
Neural Networks

Hopfield Nets, Auto Associators,
Boltzmann machines

Spring 2025

1

2

Story so far: 2024 Nobel Prize in Physics

Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:

3

Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner
– Causing the field at other neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of
the network
– The energy is lower bounded and the decrements are upper bounded, so the

network is guaranteed to converge to a stable state in a finite number of steps

4

120 evolutions of a loopy net

• All neurons which do not “align” with the local
field “flip”

5

Story so far
• The network acts as a content-addressable

memory
– If you initialize the network with a somewhat

damaged version of a local-minimum pattern, it will
evolve into that pattern

– Effectively “recalling” the correct pattern, from a
damaged/incomplete version

6

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7

Story so far
• The network must be designed to store the desired

memories
– Memory patterns must be stationary and stable on the

energy contour

• Network memory can be trained by Hebbian learning
– Guarantees that a network of N bits trained via Hebbian

learning can store 0.14N random patterns with less than
0.4% probability that they will be unstable

• However, empirically it appears that we may
sometimes be able to store more than 0.14N patterns

8

Story so far

• Hopfield nets with neurons can store up to
random patterns

– But comes with many parasitic memories

• Networks that store memories can be
trained through optimization
– By minimizing the energy of the target patterns,

while increasing the energy of the neighboring
patterns

9

Storing more than N patterns

• The memory capacity of an -bit network is at
most
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is

• How do we increase the capacity of the
network
– How to store more than patterns

10

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

11

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

12

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

14

Visible bits

Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!

15

Visible bits Hidden bits

Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– Optimize

• How do we store the patterns?
– Standard optimization method should work 16

Visible bits Hidden bits

Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended

patterns:
– Making errors in the don’t care bits doesn’t matter

17

Visible bits Hidden bits

Poll 1
• Which of the following is true of the memory capacity of an N-bit Hopfield net

– It can store 0.14N patterns perfectly
– It can store O(N) patterns
– Patterns can be trained into the network using gradient descent

• How can we increase the memory capacity of a Hopfield net from N to N+K
– By appending K irrelevant bits to the patterns to increase pattern length (and the size of the

net) to N+K
– By using alternate optimization rules that increase the mathematical capacity of the network

• If we try to increase the capacity of the network by adding K irrelevant bits to the
patterns, it is important for the network to recall these additional K bits exactly to
recall the stored patterns
– Yes
– No

18

Poll 1
• Which of the following is true of the memory capacity of an N-bit Hopfield net

– It can store 0.14N patterns perfectly
– It can store O(N) patterns
– Patterns can be trained into the network using gradient descent

• How can we increase the memory capacity of a Hopfield net from N to N+K
– By appending K irrelevant bits to the patterns to increase pattern length (and the size of the

net) to N+K
– By using alternate optimization rules that increase the mathematical capacity of the network

• If we try to increase the capacity of the network by adding K irrelevant bits to the
patterns, it is important for the network to recall these additional K bits exactly to
recall the stored patterns
– Yes
– No

19

Robustness of recall

• The value taken by the K hidden neurons during recall
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons

20

Robustness of recall

• Also, we can have multiple extended patterns
with the same pattern over visible bits
– Can we exploit this somehow?

N Neurons K Neurons

21

Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t
care bits
– Possible to set the don’t care bits such that the overall pattern (and

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits
vary

• To exploit it properly, it helps to view the Hopfield net differently: as
a probabilistic machine

22

A return to physics…

• The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution…

23

Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of
the state
– And the expected value of the state

state

PE

The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state

at temperature is

• At each state it has a potential energy
• The internal energy of the system, representing its

capacity to do work, is the average:

The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system combines the
two terms

The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

• The probability distribution of the states at steady state
is known as the Boltzmann distribution

The Helmholtz Free Energy of a System

• Minimizing, while applying a Lagrangian

• Differentiating w.r.t.

• Solving

The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.

The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..

