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2024 Nobel Prize in Physics

They trained artificial neural networks using
physics

This year’s two Nobel Laureates in Physics have used tools from physics to
develop methods that are the foundation of today’s powerful machine
learning. John Hopfield created an associative memory that can store and
reconstruct images and other types of patterns in data. Geoffrey Hinton
invented a method that can autonomously find properties in data, and so
perform tasks such as identifying specific elements in pictures.



Story so far

* Neural networks for computation
e All feedforward structures

e But what about..

e
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Consider this loopy network

yi= 0 (2 wj;yj + bi)

0(z) = {ii i;i >0

J#i

The output of a neuron
affects the input to the
neuron

e Each neuron is a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs signals to every other neuron
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Hopfield Net

+1ifz>0
G(Z)Z{—lifZSO
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A symmetric network:
Wij = Wji

e Each neuron is a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs signals to every other neuron



Loopy network

yi= 0 (2 wj;yj + bi)

J#Fi

+1ifz>0
6(2) :{—1ifZSO

M H oe: ”
At each time each neuron receives a “field” 2. ;.; w;;y; + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Loopy network

Pl AN Vi = G‘)(Z:Wjiy]"l‘bi)
Yi 7 —Yi

J#Fi
ifyi(\z,jiiwiiyi_l_bi) <0 +1ifz>0

6(2) = {—1 if z< 0

M . oe: ”
At each time each neuron receives a “field” 2. ;.; w;;y; + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Loopy network

Pl AN Vi = @(ijin‘l'bi)
Yi = —Yi JEi
if J’i(\zjiiWiiJ’i + bi) <0

+1ifz>0

O(z) = .
(2) —-1ifz<0
A neuron "“flips” if weighted sum of other

neurons' outputs is of the opposite signto BS a “field” ), jzi Wiy + b;
its own current (output) value . .
‘ S own sign, it does not
But this may cause other neurons to flip!

T \-JVVI T\A

* |f the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Example
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-10 1

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1



Example

10

-10 1

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1



Example

10

-10 1

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1



Example

10

-10 1

 Red edges are +1, blue edges are -1
* Yellow nodes are -1, black nodes are +1



Loopy network

4 4

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

» And so on...
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20 evolutions of a loopy net

+1ifz>0
0(2) :{—1ifzs0

yi= 0 (Z w;jiyj + b;

J#I

|

A neuron “flips" if
weighted sum of other
neuron's outputs is of
the opposite sign

But this may cause
other neurons to flip!

* All neurons which do not “align” with the local

field “flip”
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120 evolutions of a loopy net

* All neurons which do not “align” with the local
field “flip”



Loopy network

4 4

* |f the sign of the field at any neuron opposes
its own sign, it “flips” to match the field

— Which will change the field at other nodes
* Which may then flip

— Which may cause other neurons including the first one to
flip...

* Will this behavior continue for ever??
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Loopy network

yi= 0 ijin + b;

JE

+1ifz>0
6(2) ={—1ifz£0

* Lety; bethe output of the i-th neuron just before it responds to the current field

e Let y;’ be the output of the i-th neuron just after it responds to the current field

« Ify; = Sign(zjiinin + bi)' then y;" = y;

— If the sign of the field matches its own sign, it does not flip

Vi (2 wj;iyj + bi) — Y (2 wj;iyj + bi) =0

JE! JE!
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Loopy network

yi= 0 ijin‘l'bi

J#Fi

+1ifz>0
0(2) :{—1ifzSO

o Ify] % sign(T . wiiy; + by), thenyF = —y7

Vi (2 wjiyj + bi) — Y (Z wjiyj + bi) = 2y;" (2 wjiyj + bi)

J#i J#i J#I

— This term is always positive!
* Every flip of a neuron is guaranteed to locally increase

Vi (Z wjiyj + bi)

E3}
J 19



Globally

Consider the following sum across all nodes

D(y1,y2, - Yn) = 23’1 (Z w;;iy; + b; >

[ JEI

z Wi Vi, z b;y;

NES
— Assume w;; =0

For any unit k that “flips” because of the local field

AD(y,) = D(yl, s Vi ...,yN) — D(yl, s Vies ...,yN)
This is strictly positive

AD(yy) = 2y;¢ <2 Wjry; + bk)

J*k
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Hopfield Net

e

Flipping a unit will result in an increase (non-decrease) of

D = 2 wiiyiy; + 2 b;y;

I,j#i

D is bounded

The minimum increment of D in a flip is

JED!

