
Neural Networks

Hopfield Nets, Auto Associators,
Boltzmann machines

Spring 2025

1

2

2024 Nobel Prize in Physics

Story so far

• Neural networks for computation

• All feedforward structures

• But what about..

3

Consider this loopy network

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

The output of a neuron
affects the input to the
neuron

4

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

A symmetric network:
𝑤𝑖𝑗 = 𝑤𝑗𝑖

Consider this loopy network

5

Hopfield Net

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

A symmetric network:
𝑤𝑖𝑗 = 𝑤𝑗𝑖

6

Loopy network

• At each time each neuron receives a “field” σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not

respond

• If the sign of the field opposes its own sign, it “flips” to

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

7

Loopy network

• At each time each neuron receives a “field” σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not

respond

• If the sign of the field opposes its own sign, it “flips” to

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

8

𝑦𝑖 → −𝑦𝑖

if 𝑦𝑖 σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 < 0

Loopy network

• At each time each neuron receives a “field” σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not

respond

• If the sign of the field opposes its own sign, it “flips” to

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

9

𝑦𝑖 → −𝑦𝑖

if 𝑦𝑖 σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 < 0

A neuron “flips” if weighted sum of other
neurons’ outputs is of the opposite sign to
its own current (output) value

But this may cause other neurons to flip!

Example

• Red edges are +1, blue edges are -1

• Yellow nodes are -1, black nodes are +1
10

Example

11

• Red edges are +1, blue edges are -1

• Yellow nodes are -1, black nodes are +1

Example

12

• Red edges are +1, blue edges are -1

• Yellow nodes are -1, black nodes are +1

Example

13

• Red edges are +1, blue edges are -1

• Yellow nodes are -1, black nodes are +1

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…

» And so on…
14

20 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

A neuron “flips” if
weighted sum of other
neuron’s outputs is of
the opposite sign

But this may cause
other neurons to flip!

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

15

120 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

16

Loopy network

• If the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

– Which will change the field at other nodes

• Which may then flip
– Which may cause other neurons including the first one to

flip…

• Will this behavior continue for ever??
17

Loopy network

• Let 𝑦𝑖
− be the output of the i-th neuron just before it responds to the current field

• Let 𝑦𝑖
+ be the output of the i-th neuron just after it responds to the current field

• If 𝑦𝑖
− = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 , then 𝑦𝑖

+ = 𝑦𝑖
−

– If the sign of the field matches its own sign, it does not flip

𝑦𝑖
+ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 − 𝑦𝑖
− ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 = 0

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

18

Loopy network

• If 𝑦𝑖
− ≠ 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 , then 𝑦𝑖

+ = −𝑦𝑖
−

𝑦𝑖
+ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 − 𝑦𝑖
− ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖 = 2𝑦𝑖
+ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

– This term is always positive!

• Every flip of a neuron is guaranteed to locally increase

𝑦𝑖 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

19

Globally
• Consider the following sum across all nodes

𝐷 𝑦1, 𝑦2, … , 𝑦𝑁 = ෍

𝑖

𝑦𝑖 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

 = ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 + ෍

𝑖

𝑏𝑖𝑦𝑖

– Assume 𝑤𝑖𝑖 = 0

• For any unit 𝑘 that “flips” because of the local field

∆𝐷 𝑦𝑘 = 𝐷 𝑦1, … , 𝑦𝑘
+, … , 𝑦𝑁 − 𝐷 𝑦1, … , 𝑦𝑘

−, … , 𝑦𝑁

• This is strictly positive

∆𝐷 𝑦𝑘 = 2𝑦𝑘
+ ෍

𝑗≠𝑘

𝑤𝑗𝑘𝑦𝑗 + 𝑏𝑘

20

Hopfield Net

• Flipping a unit will result in an increase (non-decrease) of

𝐷 = ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 + ෍

𝑖

𝑏𝑖𝑦𝑖

• 𝐷 is bounded

𝐷𝑚𝑎𝑥 = ෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗 + ෍

𝑖

𝑏𝑖

• The minimum increment of 𝐷 in a flip is

∆𝐷𝑚𝑖𝑛= min
𝑖, {𝑦𝑖, 𝑖=1..𝑁}

 2 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• Any sequence of flips must converge in a finite number of steps 21