30

The evolution of the system

• The system probabilistically selects states with
lower energy
– With infinitesimally slow cooling, at it

arrives at the global minimal state
31

Poll 2

• A Hopfield network is a computational analogue of a deterministic
ferroelectric material
– True
– False

• The true behavior of thermodynamic systems is stochastic
– True
– False

• Hopfield networks too can be modified to emulate the stochastic
behavior of thermodynamic systems
– True
– False

32

Poll 2

• A Hopfield network is a computational analogue of a deterministic
ferroelectric material
– True
– False

• The true behavior of thermodynamic systems is stochastic
– True
– False

• Hopfield networks too can be modified to emulate the stochastic
behavior of thermodynamic systems
– True
– False

33

A probabilistic interpretation of Hopfield
Nets with thermodynamic analogy

• Instead of viewing the network as a deterministic machine, model it as a statistical
system that is in any state with probability following thermodynamic
principles

• For binary y the energy of a pattern is the analog of the negative log likelihood of a
Boltzmann distribution
– The system has a native energy for each state, which is countered by entropy
– The system “evolves” to minimize the expected energy of the system
– Minimizing energy gives us a Boltzmann distribution over states with T=1

34

The Equilibrium Distribution

• Neurons are stochastic, with disorder or entropy
– The network evolves to minimize the energy, while maximizing the

entropy

• The equilibrium probability distribution over states is the
Boltzmann distribution at T=1
– This is the probability of different states that the network will wander

over at equilibrium

Visible
Neurons

The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over
states
– Where a state is a binary string
– Specifically, at Equilibrium, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is
– It is a generative model: generates states according to

Visible
Neurons

How does a stochastic Hopfield Net
evolve

• How does this stochastic (probabilistic)
network evolve?
– What is the rule by which neurons flip?

37

The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =

38

The field at a single node

• Let and be the states with the ith bit in the and
states

•

39

The field at a single node

• Exponentiating and expanding
ೕ ೕೕಯ೔ ೔

• Giving us
ೕ ೕೕಯ೔ ೔

ೕ ೕೕಯ೔ ೔ ೕ ೕೕಯ೔ ೔

• The probability of any node taking value 1 given other node
values is a logistic

40

Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state , which

can take value 0 or 1 with a probability that depends on the local
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible
Neurons

೔

The Hopfield net is a distribution

• The Hopfield net is a probability distribution over
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the
sequence is a logistic

Visible
Neurons

೔

Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or 0 according to the

probability given above
– Gibbs sampling: Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible
Neurons

೔

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

44

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

45

Assuming T = 1

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

46

Assuming T = 1

Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

– Estimates the probability that the bit is 1.0.
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

௜ ௜

2. Iterate

௝௜ ௝

௝ஷ௜

௜

47

Assuming T = 1

The “Boltzmann” Machine

• Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at in a universe
where
– Energy landscape of a spin-glass model: Exploration and

characterization, Zhou and Wang, Phys. Review E 79, 2009

48

state

Energy

Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter
a) For

௝௜ ௝

௝ஷ௜

௜

49

Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion: Initialize the entire
network and let the entire network evolve

Including a “Temperature” term

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
50

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
51

The field quantifies the energy difference obtained by flipping the
current unit

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
52

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
53

If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter: increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior

Annealing

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values (large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For
ଵ

் ௝௜ ௝௝ஷ௜

௜

54

Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

55

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For
ଵ

் ௝௜ ௝௝ஷ௜

௜

Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a
conditional distribution

• What is the overall probability of the entire set
of neurons taking any configuration

56

The overall probability

• The probability of any state can be shown to be
given by the Boltzmann distribution

– Minimizing energy maximizes log likelihood
57

The overall probability

• Stop when the running average of the log
probability of patterns stops increasing
– I.e. when the (running average) of the energy of

the patterns stops decreasing
58

Poll 3

• The stochastic Hopfield net flips neurons according to a
probability computed by a logistic activation at the
neuron
– True
– False

• The stochastic Hopfield net can flip a neuron even if
doing so increases the energy
– True
– False

59

Poll 3

• The stochastic Hopfield net flips neurons according to a
probability computed by a logistic activation at the
neuron
– True
– False

• The stochastic Hopfield net can flip a neuron even if
doing so increases the energy
– True
– False

60

Recap: The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences
– The Boltzmann distribution

்

– The parameter of the distribution is the weights matrix

• The conditional distribution of individual bits in the sequence is a logistic
• We will call this a Boltzmann machine

೔

The Boltzmann Machine

• The entire model can be viewed as a generative model
• Has a probability of producing any binary vector :

೔

Training the model

• How does the probabilistic view affect how we
train the model?