AD. ;.= min
Tty i=1..N}

Any sequence of flips must converge in a finite number of steps

21



Poll 1

Hopfield networks are loopy networks whose output activations
“evolve” over time

e True
e False

Hopfield networks will evolve continuously, forever

e True
e False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

e True
e False



Story so far

A Hopfield network is a loopy binary network with symmetric connections

Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons

— The local “field”

Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner

— Causing the field at other neurons to change, potentially making them flip

Each evolution of the network is guaranteed to decrease the “energy” of
the network

— The energy is lower bounded and the decrements are upper bounded, so the
network is guaranteed to converge to a stable state in a finite number of steps



Poll 1

Hopfield networks are loopy networks whose output activations
“evolve” over time

e True
e False

Hopfield networks will evolve continuously, forever

e True
e False

Hopfield networks can also be viewed as infinitely deep shared
parameter MLPs

e True
e False



The Energy of a Hopfield Net

* Define the Energy of the network as

——(2 WijYiVj — 2 bm)

NE
— Just 0.5 times the negative of D
* The 0.5 is only needed for convention
* The evolution of a Hopfield network
constantly decreases its energy



The Energy of a Hopfield Net

* Define the Energy of the network as

——(2 WijYiVj — 2 bm)

NEI

— Just 0.5 times the negative of D

* The evolution of a Hopfield network
constantly decreases its energy

 Where did this “energy” concept suddenly sprout
from?
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Magnetic diploes in a disordered magnetic material
Each dipole tries to align itself to the local field
— In doing so it may flip
This will change fields at other dipoles
— Which may flip
Which changes the field at the current dipole...
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Analogy: Spin Glasses

| — il —;._'-_..- =2l
il el il = f—
l o f— - [ ° .
— - = T Total field at current dipole:
S -u- N .
I - =~
il y - P— | -
| — o | —asml {
| S s | i ] ] f— s . .
[, gy " fp) = E Jjixj + b
Y | - ~niet - J#1
pn— Tl
Yy - = Intrinsic external
= -

e p; is vector position of i-th dipole

* The field at any dipole is the sum of the field contributions of all other dipoles

* The contribution of a dipole to the field at any point depends on interaction |
— Derived from the “Ising” model for magnetic materials (Ising and Lenz, 1924)
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Analogy: Spin Glasses

== = = = Total field at current dipole:
— e e f(pi):z]jixj"l'bi
e e = J7

-ﬂ.-_. "'-__ e —il — : |
™M - T Response of current dipole
e i Rt e

e e s . = )X if Slgn(xi f(pi)) =1
- == l —x; otherwise
sl

* A Dipole flips if it is misaligned with the field
in its location
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Analogy: Spin Glasses

= T = = Total field at current dipole:
ey
= -l - f (i) :z./jixj‘l'bi
— p— et N - m—
.--,.._ "';____ = o il J#1
-ﬂ.-_. "'-__ e —il — : |
™M - T Response of current dipole
-l = == .
e e s . = % if Slgn(xi f(pi)) =1
- == l —x; otherwise
- - == 4

Dipoles will keep flipping
— Aflipped dipole changes the field at other dipoles
* Some of which will flip
— Which will change the field at the current dipole
* Which may flip
— Etc..