Poll 1

22

Hopfield networks are loopy networks whose output activations

“evolve” over time

• True

• False

Hopfield networks will evolve continuously, forever

• True

• False

Hopfield networks can also be viewed as infinitely deep shared

parameter MLPs

• True

• False

Story so far

• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons

– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner

– Causing the field at other neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of
the network

– The energy is lower bounded and the decrements are upper bounded, so the
network is guaranteed to converge to a stable state in a finite number of steps

23

Poll 1

24

Hopfield networks are loopy networks whose output activations

“evolve” over time

• True

• False

Hopfield networks will evolve continuously, forever

• True

• False

Hopfield networks can also be viewed as infinitely deep shared

parameter MLPs

• True

• False

The Energy of a Hopfield Net

• Define the Energy of the network as

𝐸 = −
1

2
෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 − ෍

𝑖

𝑏𝑖𝑦𝑖

– Just 0.5 times the negative of 𝐷

• The 0.5 is only needed for convention

• The evolution of a Hopfield network

constantly decreases its energy

25

The Energy of a Hopfield Net

• Define the Energy of the network as

𝐸 = −
1

2
෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 − ෍

𝑖

𝑏𝑖𝑦𝑖

– Just 0.5 times the negative of 𝐷

• The evolution of a Hopfield network

constantly decreases its energy

• Where did this “energy” concept suddenly sprout

from?
26

Analogy: Spin Glass

• Magnetic diploes in a disordered magnetic material

• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles

– Which may flip

• Which changes the field at the current dipole…
27

Analogy: Spin Glasses

• 𝑝𝑖 is vector position of 𝑖-th dipole

• The field at any dipole is the sum of the field contributions of all other dipoles

• The contribution of a dipole to the field at any point depends on interaction 𝐽

– Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)

Total field at current dipole:

𝑓 𝑝𝑖 = ෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

intrinsic external

28

• A Dipole flips if it is misaligned with the field
in its location

Total field at current dipole:

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑝𝑖 = ෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

29

Analogy: Spin Glasses

Total field at current dipole:

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Dipoles will keep flipping

– A flipped dipole changes the field at other dipoles

• Some of which will flip

– Which will change the field at the current dipole

• Which may flip

– Etc..

𝑓 𝑝𝑖 = ෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

30

Analogy: Spin Glasses

• When will it stop???

Total field at current dipole:

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑝𝑖 = ෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

31

Analogy: Spin Glasses

• The “Hamiltonian” (total energy) of the system

𝐸 = −
1

2
෍

𝑖

𝑥𝑖𝑓 𝑝𝑖 = − ෍

𝑖

෍

𝑗>𝑖

𝐽𝑗𝑖𝑥𝑖𝑥𝑗 − ෍

𝑖

𝑏𝑖𝑥𝑖

• The system evolves to minimize the energy

– Dipoles stop flipping if flips result in increase of energy

Total field at current dipole:

