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Recap: Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Divergence on the i-th instance:  ௜ ௜

– Empirical average divergence on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected 
divergence

ௐ

– I.e. minimize the empirical risk over the drawn samples 2



Recap: Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:  ௜ ௜

– Empirical average error on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 3

This is an instance of 
function minimization
(optimization)



A quick intro to 
function optimization

with an initial discussion of 
derivatives
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A brief note on derivatives..

• A derivative of a function at any point tells us how 
much a minute increment to the argument of the 
function will increment the value of the function
 For any expressed as a multiplier to a tiny 

increment to obtain the increments to the output

 Based on the fact that at a fine enough resolution, any 
smooth, continuous function is locally linear at any point 5

derivative



• When and are scalar

 Derivative:

 Often represented (using somewhat inaccurate notation) as 

 Or alternately (and more reasonably) as 
6

Scalar function of scalar argument



 Derivative is the rate of change of the function at 
 How fast it increases with increasing 𝑥
 The magnitude of f’(x) gives you the steepness of the curve at x

 Larger |f’(x)|  the function is increasing or decreasing more rapidly

 It will be positive where a small increase in x results in an increase of f(x)
 Regions of positive slope

 It will be negative where a small increase in x results in a decrease  of f(x)
 Regions of negative slope 

 It will be 0 where the function is locally flat (neither increasing nor decreasing)
7
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• Giving us that is a row vector: 

• The partial derivative gives us how increments when only is 
incremented

• Often represented as 
೔
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Multivariate scalar function:
Scalar function of vector argument

Note: is now also a vector

ଵ

஽

is now a vector: 
ଵ

஽



• Where

o You may be more familiar with the term “gradient” which 
is actually defined as the transpose of the derivative
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Note: is now a vector

Multivariate scalar function:
Scalar function of vector argument

ଵ

஽

We will be using this 
symbol for vector and
matrix derivatives



Gradient of a scalar function of a vector

• The derivative ௑ of a scalar function of a multi-variate input is a 
multiplicative factor that gives us the change in for tiny variations in 

௑

– ௑
డ௙ ௑

డ௫భ

డ௙ ௑

డ௫మ

డ௙ ௑

డ௫೙

• The gradient is the transpose of the derivative ௑
்

– A column vector of the same dimensionality as 
10



Gradient of a scalar function of a vector

• The derivative ௑ of a scalar function of a multi-variate input is a 
multiplicative factor that gives us the change in for tiny variations in 

௑

– ௑
డ௙ ௑

డ௫భ

డ௙ ௑

డ௫మ

డ௙ ௑

డ௫೙

• The gradient is the transpose of the derivative ௑
்

– A column vector of the same dimensionality as 
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This is a vector inner product.  To understand its behavior lets
consider a well-known property of inner products



A well-known vector property

• The inner product between two vectors of 
fixed lengths is maximum when the two 
vectors are aligned
– i.e. when 

12
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Properties of Gradient

•

• For an increment of any given length  is max if 
is aligned with 

– The function f(X) increases most rapidly if the input increment 
is exactly in the direction of T

• The gradient is the direction of fastest increase in f(X) 13

௑

௑ vs angle of 

Blue arrow
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௑



Gradient
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Gradient
vector ௑

𝑇



Gradient
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Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest



Gradient
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Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest
௑

𝑇

Moving in this 
direction decreases 

fastest



Gradient
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Gradient here
is 0

Gradient here
is 0



Properties of Gradient: 2

• The gradient vector 𝑇 is perpendicular to the level curve
18



The Hessian
• The Hessian of a function is 

given by the second derivative 

19
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Poll 1
• Select all that are true about derivatives of a scalar function f(X) of 

multivariate inputs
– At any location X, there may be many directions in which we can step, such 

that f(X) increases
– The direction of the gradient is the direction in which the function increases 

fastest 
– The gradient is the derivative of f(X) w.r.t. X 

• y = f(x) is a scalar function of an Nx1  column vector variable x. What is the 
shape of the derivative of  y with respect to x
– Scalar
– N x 1  column vector
– 1 x N row vector
– There is insufficient information to decide
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Poll 1
• Select all that are true about derivatives of a scalar function f(X) of 

multivariate inputs
– At any location X, there may be many directions in which we can step, such 

that f(X) increases
– The direction of the gradient is the direction in which the function increases 

fastest 
– The gradient is the derivative of f(X) w.r.t. X 

• y = f(x) is a scalar function of an Nx1  column vector variable x. What is the 
shape of the derivative of  y with respect to x
– Scalar
– N x 1  column vector
– 1 x N row vector
– There is insufficient information to decide
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The problem of optimization

