRe-parametrized sampling:

ÅScore function:

ÅDenoising network:

ÅFinal objective:

88



Weighted Diffusion Objective

ÅDenoising score matching objective with loss weighting

ÅLoss weights trade-off between

ïgood perceptual quality: 

ïmaximum likelihood:

ÅMore complicated model parametrization and loss weighting 
leads to different diffusion model variants in the literature!
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Poll 3

The drift term of SDE in the forward process of diffusion 
models

o Pulls the data towards the uni-gaussian mode

o Adds random gaussian noise
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Many Steps in Diffusion

ÅSlow in generation

ÅIn Training, we randomly sample one time step

ÅBut in inference, we must transit from T to 0

ï1000 steps

ïextremely slow for raw images/signals
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Can we do generation with less steps?
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



DDPM
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DDPM
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Only used during training

Only depends on previous step



DDIM

ÅA Non-Markovian Forward Process

97Song et al. Denoising Diffusion Implicit Models. 2021.



DDIM

ÅBackward process

98Song et al. Denoising Diffusion Implicit Models. 2021.



DDPM vs DDIM
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DDIM with Fewer Steps Sampling
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DDIM Results
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