𝑓 𝑝𝑖 = ෍

𝑗≠𝑖

𝐽𝑗𝑖𝑥𝑗 + 𝑏𝑖

Response of current dipole

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

32

Analogy: Spin Glasses

Spin Glasses

• The system stops at one of its stable configurations

– Where energy is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration

– I.e. the system remembers its stable state and returns to it

state

PE

33

Hopfield Network

𝐸 = −
1

2
෍

𝑖,𝑗≠𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 + ෍

𝑖

𝑏𝑖𝑦𝑖

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

34

Hopfield Network

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗 − ෍

𝑖

𝑏𝑖𝑦𝑖

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly

35

Hopfield Network

𝐸 = −
1

2
෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

• This is analogous to the potential energy of a spin glass

– The system will evolve until the energy hits a local minimum

• Above equation is a factor of 0.5 off from earlier definition for

conformity with thermodynamic system

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

36

Evolution

• The network will evolve until it arrives at a

local minimum in the energy contour

𝐸 = −
1

2
෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

state
PE

37

Content-addressable memory

• Each of the minima is a “stored” pattern

– If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

• This is a content addressable memory

– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

38

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/39

Hopfield net examples

40

Computational algorithm

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

𝐸 = − ෍

𝑖

෍

𝑗>𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖

 does not change significantly any more

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate until convergence

𝑦𝑖 𝑡 + 1 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 , 0 ≤ 𝑖 ≤ 𝑁 − 1

41

Computational algorithm

• Very simple

• Updates can be done sequentially, or all at once

• Convergence
𝐸 = −0.5𝐲⊤𝐖𝐲

 does not change significantly any more

1. Initialize network with initial pattern

𝐲 = 𝐱, 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate until convergence

𝐲 = Θ 𝐖𝐲

42

Writing 𝐲 = 𝑦1, 𝑦2, 𝑦3, ⋯ , 𝑦𝑁
⊤

and arranging the weights as a matrix 𝐖

Story so far
• A Hopfield network is a loopy binary network with symmetric

connections

– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum

– The evolution will be monotonic in total energy

– The dynamics of a Hopfield network mimic those of a spin glass

– The network is symmetric: if a pattern 𝑌 is a local minimum, so is – 𝑌

• The network acts as a content-addressable memory

– If you initialize the network with a somewhat damaged version of a local-
minimum pattern, it will evolve into that pattern

– Effectively “recalling” the correct pattern, from a damaged/incomplete
version 43

Poll 2

44

Mark all that are correct about Hopfield nets

• The network activations evolve until the energy of the net arrives at a local

minimum

• Hopfield networks are a form of content addressable memory

• It is possible to analytically determine the stored memories by inspecting

the weights matrix

Poll 2

45

Mark all that are correct about Hopfield nets

• The network activations evolve until the energy of the net arrives at a

local minimum

• Hopfield networks are a form of content addressable memory

• It is possible to analytically determine the stored memories by inspecting

the weights matrix

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

46

Issues

• How do we make the network store a specific
pattern or set of patterns?

• How many patterns can we store?

• How to “retrieve” patterns better..

47

How do we remember a specific
pattern?

• How do we teach a network
to “remember” this image

• For an image with 𝑁 pixels we need a network
with 𝑁 neurons

• Every neuron connects to every other neuron

• Weights are symmetric (not mandatory)

•
𝑁(𝑁−1)

2
 weights in all

48

Memorized patterns are stable Energy
states

• The energy contour is a function of weights 𝑊

• Memories are local minima in energy surface

• There can be multiple of them

– How? The Energy function is quadratic, how does it have multiple minima?

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1

49

The Energy function

• 𝐸 is a concave quadratic

𝐸 = −
1

2
𝐲𝑇𝐖𝐲

50

𝐸

-1

1 -1

1

𝑦1

𝑦0

The Energy function

• 𝐸 is a concave quadratic

– Shown from above (assuming 0 bias)

• But components of 𝑦 can only take values ±1

– I.e 𝑦 lies on the corners of the unit hypercube

𝐸 = −
1

2
𝐲𝑇𝐖𝐲

51

The energy function

• 𝐸 is a concave quadratic

– Shown from above (assuming 0 bias)

• The minima will lie on the boundaries of the hypercube

– But components of 𝑦 can only take values ±1

– I.e. 𝑦 lies on the corners of the unit hypercube

𝐸 = −
1

2
𝐲𝑇𝐖𝐲

52

The energy function

• The stored values of 𝐲 are the ones where all

adjacent corners are lower on the quadratic

• We can have multiple of them

𝐸 = −
1

2
𝐲𝑇𝐖𝐲

Stored patterns

53

Requirements for memory

• Stationarity: A system in that state should not change spontaneously

– Wherever the gradient of the energy contour is 0

• Stability: If we perturb the system slightly it must return to the memory
state