• General problem of 
optimization: Given a function 
f(x) of some variable x …

• Find the value of x where f(x)
is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum

22



Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum? 
23

x

f(x)



Poll 2

Which of the following criteria would be true 
(choose one) about the minimum of a function f(x)

1. The derivative f’(x) = 0  at the minimum.  This is 
the only condition to be satisfied

2. f’(x) = 0 and the second derivative f”(x) is  
negative

3. f’(x) = 0 and the second derivative f”(x) is 
positive 
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Poll 2

Which of the following would be true (choose one) 
about the minimum of a function f(x)

1. The derivative f’(x) = 0  at the minimum.  This is 
the only condition to be satisfied

2. f’(x) = 0 and the second derivative f”(x) is  
negative

3. f’(x) = 0 and the second derivative f”(x) is 
positive 
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Turning Points
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• Both maxima and minima have zero derivative

• Both are turning points
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Derivatives of a curve
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• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)



Derivative of the derivative of the 
curve
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• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

• The second derivative f’’(x) is –ve at maxima and 
+ve at minima!

xf(x)

f ’(x)
f ’’(x)



Solution: Finding the minimum or 
maximum of a function

• Find the value at which = 0:    Solve

• The solution ௦௢௟௡ is a turning point
• Check the double derivative at ௦௢௟௡ : compute

ᇱᇱ
௦௢௟௡

௦௢௟௡

• If ᇱᇱ
௦௢௟௡ is positive ௦௢௟௡ is a minimum

– If it is negative,  it is a maximum
29
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A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– Positive (or 0) at minima

– Negative (or 0) at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables

30

Critical points

Derivative is 0

maximum

minimum

Inflection point



A note on derivatives of functions of  
single variable

• All locations with zero 
derivative are critical points
– These can be local maxima, local 

minima, or inflection points

• The second derivative is 
– at minima

– at maxima

– Zero at inflection points

• It’s a little more complicated for 
functions of multiple variables..

31

ଶ

ଶ

maximum

minimum

Inflection point

negative

positive

zero



What about functions of multiple 
variables?

• The optimum point is still  “turning” point
– Shifting in any direction will increase the value
– For smooth functions, at the minimum/maximum, the gradient 

is 0
• Really tiny shifts will not change the function value

32



Finding the minimum of a scalar 
function of a multivariate input

• The optimum point is a turning point – the 
gradient will be 0

• Find the location where the gradient is 0
33



Unconstrained Minimization of 
function (Multivariate)

1. Solve for the where the derivative (or gradient) 
equals to zero

2. Compute the Hessian Matrix at the candidate 
solution and verify that
– Hessian is positive definite (eigenvalues positive)  -> to 

identify local minima 

– Hessian is negative definite (eigenvalues negative) -> to 
identify local maxima

34
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Unconstrained Minimization of 
function (Example)

• Minimize

• Gradient 
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Unconstrained Minimization of 
function (Example)

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns
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Unconstrained Minimization of 
function (Example)

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positives => the Hessian 
matrix is positive definite

• The point                                is a minimum
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Closed Form Solutions are not always 
available

• Often it is not possible to simply solve 
– The function to minimize/maximize may have an 

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it 

iteratively until the correct value is obtained
38
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Iterative solutions

• Iterative solutions
– Start from an initial guess ଴ for the optimal 
– Update the guess towards a (hopefully) “better” value of 
– Stop when no longer decreases

• Problems: 
– Which direction to step in
– How big must the steps be

39
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The Approach of Gradient Descent

• Iterative solution:  
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A negative derivative moving right decreases error
– A positive derivative moving left decreases error

– Shift point in this direction
40



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• If is positive:
௞ାଵ ௞

• Else
௞ାଵ ௞ 41



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• Identical to previous algorithm
42