30



Analogy: Spin Glasses

— =. == & _|  Totalfield at current dipole:

15 r"_-:_ - == f(Pi)=Zinxj+bi

J#i

Response of current dipole

* When will it stop??? ={ if sign(x; f(p) = 1

—X; otherwise
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Analogy: Spin Glasses

= T = = Total field at current dipole:
ey
= -l - f (i) :z]jixj"l'bi
-— p— et N - m—
R - "';____ = a— JE
-ﬂ.-_. "'-__ e —il — : |
™M - T Response of current dipole
| - = e
e v = JXi if sign(x; f(py)) = 1
o AT o ' —x; otherwise
; - o |
-.-..-.- T -

The “Hamiltonian” (total energy) of the system

E= —% . xif (pi) = _szjixixj _zbixi

i i j>i i
The system evolves to minimize the energy

— Dipoles stop flipping if flips result in increase of energy
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Spin Glasses
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PE

v

state

The system stops at one of its stable configurations
— Where energy is a local minimum

Any small jitter from this stable configuration returns it to the stable
configuration

— l.e. the system remembers its stable state and returns to it .



Hopfield Network

= 0 (2 W]ly] + bl)

JE

+1ifz>0
6(2) ={—1ifz£0

= ——(Z WijYiYj Z bm)

i,j#1i

* This is analogous to the potential energy of a spin glass

— The system will evolve until the energy hits a local minimum

34



Hopfield Network

The bias is equivalent to having a single extra unit pegged
at 1

We will not always explicitly show the bias

Often, in fact, a bias is not used, although in our case we
are just being lazy in not showing it explicitly

35




Hopfield Network

(g

+1ifz>0
6(2) ={—1ifz£0

E=—5 ) wjyy;
i,j<i
* This is analogous to the potential energy of a spin glass
— The system will evolve until the energy hits a local minimum

* Above equation is a factor of 0.5 off from earlier definition for
conformity with thermodynamic system -



Evolution

1
E= ) Z WijYilj

ij<i

2
w
= >
state

PE

e The network will evolve until it arrives at a
local minimum in the energy contour
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Content-addressable memory

2™\

PE

state
* Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory .



Examples: Content addressable
memory

Hoptield network reconstructing degraded inages
tromn nedsy (top) o partial (bottom) cues.

* http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/



Hopfield net examples

40



Computational algorithm

1. Initialize network with initial pattern

y;(0) = x;, 0<i<N-1

2. lterate until convergence

J#i

* Verysimple
* Updates can be done sequentially, or all at once

* (Convergence
E=- z Z WjiVjYi

i j>i
does not change significantly any more



Computational algorithm

1. Initialize network with initial pattern

y = X, 0<i<N-1

2. lterate until convergence
y = 0(Wy)

Writing y = [}ﬁ, Y2,Y3, ryN]T
and arranging the weights as a matrix W

* Verysimple
* Updates can be done sequentially, or all at once
* Convergence
E = —0.5y "Wy
does not change significantly any more



Story so far

A Hopfield network is a loopy binary network with symmetric
connections

— Neurons try to align themselves to the local field caused by other neurons

e Given an initial configuration, the patterns of neurons in the net will
evolve until the “energy” of the network achieves a local minimum

— The evolution will be monotonic in total energy
— The dynamics of a Hopfield network mimic those of a spin glass
— The network is symmetric: if a pattern Y is a local minimum, sois-Y

 The network acts as a content-addressable memory

— If you initialize the network with a somewhat damaged version of a local-
minimum pattern, it will evolve into that pattern

— Effectively “recalling” the correct pattern, from a damaged/incomplete
version



Poll 2

Mark all that are correct about Hopfield nets

e The network activations evolve until the energy of the net arrives at a local
minimum
e Hopfield networks are a form of content addressable memory

e |tis possible to analytically determine the stored memories by inspecting
the weights matrix



Poll 2

Mark all that are correct about Hopfield nets

e The network activations evolve until the energy of the net arrives at a
local minimum

e Hopfield networks are a form of content addressable memory

e |tis possible to analytically determine the stored memories by inspecting
the weights matrix
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Issues

* How do we make the network store a specific
pattern or set of patterns?