– Local minima in energy

state

PE

54

stationary

stable

The problem of ‘creating’ memories

• We create a memory by choosing the weights 𝑊
such that the energy contour has local minima at
the target patterns and nowhere else

55

PE

False memory

Target
memory

Storing a pattern

• Design {𝑤𝑖𝑗} such that the energy is a local
minimum at the desired 𝑃 = {𝑦𝑖}

𝐸 = − ෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖
1

-1

-1

-1 1

1

1

-1

1 -1

56

Storing specific patterns

• Storing 1 pattern: We want

𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 = 𝑦𝑖 ∀ 𝑖

• This is a stationary pattern

1

-1

-1

-1 1

57

Storing specific patterns

• Storing 1 pattern: We want

𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 = 𝑦𝑖 ∀ 𝑖

• This is a stationary pattern

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

58

Storing specific patterns

• 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑦𝑗𝑦𝑖𝑦𝑗

= 𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑦𝑗
2𝑦𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑖 = 𝑦𝑖

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

59

Storing specific patterns

• 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑤𝑗𝑖𝑦𝑗 = 𝑠𝑖𝑔𝑛 σ𝑗≠𝑖 𝑦𝑗𝑦𝑖𝑦𝑗

= 𝑠𝑖𝑔𝑛 ෍

𝑗≠𝑖

𝑦𝑗
2𝑦𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑖 = 𝑦𝑖

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

The pattern is stationary

60

Storing specific patterns

𝐸 = − ෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖 = − ෍

𝑖

෍

𝑗<𝑖

𝑦𝑖
2𝑦𝑗

2

= − ෍

𝑖

෍

𝑗<𝑖

1 = −0.5𝑁(𝑁 − 1)

• This is the lowest possible energy value for the network for
binary weights

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

61

Storing specific patterns

𝐸 = − ෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖 = − ෍

𝑖

෍

𝑗<𝑖

𝑦𝑖
2𝑦𝑗

2

= − ෍

𝑖

෍

𝑗<𝑖

1 = −0.5𝑁(𝑁 − 1)

• This is the lowest possible energy value for the network for
binary weights

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

62

The pattern is STABLE

Hebbian learning: Storing a 4-bit pattern

• Left: Pattern stored. Right: Energy map

• Stored pattern has lowest energy

• Gradation of energy ensures stored pattern (or its ghost) is recalled from
everywhere
– In the absence of a bias, if P is a memory, -P is also a memory because PTWP = (-P)TW(-P) 63

Storing multiple patterns

• To store more than one pattern

𝑤𝑗𝑖 =
1

𝑁
෍

𝐲𝑝∈{𝐲𝑝}

𝑦𝑖
𝑝

𝑦𝑗
𝑝

• {𝐲𝑝} is the set of patterns to store

• Super/subscript 𝑝 represents the specific pattern

• 𝑁 is the number of patterns

1

-1

-1

-1 1

1

1

-1

1 -1

64

How many patterns can we store?

• Hopfield: For a network of 𝑁 neurons can store up to

~0.15𝑁 random patterns through Hebbian learning

– Provided they are “far” enough

• Where did this number come from?

– Proof on slides
65

Observations

• Can store up to 0.14N random (uncorrelated)
patterns with moderate recall error (0.4%)
using Hebbian learning

– Many “parasitic” patterns

• Undesired patterns that also become stable or
attractors

• In reality, the net has a capacity to store more
than 0.14N patterns

93

Parasitic Patterns

• Parasitic patterns can occur because sums of odd numbers
of stored patterns are also stable for Hebbian learning:

– 𝐲𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒 = 𝑠𝑖𝑔𝑛 𝐲𝑎 + 𝐲𝑏 + 𝐲𝑐

• They are also from other random local energy minima from
the weights matrices themselves

94

state

Energy

Target patterns Parasites

Capacity

• Seems possible to store K > 0.14N patterns

– i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

– Possible to make more than 0.14N patterns at-least 1-bit stable

• Patterns that are non-orthogonal easier to remember

– I.e. patterns that are closer are easier to remember than
patterns that are farther!!