The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
 Initialize 

 While 

• is the “step size”
43



Poll 3:  Multivariate functions

• Select all that are true about derivatives of a 
scalar function f(X) of multivariate inputs
– At any location X, there may be many directions in 

which we can step, such that f(X) increases
– The direction of the gradient is the direction in 

which the function increases fastest
– The gradient is the derivative of f(X) w.r.t. X

44



Poll 3:  Multivariate functions

• Select all that are true about derivatives of a 
scalar function f(X) of multivariate inputs
– At any location X, there may be many directions 

in which we can step, such that f(X) increases
– The direction of the gradient is the direction in 

which the function increases fastest
– The gradient is the derivative of f(X) w.r.t. X
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Gradients of multivariate functions

46

Gradient
vector ௑

𝑇

Moving in this 
direction increases 

fastest
௑

𝑇

Moving in this 
direction decreases 

fastest



Gradient descent/ascent (multivariate) 

• The gradient descent/ascent method to find the 
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the 

gradient

– To find a minimum move exactly opposite the 
direction of the gradient

• Many solutions to choosing step size 
47



Gradient descent convergence criteria 

• The gradient descent algorithm converges 
when one of the following criteria is satisfied

• Or

48
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Overall Gradient Descent Algorithm

• Initialize: 




• do





• while 

49



Convergence of Gradient Descent
• For appropriate step 

size, for convex (bowl-
shaped) functions 
gradient descent will 
always find the 
minimum.

• For non-convex 
functions it will find a 
local minimum or an 
inflection point

50



Poll 4

• y = f(x) is a scalar function of an Nx1 column vector variable 
x. Starting from x = x0,  in which direction must we move in 
the space of x, to achieve the maximum decrease in f()?
– Exactly in the direction of the gradient of  f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at x0

– Exactly opposite to the direction of the gradient of f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at 
x0.
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Poll 4

• y = f(x) is a scalar function of an Nx1 column vector variable 
x. Starting from x = x0,  in which direction must we move in 
the space of x, to achieve the maximum decrease in f()?
– Exactly in the direction of the gradient of  f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at x0

– Exactly opposite to the direction of the gradient of f(x) at x0

– Exactly perpendicular to the direction of the gradient of f(x) at 
x0.
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• Returning to our problem from our detour..

53



Problem Statement
• Given a training set of input-output pairs 

• Minimize the following function

w.r.t.

• This is problem of function minimization
– An instance of optimization

54



Gradient Descent to train a network

• Initialize: 
–

–

• do 
–  
–

• while 

11-755/18-797 55



Preliminaries

• Before we proceed: the problem setup

56



• Given a training set of input-output pairs 

• Minimize the following function

w.r.t 

• This is problem of function minimization
– An instance of optimization

57

Problem Setup: Things to define



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

58

What are these input-output pairs?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

59

What are these input-output pairs?

What is f() and 
what are its 
parameters W?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

60

What are these input-output pairs?

What is f() and 
what are its 
parameters W?

What is the 
divergence div()?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

61

What is f() and 
what are its 
parameters W?



What is f()? Typical network

• Multi-layer perceptron

• A directed network with a set of inputs and 
outputs
– No loops

62

Input
units Output

units

Hidden units



Typical network

• We assume a “layered” network for simplicity
– Each “layer” of neurons only gets inputs from the earlier layer(s) 

and outputs signals only to later layer(s)
– We will refer to the inputs as the input layer

• No neurons here – the “layer” simply refers to inputs

– We refer to the outputs as the output layer
– Intermediate layers are “hidden” layers 63

Input
Layer Output

Layer

Hidden Layers



The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A continuous activation function applied to an affine 

function of the inputs

௜

௜

௜

– More generally:  any differentiable function

ଵ ଶ ே 64



The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A continuous activation function applied to an affine 

function of the inputs

௜

௜

௜

– More generally:  any differentiable function

ଵ ଶ ே 65

We will assume this
unless otherwise
specified

Parameters are weights
௜ and bias 



Activations and their derivatives

• Some popular activation functions and their 
derivatives 66

ଶ
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Vector Activations

• We can also have neurons that have multiple coupled 
outputs

– Function operates on set of inputs to produce set of 
outputs

– Modifying a single parameter in will affect all outputs 67

Input
Layer Output

Layer

Hidden Layers



Vector activation example: Softmax

• Example: Softmax vector activation

68
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Multiplicative combination: Can be 
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
69

zx y

೗೔

Parameters are 
weights 
and bias



Typical network

• In a layered network, each layer of 
perceptrons can be viewed as a single vector 
activation