• Not much…

63

Hopfield nets: Optimizing W

• Simple gradient descent:

64

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Simple gradient descent:

65
THIS LOOKS LIKE AN EXPECTATION!

More importance to more frequently
presented memories

More importance to more attractive
spurious memories

Hopfield nets: Optimizing W

• Update rule

66

Natural distribution for variables: The Boltzmann Distribution

We can arrive at the same result a bit more formally…

Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability
distribution to states
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)
– This should assign more probability to patterns we “like” (or try to memorize) and less to

other patterns

Training the network

• Must train the network to assign a desired probability distribution
to states

• Given a set of “training” inputs
– Assign higher probability to patterns seen more frequently
– Assign lower probability to patterns that are not seen at all

• Alternately viewed: maximize likelihood of stored states

Visible
Neurons

Maximum Likelihood Training

• Maximize the average log likelihood of all “training”
vectors
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

௜௝ ௜ ௝

௜ழ௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

ௌ∈𝐒

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)

Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..
• The first term is just the average sisj over all training

patterns
• But the second term is summed over all states

– Of which there can be an exponential number!

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝
௜ ௝

ௌ

The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ

The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ

ᇱ

The second term
௜௝ ௜

ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝ ௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝ ௜
"
௝
"

௜ழ௝ௌ"

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝

௜
ᇱ
௝
ᇱ

ௌᇱ

The second term

• The second term is simply the expected value
of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we
can compute it by sampling!

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

Estimating the second term

• The expectation can be estimated as the average of
samples drawn from the distribution

• Question: How do we draw samples from the Boltzmann
distribution?
– How do we draw samples from the network?

ೞೌ೘೛೗೐ೞ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

The simulation solution

• Initialize the network randomly and let it “evolve”
– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state
• Repeat this many many times
• Let the collection of states be

The simulation solution for the second
term

• The second term in the derivative is computed
as the average of sampled states when the
network is running “freely”

ೞ೔೘ೠ೗

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

Maximum Likelihood Training

• The overall gradient ascent rule

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Sampled estimate

Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Overall Training

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

state

Energy

Note the similarity to the update rule for the Hopfield network

Adding Capacity to the Hopfield
Network / Boltzmann Machine

• The network can store up to -bit patterns
• How do we increase the capacity

81

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons K Neurons

82

Expanded Network

• New capacity: patterns
– Although we only care about the pattern of the first N

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons

83

Terminology

• Terminology:
– The neurons that store the actual patterns of interest: Visible

neurons
– The neurons that only serve to increase the capacity but whose

actual values are not important: Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible
Neurons

Hidden
Neurons

Training the network

• For a given pattern of visible neurons, there are any
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible
Neurons

Hidden
Neurons

The patterns
• In fact we could have multiple hidden patterns

coupled with any visible pattern
– These would be multiple stored patterns that all give

the same visible output
– How many do we permit

• Do we need to specify one or more particular
hidden patterns?
– How about all of them
– What do I mean by this bizarre statement?

Boltzmann machine without hidden
units

• This basic framework has no hidden units

• Extended to have hidden units

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

With hidden neurons

• Now, with hidden neurons the complete state
pattern for even the training patterns is
unknown
– Since they are only defined over visible neurons

Visible
Neurons

Hidden
Neurons

With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible
Neurons

Hidden
Neurons

With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible
Neurons

Hidden
Neurons

Must train to maximize
probability of desired
patterns of visible bits

Training the network

• Must train the network to assign a desired
probability distribution to visible states

• Probability of visible state sums over all
hidden states

Visible
Neurons

Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training”
vectors 1 2 𝑁

– The first term also has the same format as the second term
• Log of a sum

– Derivatives of the first term will have the same form as for the second term

௜௝ ௜ ௝

௜ழ௝ு

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௏∈𝐕

௜௝ ௜ ௝

௜ழ௝ு௏∈𝐕

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)

Maximum Likelihood Training

• We’ve derived this math earlier
• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states
for each visible configuration in our training set