• Can we attempt to get greater control on the process than
Hebbian learning gives us?

– Can we do better than Hebbian learning?

• Better capacity and fewer spurious memories?

95

Story so far
• A Hopfield network is a loopy binary net with symmetric connections

– Neurons try to align themselves to the local field caused by other neurons

• Given an initial configuration, the patterns of neurons in the net will evolve until
the “energy” of the network achieves a local minimum

– The network acts as a content-addressable memory
• Given a damaged memory, it can evolve to recall the memory fully

• The network must be designed to store the desired memories

– Memory patterns must be stationary and stable on the energy contour

• Network memory can be trained by Hebbian learning

– Guarantees that a network of N bits trained via Hebbian learning can store 0.14N
random patterns with less than 0.4% probability that they will be unstable

• However, empirically it appears that we may sometimes be able to store more
than 0.14N patterns

96

Poll 3

97

Mark all that are true

• We can try to “assign” memories to a Hopfield network through Hebbian learning

of the weights matrix

• All patterns learned through Hebbian learning will be “remembered”

• The N-bit Hopfield network has the capacity to remember up to 0.14N patterns

Poll 3

98

Mark all that are true

• We can try to “assign” memories to a Hopfield network through Hebbian learning

of the weights matrix

• All patterns learned through Hebbian learning will be “remembered”

• The N-bit Hopfield network has the capacity to remember up to 0.14N patterns

A network can store multiple patterns

• Every stable point is a stored pattern

• So, we could design the net to store multiple patterns

– Remember that every stored pattern 𝑃 is actually two stored patterns, 𝑃 and
− 𝑃

• How many patterns can we store intentionally?

state

PE

1

-1

-1

-1 1

1

1

-1

1 -1

99

Patterns you can store

• All patterns are on the corners of a hypercube

– If a pattern is stored, it’s “ghost” is stored as well

– Intuitively, patterns must ideally be maximally far apart

Stored patterns
Ghosts (negations)

100

Evolution of the network
• Note: for real vectors 𝑠𝑖𝑔𝑛 𝐲 is a projection

– Projects 𝐲 onto the nearest corner of the hypercube

– It “quantizes” the space into orthants

• Response to field: 𝐲 ← 𝑠𝑖𝑔𝑛 𝐖𝐲

– Each step rotates the vector 𝐲 and then projects it onto the nearest
corner

101

𝐲 𝐖𝐲

Projection: 𝑠𝑖𝑔𝑛 𝐖𝐲

1

1

-1

-1 𝐲

𝐖𝐲

sign(𝐖𝐲)
Projection

Transform

2D example 3D example

Storing patterns

• A pattern 𝐲𝑃 is stored if:
– 𝑠𝑖𝑔𝑛 𝐖𝐲𝑝 = 𝐲𝑝 for all target patterns

• 𝐖𝐲𝑝 is in the same orthant as 𝐲𝑝

• Training: Design 𝐖 such that this holds

• Simple solution: 𝐲𝑝 is an Eigenvector of 𝐖
– And the corresponding Eigenvalue is positive

𝐖𝐲𝑝 = 𝜆𝐲𝑝

– More generally orthant(𝐖𝐲𝑝) = orthant(𝐲𝑝)

• How many such 𝐲𝑝can we have?

102

Only N patterns?

• Symmetric weight matrices have orthogonal Eigen vectors

• You can have max 𝑁 orthogonal vectors in an 𝑁-dimensional
space

104

(1,1)

(1,-1)

random fact that should interest you

• The Eigenvectors of any symmetric matrix 𝐖
are orthogonal

• The Eigenvalues may be positive or negative

105

Storing patterns

• Any (binary) eigen vector with a real eigen
value is stored

𝐲𝑝 ← 𝑠𝑖𝑔𝑛 𝐖𝐲𝑝 = 𝑠𝑖𝑔𝑛(𝜆𝒚𝑝) = ±𝐲𝑝

• A square matrix 𝐖 can have up to 𝑁 eigen
vectors
– So, we can “intentionally” store up to 𝑁 patterns

• Problem?