* How many patterns can we store?

* How to “retrieve” patterns better..



Issues

e How do we make the network store a specific
pattern or set of patterns?
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How do we remember a specific
pattern?

How do we teach a network
to “remember” this image

For an image with N pixels we need a network
with N neurons

Every neuron connects to every other neuron

Weights are symmetric (not mandatory)
N(N-1)

weights in all



Memorized patterns are stable Energy
states

PE

state

 The energy contour is a function of weights W/
e Memories are local minima in energy surface

* There can be multiple of them

— How? The Energy function is quadratic, how does it have multiple minima?
49



The Energy function

* E is a concave quadratic

50



The Energy function

©

 E is a concave quadratic

— Shown from above (assuming O bias)
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The energy function

=

— Shown from above (assuming 0 bias)

E is a concave quadratic

The minima will lie on the boundaries of the hypercube
— But components of y can only take values +1
— l.e. y lies on the corners of the unit hypercube
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The energy function

d

patterns

/7
L

v

* The stored values of y are the ones where all

adjacent corners are lower on the quadratic

* We can have multiple of them
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Requirements for memory

2\

PE

stationary

v

state

e Stationarity: A system in that state should not change spontaneously
— Wherever the gradient of the energy contour is 0

e Stability: If we perturb the system slightly it must return to the memory
state

— Local minima in energy
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The problem of ‘creating’ memories

arget \
A emOry

False memory

PE

 We create a memory by choosing the weights W
such that the energy contour has local minima at
the target patterns and nowhere else
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Storing a pattern

* Design {w;} such that the energy is a local
minimum at the desired P = {y;}



Storing specific patterns

* Storing 1 pattern: We want

sign (2 le-yj) =vy; VI

J#Fi
* This is a stationary pattern

57



Storing specific patterns

HEBBIAN LEARNING:
Wji = YiVi

* Storing 1 pattern: We want

sign (2 le-yj) =vy; VI

J#Fi
* This is a stationary pattern
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Storing specific patterns

HEBBIAN LEARNING:
Wji = YjYi

. Sign(Zjiinin) = Sign(ZjiinYin)

= Sign(

J#i

2 y,-zyi) = sign(y;) = y;

59



Storing specific patterns

HEBBIAN LEARNING:
Wji = YjYi

The pattern is stationary

. Sign(Zjiinin) = Sign(ZjiinYin)

= sign (2 y]'zyl') = sign(y;) = y;

J#i



Storing specific patterns

HEBBIAN LEARNING:
Wji = YjYi

E = —zzwji)’j)’i = —ZZ%‘ZY]’Z

i j<i

i j<i

— —221 — _0.5N(N — 1)

binary weights

i j<i

* This is the lowest possible energy value for the network for

61



Storing specific patterns

HEBBIAN LEARNING:
Wji = YjYi

The pattern is STABLE
E==) ) Wjyi==) ) ViVj

T j<i T j<i
— —Zz 1= —05N(N — 1)
T j<i

* This is the lowest possible energy value for the network for
binary weights



Hebbian learning: Storing a 4-bit pattern

-1,-1

-1,-1 -1.1 1.1 1.-1

* Left: Pattern stored. Right: Energy map
e Stored pattern has lowest energy

» Gradation of energy ensures stored pattern (or its ghost) is recalled from
everywhere

— In the absence of a bias, if P is a memory, -P is also a memory because PTWP = (-P)TW(-P) ©3



Storing multiple patterns

{Vp} is the set of patterns to store

Super/subscript p represents the specific pattern
N is the number of patterns

64



How many patterns can we store?

* Hopfield: For a network of N neurons can store up to
~0.15N random patterns through Hebbian learning

— Provided they are “far” enough

e Where did this number come from?