– But the second term is summed over all states

௜௝ ௜ ௝

௜ழ௝ு௏∈𝐕

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

௞௟ ௞ ௟௞ழ௟

௞௟ ௞
"
௟
"

௞ழ௟ுᇱ
௜ ௝

ு௏∈𝐕

௞௟ ௞
ᇱ
௟
ᇱ

௞ழ௟

௜௝ ௞
"
௟
"

௞ழ௟ௌ"
௜
ᇱ
௝
ᇱ

ௌᇱ

௜௝
௜ ௝

ு௏∈𝐕

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

The simulation solution

• The first term is computed as the average
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as
the average of sampled states when the network
is running “freely”

ೞ೔೘ೠ೗

ೞ೔೘ೠ೗

௜௝
௜ ௝

ு௏∈𝐕

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ

More simulations

• Maximizing the marginal probability of requires
summing over all values of
– An exponential state space
– So we will use simulations again

Visible
Neurons

Hidden
Neurons

Step 1

• For each training pattern
– Fix the visible units to
– Let the hidden neurons evolve from a random initial point to

generate
– Generate ,]

• Repeat K times to generate synthetic training

Visible
Neurons

Hidden
Neurons

Step 2

• Now unclamp the visible units and let the
entire network evolve several times to
generate

Visible
Neurons

Hidden
Neurons

Gradients

• Gradients are computed as before, except that
the first term is now computed over the
expanded training data

ೞ೔೘ೠ೗

Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped

training samples
• Compute gradient and update weights
• Iterate

௜௝
௜ ௝

𝑺

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Poll 4

• The ‘irrelevant bits’ that we used to extend the Hopfield
net’s capacity correspond to which components of the
Boltzmann machine
– The hidden neurons
– The visible neurons

• The training paradigm of Boltzmann machines through
gradient descent samples the hidden values to complete
patterns
– True
– False

100

Poll 4

• The ‘irrelevant bits’ that we used to extend the Hopfield
net’s capacity correspond to which components of the
Boltzmann machine
– The hidden neurons
– The visible neurons

• The training paradigm of Boltzmann machines through
gradient descent samples the hidden values to complete
patterns
– True
– False

101

Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than

Hopfield nets
• But also enables computation of probabilities

of patterns, and completion of pattern

Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate

௜௝
௜ ௝

𝑺

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗
೔

Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value

Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?

Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, …. , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features, anchor features, estimate a posteriori probability

distribution over classes
• Or choose most likely class

Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small
number of bits

Solution: Restricted Boltzmann
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul

Smolensky

VISIBLE

HIDDEN

Solution: Restricted Boltzmann
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..

VISIBLE

HIDDEN

೔

Solution: Restricted Boltzmann
Machines

VISIBLE

HIDDEN

೔

೔
VISIBLE

HIDDEN

Recap: Training full Boltzmann
machines: Step 1

• For each training pattern
– Fix the visible units to
– Let the hidden neurons evolve from a random initial point to

generate
– Generate ,]

• Repeat K times to generate synthetic training

-1

1

1

1 -1

Visible Neurons Hidden Neurons

Sampling: Restricted Boltzmann
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!

VISIBLE

HIDDEN

௜ ௝௜ ௜ ௜

௝

௜ ି௭೔

Recap: Training full Boltzmann
machines: Step 2

• Now unclamp the visible units and let the
entire network evolve several times to
generate

-1

1

1

1 -1

Visible
Neurons

Hidden
Neurons

Sampling: Restricted Boltzmann
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN

೔ ೔

Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v

Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to
hidden node j)

• <vi, hj> represents average over many generated training
samples

v0

h0

v1

h1

v2

h2

v

h





jiji

ij
hvhv

w

vp 0)(log

i

j

i i i

j j j

Recall: Hopfield Networks
• Really no need to raise the entire surface, or even

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the

broader the valley

117state

Energy

A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of
the gradient

v0

h0

v1

h1

10)(log





jiji
ij

hvhv
w

vp

i

j

i

j

Restricted Boltzmann Machines

• Excellent generative models for binary (or
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models

119

Continuous-values RBMs

VISIBLE

HIDDEN

೔

VISIBLE

HIDDEN

Hidden units may also be continuous values

Other variants

• Left: “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm

Topics missed..

• Other algorithms for Learning and Inference
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …

122