106

Storing 𝑵 orthogonal patterns
• The 𝑁 Eigenvectors 𝐲1, 𝐲2, … , 𝐲𝑁 span the space

• Any pattern 𝐲 can be written as

𝐲 = 𝑎1𝐲1 + 𝑎2𝐲2 + ⋯ + 𝑎𝑁𝐲𝑁

𝐖𝐲 = 𝑎1𝐖𝐲1 + 𝑎2𝐖𝐲2 + ⋯ + 𝑎𝑁𝐖𝐲𝑁

= 𝑎1𝜆1𝐲1 + 𝑎2𝜆2𝐲2 + ⋯ + 𝑎𝑁𝜆𝑁𝐲𝑁

• Many of these will have the form
sign 𝐖𝐲 = 𝐲

• Spurious memories

• The fewer memories we store, and the more distant they
are, the more likely we are to eliminate spurious memories

107

The bottom line

• With a network of 𝑁 units (i.e. 𝑁-bit patterns)

• The maximum number of stationary patterns is actually
exponential in 𝑁

– McElice and Posner, 84’

– E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stationary

• For a specific set of 𝐾 patterns, we can always build a
network for which all 𝐾 patterns are stable provided 𝐾 ≤ 𝑁

– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN

– McElice et. Al. 87’

– But this may come with many “parasitic” memories

108

The bottom line

• With a network of 𝑁 units (i.e. 𝑁-bit patterns)

• The maximum number of stable patterns is actually
exponential in 𝑁

– McElice and Posner, 84’

– E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stable

• For a specific set of 𝐾 patterns, we can always build a
network for which all 𝐾 patterns are stable provided 𝐾 ≤ 𝑁

– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN

– McElice et. Al. 87’

– But this may come with many “parasitic” memories

109

Can we do something
about this?

How do we find this
network?

Storing a pattern

• Design {𝑤𝑖𝑗} such that the energy is a local
minimum at the desired 𝑃 = {𝑦𝑖}

– Recall: the evolution is 𝑌 ← 𝑠𝑖𝑔𝑛(𝑊𝑌)

– For static patterns, 𝑠𝑖𝑔𝑛(𝑊𝑌) = 𝑌

– For stable patterns 𝑠𝑖𝑔𝑛(𝑊(𝑌 + 𝜖)) = 𝑌 for small 𝜖

𝐸 = − ෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖
1

-1

-1

-1 1

1

1

-1

1 -1

110

Storing a pattern

• Math: the ‘stable’ patterns must be close to the Eigen

vectors of 𝑊

– For a network with 𝑁 neurons, we can store at most 𝑁

patterns reliably

– For the rest, 𝑠𝑖𝑔𝑛(𝑊𝑌) may end up at a different pattern

𝐸 = − ෍

𝑖

෍

𝑗<𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖
1

-1

-1

-1 1

1

1

-1

1 -1

111

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns

– So that they are unstable and evolve into one of

the target patterns

𝐸 = −
1

2
𝐲𝑇𝐖𝐲 − 𝐛𝑇𝐲

112

Estimating the Network

• Estimate 𝐖 (and 𝐛) such that

– 𝐸 is minimized for 𝐲1, 𝐲2, … , 𝐲𝑃

– 𝐸 is maximized for all other 𝐲

• Caveat: Unrealistic to expect to store more than

𝑁 patterns, but can we make those 𝑁 patterns

memorable

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲 − 𝐛𝑇𝐲

113

Optimizing W (and b)

• Minimize total energy of target patterns

– Problem with this?

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

114

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲)

The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target

patterns

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

115

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

116

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating

– More repetitions → greater emphasis

117

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating

– More repetitions → greater emphasis

• How many of these?

– Do we need to include all of them?

– Are all equally important?
118

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

The training again..