70

Input
Layer Output

Layer

Hidden Layers



Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as ௜
(௞)

– Input to network: ௜
(଴)

௜

– Output of network:  ௜ ௜
(ே)

• We will represent the weight of the connection between the i-th unit of 
the k-1th layer and the jth unit of the k-th layer as ௜௝

(௞)

– The bias to the jth unit of the k-th layer is ௝
(௞)

71
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

72

What is f() and 
what are its 
parameters W?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

73

What are these input-output pairs?



Input, target output, and actual output: 
Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

• ௡ ௡ଵ ௡ଶ ௡஽
ୃ is the nth input vector

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth desired output

• ௡ ௡ଵ ௡ଶ ௡௅
ୃ is the nth vector of actual outputs of the network

– Function of input ௡ and network parameters

• We will sometimes drop the first subscript when referring to a specific 
instance

74
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Representing the input

• Vectors of numbers 
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course

– Other real valued vectors
75
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Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the 
desired output
• d = [d1 d2 .. dL] (vector of real values)

76
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Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output
– 1 = Yes, it’s a cat
– 0 = No, it’s not a cat.

77



Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output

• Output activation: Typically, a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general a feature value X 
may occur for both classes, but with different probabilities

• Is differentiable 78

𝜎(𝑧)

𝜎 𝑧 =
1

1 + 𝑒ି௭



Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired 
output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two outputs, one representing the desired output, the other 
representing the negation of the desired output
– Yes:  [1 0]
– No:  [0 1]

• The output explicitly becomes a 2-output softmax

79



Multi-class output: One-hot 
representations

• Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, 
or a flower

• We can represent this set as the following vector, with the classes arranged in a 
chosen order:

[cat  dog  camel  hat flower]T

• For inputs of each of the five classes the desired output is:
cat:  [1 0 0 0 0] T

dog:   [0 1 0 0 0] T

camel:   [0 0 1 0 0] T

hat:   [0 0 0 1 0] T

flower:  [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output with four 
zeros and a single 1 at the position of that class

• This is a one hot vector

80



Multi-class networks

• For a multi-class classifier with N classes, the one-hot 
representation will have N binary target outputs
– The desired output is an N-dimensional binary vector

• The neural network’s actual output too must ideally be binary (N-1 
zeros and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

81
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Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class 
classifier nets

௜ ௝௜
(௡)

௝
(௡ିଵ)

௝

௜
௜

௝௝

• This can be viewed as the probability ௜
82
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Inputs and outputs: 
Typical Problem Statement

• We are given a number of “training” data instances

• E.g. images of digits, along with information about 
which digit the image represents

• Tasks:
– Binary recognition:   Is this a “2” or not

– Multi-class recognition:  Which digit is this? 
83



Typical Problem statement: 
binary classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job
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Typical Problem statement: 
multiclass classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

86
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function
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What is the 
divergence div()?
Note: For Loss(W) to be differentiable 
w.r.t W,  div() must be differentiable



Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ
௜ ௜

ଶ

௜

– Squared Euclidean distance between true and desired output
– Note:  this is differentiable

௜
௜ ௜

௒ ଵ ଵ ଶ ଶ
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L2 Div()
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For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL) 
divergence between the probability distribution and the ideal output 
probability is popular

– Minimum when 𝑑 = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0

89
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KL vs L2

• Both KL and L2 have a minimum when is the target value of 
• KL rises much more steeply away from 

– Encouraging faster convergence of gradient descent

• The derivative of KL is not equal to 0 at the minimum
– It is 0 for L2, though
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1

𝑌
   𝑖𝑓  𝑑 = 1
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1 − 𝑌
   𝑖𝑓 𝑑 = 0



For binary classifier

• For binary classifier with scalar output, , d is 0/1, the Kullback Leibler (KL) 
divergence between the probability distribution and the ideal output 
probability is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0
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KL Div

