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Generative vs. Discriminative

• Generative models learn the data distribution

2



Generative Models
• Learning to generate data

3https://cvpr2022-tutorial-diffusion-models.github.io/ 



Generative Models
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A Fast-Evolving Field
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Content

• Denoising Diffusion Model Basics

• Diffusion Models from Stochastic Differential 
Equations and Score Matching Perspective

• Denoising Diffusion Implicit Model (DDIM)

• Conditional Diffusion Models

• Applications of Diffusion Models
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Content

• Diffusion Model Basics

– Diffusion Models as Stacking VAEs

– Diffusion Models: Forward, Reverse, Training, Sampling

• Diffusion Models from Stochastic Differential 
Equations and Score Matching Perspective

• Denoising Diffusion Implicit Model (DDIM)

• Conditional Diffusion Models

• Applications of Diffusion Models
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Denoising Diffusion Models
• what we often see about diffusion models
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Denoising Diffusion Models
• what we often see about diffusion models
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Denoising Diffusion Models
• what we often see about diffusion models
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Denoising Diffusion Models
• what we often see about diffusion models

• this lecture: denoising diffusion is a stack of VAEs
14

Forward diffusion process Reverse denoising process



Recap: Variational Autoencoders

• VAEs: a likelihood-based generative model 
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Recap: Variational Autoencoders

• VAEs: a likelihood-based generative model 

• Encoder: an inference model that 
approximates the posterior 
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Recap: Variational Autoencoders

• VAEs: a likelihood-based generative model 

• Encoder: an inference model that 
approximates the posterior 

• Decoder: a generative model that 
transforms a Gaussian variable z to real data
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Recap: Variational Autoencoders

• VAEs: a likelihood-based generative model 

• Encoder: an inference model that 
approximates the posterior 

• Decoder: a generative model that 
transforms a Gaussian variable z to real data

• Training: maximize the ELBO

18
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Recap: Variational Autoencoders
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Decoder: transforms a Gaussian 
variable to real data

𝑥 𝑧

𝑞(𝑧|𝑥)

𝑝(𝑥|𝑧)

Encoder: an inference model 
approximates the posterior, i.e. 
Gaussian

VAE



VAEs are good, but…

20

• Blurry results

Kingma et al. Auto-Encoding Variational Bayes



Limitations of VAEs
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• Decoder must transform a standard Gaussian all the 
way to the target distribution in one-step 
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Limitations of VAEs
• Decoder must transform a standard Gaussian all the 

way to the target distribution in one-step 

– Often too large a gap

– Blurry results are generated

• Solution: have some intermediate latent variables to 
reduce the gap of each step
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Hierarchical VAEs
• Hierarchical VAEs – Stacking VAEs on top of each other
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Hierarchical VAEs
• Hierarchical VAEs – Stacking VAEs on top of each other

– Multiple (T) intermediate latent

– Joint distribution
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Hierarchical VAEs
• Hierarchical VAEs – Stacking VAEs on top of each other

– Multiple (T) intermediate latent

– Joint distribution

– Posterior
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Hierarchical VAEs
• Hierarchical VAEs – Stacking VAEs on top of each other

– Multiple (T) intermediate latent

– Joint distribution

– Posterior

• Better likelihood achieved!
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Stacking VAEs

• Each step, the decoder removes part of the noise
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Stacking VAEs

• Each step, the decoder removes part of the noise

• Provides a seed model closer to final distribution
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Stacking VAEs

• Each step, the decoder removes part of the noise

• Provides a seed model closer to final distribution
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Stacking VAEs

• We can have many many steps (in total T)…

• Each step incrementally recovers the final distribution

31
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• Looks familiar?



Diffusion Models are Stacking VAEs
• Diffusion models are special cases of Stacking VAEs
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Diffusion Models are Stacking VAEs
• Diffusion models are special cases of Stacking VAEs

• The reverse denoising process is the stack of 
decoders
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Diffusion Models are Stacking VAEs
• Diffusion models are special cases of Stacking VAEs

• The reverse denoising process is the stack of 
decoders

• What about encoders?
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Diffusion Models are Stacking VAEs
• Diffusion models are special case of Stacking VAEs
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Diffusion Models are Stacking VAEs
• Diffusion models are special case of Stacking VAEs

• In VAEs, encoders are learned with KL-divergence 
between the posterior and the prior

• Suffers from the ‘posterior-collapse’ issue

36
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Diffusion Models are Stacking VAEs
• Diffusion models are special case of Stacking VAEs

• In VAEs, encoders are learned with KL-divergence 
between the posterior and the prior

• Suffers from the ‘posterior-collapse’ issue

• Diffusion models use fixed inference encoders
37
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Poll 1

Diffusion Models’ reverse process is the stack of 

o VAE encoders

o VAE decoders
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Poll 1

Diffusion Models’ reverse process is the stack of 

o VAE encoders

o VAE decoders
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Denoising Diffusion Models