• Note the energy contour of a Hopfield
network for any weight 𝐖

119

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

120

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

121

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys

– If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

122

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for

the current 𝐖?

123

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

state

Energy

Identifying the valleys..

124state

Energy

• Initialize the network randomly and let it evolve

– It will settle in a valley

Training the Hopfield network

• Initialize 𝐖

• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve

– And settle at a valley

• Compute the total outer product of valley patterns

• Update weights
125

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Training the Hopfield network: SGD
version

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:
– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley 𝐲𝑣

– Update weights

• 𝐖 = 𝐖 + 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑣𝐲𝑣

𝑇

126

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Training the Hopfield network

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:
– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley 𝐲𝑣

– Update weights

• 𝐖 = 𝐖 + 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑣𝐲𝑣

𝑇

127

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Which valleys?

128state

Energy

• Should we randomly sample valleys?

– Are all valleys equally important?

Which valleys?

129state

Energy

• Should we randomly sample valleys?

– Are all valleys equally important?

• Major requirement: memories must be stable

– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

130state

Energy

• Initialize the network at valid memories and let it evolve

– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize 𝐖

• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve

– And settle at a valley

• Compute the total outer product of valley patterns

• Update weights
131

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Training the Hopfield network: SGD
version

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:
– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at 𝐲𝑝 and let it evolve
• And settle at a valley 𝐲𝑣

– Update weights

• 𝐖 = 𝐖 + 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑣𝐲𝑣

𝑇

132

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

(𝐲𝐲𝑇 − 𝐲𝐯𝐲𝒗
𝑇)

A possible problem

133state

Energy

• What if there’s another target pattern

downvalley

– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

134state

Energy

A related issue

• Really no need to raise the entire surface, or even
every valley

• Raise the neighborhood of each target memory
– Sufficient to make the memory a valley

– The broader the neighborhood considered, the
broader the valley

135state

Energy

Raising the neighborhood

136state

Energy

• Starting from a target pattern, let the network

evolve only a few steps

– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:

– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at 𝐲𝑝 and let it evolve a few steps (2-4)

• And arrive at a down-valley position 𝐲𝑑

– Update weights

• 𝐖 = 𝐖 + 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑑𝐲𝑑

𝑇

137

𝐖 = 𝐖 + 𝜂 ෍

𝐲∈𝐘𝑃

(𝐲𝐲𝑇 − 𝐲𝒅𝐲𝒅
𝑇)

Poll 4

• Mark all statements that are true

– Hopfield networks can be trained using gradient descent

– Each gradient descent step is identical to Hebbian learn

where we learn target patterns and unlearn non-target

ones

– It is necessary to update parameters for *all* non-target

patterns

– Each update takes many steps of computation for each

training instance because the network iterations must

converge to local minima

138

Poll 4

• Mark all statements that are true

– Hopfield networks can be trained using gradient descent

– Each gradient descent step is identical to Hebbian learn

where we learn target patterns and unlearn non-target

ones

– It is necessary to update parameters for *all* non-target

patterns

– Each update takes many steps of computation for each

training instance because the network iterations must

converge to local minima

139

Story so far

• Hopfield nets with 𝑁 neurons can store up to

𝑁 random patterns

– But comes with many parasitic memories

• Networks that store 𝑂(𝑁) memories can be

trained through optimization

– By minimizing the energy of the target patterns,

while increasing the energy of the neighboring

patterns

140

Storing more than N patterns

• The memory capacity of an 𝑁-bit network is at
most 𝑁

– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985

• Although “information capacity” is 𝒪(𝑁3)