— Proof on slides

65



Observations

e Can store up to 0.14N random (uncorrelated)
patterns with moderate recall error (0.4%)
using Hebbian learning
— Many “parasitic” patterns

* Undesired patterns that also become stable or
attractors

* |In reality, the net has a capacity to store more
than 0.14N patterns



Parasitic Patterns

Target patterns Parasites

Energy %

* Parasitic patterns can occur because sums of odd numbers
of stored patterns are also stable for Hebbian learning:

v

state

— Yoarasite = Sign(Ya +¥p +¥e)
* They are also from other random local energy minima from
the weights matrices themselves

94



Capacity

Seems possible to store K> 0.14N patterns

— i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

— Possible to make more than 0.14N patterns at-least 1-bit stable

Patterns that are non-orthogonal easier to remember

— |.e. patterns that are closer are easier to remember than
patterns that are farther!!

Can we attempt to get greater control on the process than
Hebbian learning gives us?

— Can we do better than Hebbian learning?

» Better capacity and fewer spurious memories?



Story so far

A Hopfield network is a loopy binary net with symmetric connections
— Neurons try to align themselves to the local field caused by other neurons

Given an initial configuration, the patterns of neurons in the net will evolve until
the “energy” of the network achieves a local minimum

— The network acts as a content-addressable memory

* Given a damaged memory, it can evolve to recall the memory fully

The network must be designed to store the desired memories

— Memory patterns must be stationary and stable on the energy contour

Network memory can be trained by Hebbian learning

— Guarantees that a network of N bits trained via Hebbian learning can store 0.14N
random patterns with less than 0.4% probability that they will be unstable

However, empirically it appears that we may sometimes be able to store more
than 0.14N patterns



Poll 3

Mark all that are true

e We can try to “assign” memories to a Hopfield network through Hebbian learning
of the weights matrix

e All patterns learned through Hebbian learning will be “remembered”

e The N-bit Hopfield network has the capacity to remember up to 0.14N patterns



Poll 3

Mark all that are true

e We can try to “assign” memories to a Hopfield network through Hebbian learning
of the weights matrix

e All patterns learned through Hebbian learning will be “remembered”

e The N-bit Hopfield network has the capacity to remember up to 0.14N patterns
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A network can store multiple patterns

PE

\ 4

state

* Every stable point is a stored pattern

* So, we could design the net to store multiple patterns
— Remember that every stored pattern P is actually two stored patterns, P and
—P

* How many patterns can we store intentionally? .



Patterns you can store

Ghosts (negations)

Stored patterns

A
4

e All patterns are on the corners of a hypercube

o

— If a pattern is stored, it’s “ghost” is stored as well

— Intuitively, patterns must ideally be maximally far apart



Evolution of the network

Note: for real vectors sign(y)is a projection
— Projects y onto the nearest corner of the hypercube

— It “guantizes” the space into orthants

Response to field: y « sign(Wy)
— Each step rotates the vector y and then projects it onto the nearest
Projection: sign(Wy)

corner
2D example 3D example /
- . - y ‘/,’ W
1 sign(Wy) : y
rojection 5
tli' Wy 5 /
-1 a
A ! E
A 1 ‘ '
,I
Transform
U

U
/
4

101
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Storing patterns

A pattern yp is stored if:

— Sign(Wyp) =y, for all target patterns
* Wy, isin the same orthant as y,,

Training: Design W such that this holds

Simple solution: y,, is an Eigenvector of W
— And the corresponding Eigenvalue is positive

Wy, = 1y,
— More generally orthant(Wy,) = orthant(y,)

How many such y,can we have?



Only N patterns?

(1,1)

(11_1)

* Symmetric weight matrices have orthogonal Eigen vectors

* You can have max N orthogonal vectors in an N-dimensional
space
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random fact that should interest you

* The Eigenvectors of any symmetric matrix W
are orthogonal

* The Eigenvalues may be positive or negative



Storing patterns

* Any (binary) eigen vector with a real eigen
value is stored

Vp < Sign(Wyp) = sign(ly,) = 1y,

* A square matrix W can have up to N eigen
vectors

— So, we can “intentionally” store up to N patterns

* Problem?