• Diffusion models have two processes

• Forward diffusion process gradually adds noise to 
input 

• Reverse denoising process learns to generate data 
by denoising

40



Forward Diffusion Process

• Forward diffusion process is stacking fixed VAE encoders
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Forward Diffusion Process

• Forward diffusion process is stacking fixed VAE encoders

– gradually adding Gaussian noise according to schedule 𝛽𝑡
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Forward Diffusion Process

• Forward diffusion process is stacking fixed VAE encoders

– gradually adding Gaussian noise according to schedule 𝛽𝑡
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Forward Diffusion Process
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Forward Diffusion Process
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Forward Diffusion Process

• The forward process allows sampling of 𝑥𝑡 at 
arbitrary timestep 𝑡 in closed form:
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Forward Diffusion Process

• The forward process allows sampling of 𝑥𝑡 at 
arbitrary timestep 𝑡 in closed form:

• The noise schedule (𝛽𝑡 values) is designed such that

47



Reverse Denoising Process

• Generation process

– Sample 

– Iteratively sample

48



Reverse Denoising Process

• Generation process

– Sample 

– Iteratively sample

•                  not directly tractable
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Reverse Denoising Process

• Generation process

– Sample 

– Iteratively sample

•                  not directly tractable

• But can be estimated with a Gaussian 
distribution if 𝛽𝑡 is small at each step

– The purpose of our stack of VAE decoders! 

50



Reverse Denoising Process
• Reverse diffusion process is stacking learnable VAE decoders

51



Reverse Denoising Process
• Reverse diffusion process is stacking learnable VAE decoders

– Predicting the mean and std of added Gaussian Noise
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Reverse Denoising Process
• Reverse diffusion process is stacking learnable VAE decoders

– Predicting the mean and std of added Gaussian Noise
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Reverse Denoising Process
• Reverse diffusion process is stacking learnable VAE decoders

– Predicting the mean and std of added Gaussian Noise

54

Trainable Network, Shared Across All Timesteps



Learning the Denoising Model

• Denoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

55Ho et al. Denoising Diffusion Probabilistic Models. 2020.
Slide credit to: Ruiqi Gao CS231N
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• Denoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

• which derives to:
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Learning the Denoising Model

• Denoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

• which derives to:

• tractable posterior distribution (closed-form)

57Ho et al. Denoising Diffusion Probabilistic Models. 2020.
Slide credit to: Ruiqi Gao CS231N
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Learning the Denoising Model

• Denoising models are trained with variational upper 
bound (negative ELBO), as VAEs 
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Learning the Denoising Model

• Denoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

• which derives to:
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Learning the Denoising Model

• Denoising models are trained with variational upper 
bound (negative ELBO), as VAEs 

• which derives to:

• tractable posterior distribution (closed-form)

60Ho et al. Denoising Diffusion Probabilistic Models. 2020.
Slide credit to: Ruiqi Gao CS231N



Parameterizing the Denoising Model

• KL divergence has a simple form between Gaussians
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Parameterizing the Denoising Model

• KL divergence has a simple form between Gaussians

• Recall that:
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Parameterizing the Denoising Model

• KL divergence has a simple form between Gaussians

• Recall that:

• Trainable network predicts the noise mean
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Parameterizing the Denoising Model

• KL divergence has a simple form between Gaussians

• Recall that:

• Trainable network predicts the noise mean

• Final Objective

64



Simplified Training Objective

• 𝜆𝑡 ensures the weighting for correct maximum 
likelihood estimation

• In DDPM, this is further simplified to:

65

𝜆𝑡



Summary: Training and Sampling
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Summary: Noise Schedule

67Str¨umke et al. Lecture Notes in Probabilistic Diffusion Models. 2020.



Connection with Hierarchical VAEs

• Diffusion models are special case of Hierarchical VAEs

– Fixed inference models in forward process

– Latent variables have same dimension as data

– ELBO is decomposed to each timestep: faster to train

– Model is trained with some weighting of ELBO

68
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Poll 2

What’s the neural network predicting in diffusion models at x_t

o Mean of added Gaussian noise

o The denoised latent x_{t-1}

o Std of the added Gaussian noise

o The added Gaussian noise \epsilon_{t-1}

69
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Content

• Diffusion Model Basics

– Diffusion Models as Stacking VAEs

– Diffusion Models: Forward, Reverse, Training, Sampling

• Diffusion Models from Stochastic Differential 
Equations and Score Matching Perspective

• Classifier-Free Guidance for Conditional Models

• Applications of Diffusion Models
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Why SDEs?