• How do we increase the capacity of the network

– How to store more than 𝑁 patterns

• Next class…

141

	Default Section
	Slide 1: Neural Networks
	Slide 2
	Slide 3: Story so far
	Slide 4: Consider this loopy network
	Slide 5: Consider this loopy network
	Slide 6: Hopfield Net
	Slide 7: Loopy network
	Slide 8: Loopy network
	Slide 9: Loopy network
	Slide 10: Example
	Slide 11: Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Loopy network
	Slide 15: 20 evolutions of a loopy net
	Slide 16: 120 evolutions of a loopy net
	Slide 17: Loopy network
	Slide 18: Loopy network
	Slide 19: Loopy network
	Slide 20: Globally
	Slide 21: Hopfield Net
	Slide 22: Poll 1
	Slide 23: Story so far
	Slide 24: Poll 1
	Slide 25: The Energy of a Hopfield Net
	Slide 26: The Energy of a Hopfield Net
	Slide 27: Analogy: Spin Glass
	Slide 28: Analogy: Spin Glasses
	Slide 29: Analogy: Spin Glasses
	Slide 30: Analogy: Spin Glasses
	Slide 31: Analogy: Spin Glasses
	Slide 32: Analogy: Spin Glasses
	Slide 33: Spin Glasses
	Slide 34: Hopfield Network
	Slide 35: Hopfield Network
	Slide 36: Hopfield Network
	Slide 37: Evolution
	Slide 38: Content-addressable memory
	Slide 39: Examples: Content addressable memory
	Slide 40: Hopfield net examples
	Slide 41: Computational algorithm
	Slide 42: Computational algorithm
	Slide 43: Story so far
	Slide 44: Poll 2
	Slide 45: Poll 2
	Slide 46: Issues
	Slide 47: Issues
	Slide 48: How do we remember a specific pattern?
	Slide 49: Memorized patterns are stable Energy states
	Slide 50: The Energy function
	Slide 51: The Energy function
	Slide 52: The energy function
	Slide 53: The energy function
	Slide 54: Requirements for memory
	Slide 55: The problem of ‘creating’ memories
	Slide 56: Storing a pattern
	Slide 57: Storing specific patterns
	Slide 58: Storing specific patterns
	Slide 59: Storing specific patterns
	Slide 60: Storing specific patterns
	Slide 61: Storing specific patterns
	Slide 62: Storing specific patterns
	Slide 63: Hebbian learning: Storing a 4-bit pattern
	Slide 64: Storing multiple patterns
	Slide 65: How many patterns can we store?
	Slide 93: Observations
	Slide 94: Parasitic Patterns
	Slide 95: Capacity
	Slide 96: Story so far
	Slide 97: Poll 3
	Slide 98: Poll 3
	Slide 99: A network can store multiple patterns
	Slide 100: Patterns you can store
	Slide 101: Evolution of the network
	Slide 102: Storing patterns
	Slide 104: Only N patterns?
	Slide 105: random fact that should interest you
	Slide 106: Storing patterns
	Slide 107: Storing bold italic cap N orthogonal patterns
	Slide 108: The bottom line
	Slide 109: The bottom line
	Slide 110: Storing a pattern
	Slide 111: Storing a pattern
	Slide 112: Consider the energy function
	Slide 113: Estimating the Network
	Slide 114: Optimizing W (and b)
	Slide 115: Optimizing W
	Slide 116: Optimizing W
	Slide 117: Optimizing W
	Slide 118: Optimizing W
	Slide 119: The training again..
	Slide 120: The training again
	Slide 121: The negative class
	Slide 122: Option 1: Focus on the valleys
	Slide 123: Identifying the valleys..
	Slide 124: Identifying the valleys..
	Slide 125: Training the Hopfield network
	Slide 126: Training the Hopfield network: SGD version
	Slide 127: Training the Hopfield network
	Slide 128: Which valleys?
	Slide 129: Which valleys?
	Slide 130: Identifying the valleys..
	Slide 131: Training the Hopfield network
	Slide 132: Training the Hopfield network: SGD version
	Slide 133: A possible problem
	Slide 134: A related issue
	Slide 135: A related issue
	Slide 136: Raising the neighborhood
	Slide 137: Training the Hopfield network: SGD version
	Slide 138: Poll 4
	Slide 139: Poll 4
	Slide 140: Story so far
	Slide 141: Storing more than N patterns