Storing N orthogonal patterns

The N Eigenvectors yy, V>, ..., Yy Span the space
Any pattern y can be written as
y= a1y, +azy; + -+ ayyn
Wy = a;Wy; + a, Wy, + --- + ayWyy
= a1 y1 + axAzy, + -+ anAyyn

Many of these will have the form
sign(Wy) =y
Spurious memories

The fewer memories we store, and the more distant they
are, the more likely we are to eliminate spurious memories

107



The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stationary patterns is actually
exponential in N
— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stationary

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* For large N, the upper bound on K is actually N/4logN
— McElice et. Al. 87’

— But this may come with many “parasitic” memories
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The bottom line

With a network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

How do we find this

— E.g. when we had the network?

patterns, all patterns are stabie

For a specific set of K patterns, we can always build a

network for which all K patterns are stable nrovided K < N

Can we do something
about this?

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is ac
— McElice et. Al. 87’

— But this may come with many “parasitic” memories

109



Storing a pattern

* Design {w;;} such that the energy is a local
minimum at the desired P = {y,}
— Recall: the evolutionis Y « sign(WY)
— For static patterns, sign(WY) =Y
— For stable patterns sign(W (Y +€)) = Y forsmall €

110



Storing a pattern

 Math: the ‘stable’ patterns must be close to the Eigen
vectors of W

— For a network with N neurons, we can store at most N
patterns reliably

— For therest, sign(WY) may end up at a different pattern

111



Consider the energy function

1
E=—sy Wy—bly

* This must be maximally low for target patterns

* Must be maximally high for all other patterns

— So that they are unstable and evolve into one of
the target patterns

112



Estimating the Network

1
E(y) = — EyTWy — b’y

e Estimate W (and b) such that
— E is minimized for yq, yo, ..., Vp
— E is maximized for all othery

* Caveat: Unrealistic to expect to store more than
N patterns, but can we make those N patterns
memorable o



Optimizing W (and b)

1 -
E(y) = —EyTWy W = argmin E E(y)
w

YEYp
The bias can be captured by
another fixed-value component

 Minimize total energy of target patterns

— Problem with this?
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Optimizing W

1 T
E(y)=—zy Wy

2
W = argmin Z E(y) — z E(y)
Y ye yEVp

 Minimize total energy of target patterns

 Maximize the total energy of all non-target
patterns

115



Optimizing W

1 R
E(y) = —gyTWy W = argmin z E(y) — 2 E(y)
A"\
YEYp y¢Yp

* Simple gradient descent:

W=W+n<2 yy' — Eny)

yEYp Y$Yp
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Optimizing W
W=W+n(z yy' — Z ny)
YEYp y&Yp

* Can “emphasize” the importance of a pattern
by repeating

— More repetitions = greater emphasis
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Optimizing W

W=W+n<z yy' — Z ny)

yEYp Y€Yp

* Can “emphasize” the importance of a pattern
by repeating
— More repetitions = greater emphasis
* How many of these?
— Do we need to include all of them?
— Are all equally important?



The training again..

W=W+n(z yy' — Z ny)

yEYp yé€Yp

* Note the energy contour of a Hopfield
network for any weight W

Bowls will all actually be
quadratic

Energy

state
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The training again

W=W+n ZYYT—ZYYT

YEYp y&Yp

* The first term tries to minimize the energy at target patterns
— Make them local minima

— Emphasize more “important” memories by repeating them more
frequently

4 Target patterns

Energy

v

state
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The negative class
W=W+n(z yy' — Z ny)
YEYp y&Yp

 The second term tries to “raise” all non-target
patterns

— Do we need to raise everything?

Energy

121
state



Option 1: Focus on the valleys

W=W+n Eny— Z yy'

yeEYp yZYp&y=valley

* Focus on raising the valleys

— If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

Energy | ‘

state

v
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Identifying the valleys..

w=w+n<z yy” — Z ny)

yeEYp yZYp&y=valley

* Problem: How do you identify the valleys for
the current W?