• A unified framework for interpreting diffusion 
models and score-based generation models

– Variants of diffusion-based and flow-based models

72



Ordinary Differential Equations

73

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Stochastic Differential Equations
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Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Score Matching
• General form of probability density function

• Maximizing the log-likelihood requires us to know 

– Often intractable

• Instead, we can model the score function

75



Forward Diffusion Process as SDEs

• Consider a forward process with many many small steps (continuous time) 

76

Taylor expansion

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Forward Diffusion Process as SDEs

• Consider a forward process with many many small steps 

77

Taylor expansion
Step sizeAllows different size along t

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Forward Diffusion Process as SDEs

• Consider a forward process with many many small steps 

78

Taylor expansion

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Forward Diffusion Process as SDEs

• An iterative update that can be viewed as SDEs

79
Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 

Stochastic Differential Equation (SDE)



Forward Diffusion Process as SDEs

80
Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 

Drift Term
(Pulls toward the mode)

Diffusion Term
(Injects Noise)
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Figure credit to: https://yang-song.net/blog/2021/score/



Generative Reverse SDEs

• The forward SDE has a reverse form:

82

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



83

Figure credit to: https://yang-song.net/blog/2021/score/



Generative Reverse SDEs

• The forward SDE has a reverse form:

84

Score function

How to get it?
Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Denoising Score Matching

85

Figure credit to: https://yang-song.net/blog/2021/score/



Denoising Score Matching
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Figure credit to: https://yang-song.net/blog/2021/score/



Denoising Score Matching

87Looks similar?
Figure credit to: https://yang-song.net/blog/2021/score/



Denoising Score Matching
• Denoising score matching objective

• Re-parametrized sampling:

• Score function:

• Denoising network:

• Final objective:

88



Weighted Diffusion Objective

• Denoising score matching objective with loss weighting

• Loss weights trade-off between

– good perceptual quality: 

– maximum likelihood:

• More complicated model parametrization and loss weighting 
leads to different diffusion model variants in the literature!

89

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



Poll 3

The drift term of SDE in the forward process of diffusion 
models

o Pulls the data towards the uni-gaussian mode

o Adds random gaussian noise
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Content

• Diffusion Model Basics

• Diffusion Models from Stochastic Differential 
Equations and Score Matching Perspective

• Denoising Diffusion Implicit Model (DDIM)

• Conditional Diffusion Models

• Applications of Diffusion Models
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Many Steps in Diffusion

• Slow in generation

• In Training, we randomly sample one time step

• But in inference, we must transit from T to 0

– 1000 steps

– extremely slow for raw images/signals

93



Can we do generation with less steps?

94

Slide credit to: https://cvpr2022-tutorial-diffusion-models.github.io/ 



DDPM
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DDPM

96

Only used during training

Only depends on previous step



DDIM

• A Non-Markovian Forward Process

97Song et al. Denoising Diffusion Implicit Models. 2021.



DDIM

• Backward process

98Song et al. Denoising Diffusion Implicit Models. 2021.



DDPM vs DDIM

99



DDIM with Fewer Steps Sampling

100



DDIM Results

101



Poll 4

DDIM differs from the DDPM inference process as:

o DDIM first predicts the noise given time t, then estimate x, and finally 
get x_{t-1}.

o DDIM first predicts the noise given time t, then get x_{t-1}

o DDIM has a non-markov forward process

o DDIM has a markov forward process
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o DDIM has a non-markov forward process

o DDIM has a markov forward process
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Content

• Diffusion Model Basics

• Diffusion Models from Stochastic Differential 
Equations and Score Matching Perspective

• Denoising Diffusion Implicit Model (DDIM)

• Conditional Diffusion Models

• Applications of Diffusion Models
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Conditional Diffusion Models

• Un-conditional

105

• Conditional

More controllable!



Conditional Score Matching

• Score matching with conditional information

106



Classifier Guidance

• Use a discriminative classifier for 

• 𝛾 controls the strength of the condition

• Limitations:

– Need a separate classifier

– Conditioning depends on the performance of 
classifier

107



Classifier-Free Guidance
• Score matching with conditional information

• Classifier-free guidance

108Ho et al. Classifier-Free Diffusion Guidance. 2022.



Training of Classifier-Free Guidance

• For conditional embeddings

– Randomly drop p original conditionals with an 
additional unconditional class

109Ho et al. Classifier-Free Diffusion Guidance. 2022.
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DDPM
• Training diffusion models on raw images with 

a U-Net model

111Ho et al. Denoising Diffusion Probabilistic Models. 2020.



Diffusion Models Beat GANs

• Larger denoising model with sophisticated design

– Adaptive group normalization

– Attention layers in U-Net

112Dhariwal et al. Diffusion Models Beat GANs on Image Synthesis. 2021.



Latent Diffusion Models (LDMs)

• Learn diffusion on VAE’s latent

– Yet another VAE! Except pre-trained.

113Rombach et al. High-Resolution Image Synthesis with Latent Diffusion Models. 2022.



Stable Diffusion

• Large-scale text-conditional LDMs

– With VAEs trained also on larger datasets

114Stability AI. https://github.com/Stability-AI/stablediffusion



DALLE

115Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP Latents



DiT
• A transformer architecture for diffusion models

116Peebles et al. Scalable Diffusion Models with Transformers. 2020.



MAR
• An autoregressive model with diffusion loss

117Li et al. Autoregressive Image Generation without Vector Quantization. 2024.
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