Note:  when the 
derivative is not 0

Even though 
(minimum) when y = d



For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = ෍ 𝑑௜ log
𝑑௜

𝑦௜
௜

= ෍ 𝑑௜ log 𝑑௜

௜

− ෍ 𝑑௜ log 𝑦௜ = − log 𝑦௖

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0
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Indicates increasing ௖
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For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The KL divergence between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = ෍ 𝑑௜ log 𝑑௜

௜

− ෍ 𝑑௜ log 𝑦௜ = 0 − log 𝑦௖

௜

= − log 𝑦௖

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0 93

KL Div()

d1d2 d3 d4

Div

Note:  when the 
derivative is not 0

Even though 
(minimum) when y = d

The slope is negative 
w.r.t. ௖

Indicates increasing ௖

will reduce divergence



KL divergence vs cross entropy
• KL divergence between and :

௜ ௜

௜

௜ ௜

௜

• Cross-entropy between and :

௜ ௜

௜

• When the desired target ௜ is one-hot, ௜ ௜௜

– KL and cross-entropy are identical

– ௜

– Minimizing cross-entropy simply maximizes the probability of the target class

• We will continue discussing in terms of KL, but the discussion applies 
directly to Cross-entropy as well
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KL divergence vs cross entropy
• KL divergence between and :

௜ ௜

௜

௜ ௜

௜

• Cross-entropy between and :

௜ ௜

௜

• More generally, the cross entropy is merely the KL - entropy of 

௜ ௜

௜

• The that minimizes cross-entropy will minimize the KL divergence 
– since 𝑑 is the desired output and does not depend on the network, 𝐻(𝑑) does not depend on 

the net
– In fact, for one-hot 𝑑, 𝐻 𝑑 = 0 (and KL = Xent)

• We will generally minimize to the cross-entropy loss rather than the KL divergence
– The Xent is not a divergence, and although it attains its minimum when 𝑦 = 𝑑, its minimum 

value is not 0
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“Label smoothing”

• It is sometimes useful to set the target output to 
with the value in the -th position (for class ) and elsewhere for 
some small 
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
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“Label smoothing”

• It is sometimes useful to set the target output to 
with the value in the -th position (for class ) and elsewhere for 
some small 
– “Label smoothing” -- aids gradient descent

• The KL divergence remains:

௜ ௜

௜

௜ ௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
=

−
1 − (𝐾 − 1)𝜖

𝑦௖
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦௜
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
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KL Div()

d1d2 d3 d4

Div

Negative derivatives
encourage increasing
the probabilities of
all classes, including
incorrect classes!
(Seems wrong, no?)



The derivative of the KL divergence

• The softmax is computed on affine values z to obtain output 
probabilities 

• The derivative of the KL divergence between the actual output 
and target output is as given earlier

• However, the derivative of the KL divergence w.r.t. the affine value 
at the input of the softmax is just the error
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Softmax

KL Divergence



A note on derivatives

• Note: For both regression models with linear output layer 
and L2 divergence, and classification models with softmax
output layer and KL divergence the gradient w.r.t. the final 
affine value of the network is just the error
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function
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ALL TERMS HAVE BEEN DEFINED



Poll 5

• Select all that are correct
– The gradient of the loss will always be 0 or close 

to 0 at a minimum
– The gradient of the loss may be 0 or close to 0 at a 

minimum
– The gradient of the loss may have large magnitude 

at a minimum
– If the gradient is not 0 at a minimum, it must be a 

local minimum
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Poll 5

• Select all that are correct
– The gradient of the loss will always be 0 or close 

to 0 at a minimum
– The gradient of the loss may be 0 or close to 0 at 

a minimum
– The gradient of the loss may have large 

magnitude at a minimum
– If the gradient is not 0 at a minimum, it must be a 

local minimum
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Story so far
• Neural nets are universal approximators

• Neural networks are trained to approximate functions by adjusting their 
parameters to minimize the average divergence between their actual output and 
the desired output at a set of “training instances”
– Input-output samples from the function to be learned
– The average divergence is the “Loss” to be minimized

• To train them, several terms must be defined
– The network itself
– The manner in which inputs are represented as numbers
– The manner in which outputs are represented as numbers

• As numeric vectors for real predictions
• As one-hot vectors for classification functions

– The divergence function that computes the error between actual and desired outputs
• L2 divergence for real-valued predictions
• KL divergence for classifiers
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Next Class

• Backpropagation
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