Energy | ‘

state
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Identifying the valleys..

* |nitialize the network randomly and let it evolve

— |t will settle in a valley

Energy

v

124
state



Training the Hopfield network

w=w+n<2 yy” — 2 ny)

yeEYp yZYp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Randomly initialize the network several times and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights
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Training the Hopfield network: SGD

version
W=W+n Eny— 2 yy'
yeEYp yZYp&y=valley

* I|nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target patterny,
e Sampling frequency of pattern must reflect importance of pattern

— Randomly initialize the network and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,y —¥o¥7)
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Training the Hopfield network

W =W+ Eny— 2 yy'

yeEYp yZYp&y=valley

* I|nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target patterny,
. Samphngfrequency of pattern must reflect importance of pattern

- Randomly |n|t|aI|ze/the network and let it evolve
« And settle at a valley Yy

— Update weights
* W=W+n(y,y7 —voy7)
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Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

Energy | ‘

state



Which valleys?

* Should we randomly sample valleys?
— Are all valleys equally important?

* Major requirement: memories must be stable
— They must be broad valleys

e Spurious valleys in the neighborhood of
memories are more important to eliminate

Energy ‘

state




Identifying the valleys..

* |nitialize the network at valid memories and let it evolve

— It will settle in a valley. If this is not the target pattern, raise it

Energy

v
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Training the Hopfield network

w=w+n<z yy” — Z ny)

yeEYp yZYp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Initialize the network with each target pattern and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights
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Training the Hopfield network: SGD

version
W=W+rp z(ny—YVYZ)
YEYp

* I|nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target patterny,
e Sampling frequency of pattern must reflect importance of pattern

— Initialize the network at y,, and let it evolve
* And settle at a valley y,,

— Update weights
* W=W+n(y,y5 —yoy7)
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A possible problem

 What if there’s another target pattern
downvalley

— Raising it will destroy a better-represented or
stored pattern!

Energy

state



A related issue

* Really no need to raise the entire surface, or
even every valley

Energy

134
state :



A related issue

* Really no need to raise the entire surface, or even
every valley
* Raise the neighborhood of each target memory

— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state



Raising the neighborhood

* Starting from a target pattern, let the network
evolve only a few steps

— Try to raise the resultant location

* Will raise the neighborhood of targets

* Will avoid problem of down-valley targets

Energy

state



Training the Hopfield network: SGD

version
W=W+7 z(ny—deZ)
YEYp

* |nitialize W

* Do until convergence, satisfaction, or death from
boredom:
— Sample a target pattern y,,
» Sampling frequency of pattern must reflect importance of pattern
— Initialize the network at y,, and let it evolve a few steps (2-4)
* And arrive at a down-valley position y,

— Update weights
* W=W+n(yyy; — YaVa)
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Poll 4

 Mark all statements that are true
— Hopfield networks can be trained using gradient descent

— Each gradient descent step is identical to Hebbian learn
where we learn target patterns and unlearn non-target
ones

— It is necessary to update parameters for *all* non-target
patterns

— Each update takes many steps of computation for each
training instance because the network iterations must
converge to local minima



Poll 4

 Mark all statements that are true
— Hopfield networks can be trained using gradient descent

— Each gradient descent step is identical to Hebbian learn
where we learn target patterns and unlearn non-target
ones

— It is necessary to update parameters for *all* non-target
patterns

— Each update takes many steps of computation for each
training instance because the network iterations must
converge to local minima
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Story so far

* Hopfield nets with N neurons can store up to
N random patterns

— But comes with many parasitic memories

* Networks that store O(N) memories can be
trained through optimization

— By minimizing the energy of the target patterns,
while increasing the energy of the neighboring
patterns



Storing more than N patterns

* The memory capacity of an N-bit network is at
most N

— Stable patterns (not necessarily even stationary)
* Abu Mustafa and St. Jacques, 1985
e Although “information capacity” is O(N3)

* How do we increase the capacity of the network
— How to store more than N patterns

e Next class...
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