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Story so far: 2024 Nobel Prize in Physics



Hopfield Net

• Each neuron is a perceptron with +1/-1 output
• Every neuron receives input from every other neuron
• Every neuron outputs signals to every other neuron

A symmetric network:
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Story so far
• A Hopfield network is a loopy binary network with symmetric connections

• Every neuron in the network attempts to “align” itself with the sign of the 
weighted combination of outputs of other neurons
– The local “field”

• Given an initial configuration, neurons in the net will begin to “flip” to 
align themselves in this manner
– Causing the field at other  neurons to change, potentially making them flip

• Each evolution of the network is guaranteed to decrease the “energy” of 
the network
– The energy is lower bounded and the decrements are upper bounded, so the 

network is guaranteed to converge to a stable state in a finite number of steps

4



120 evolutions of a loopy net

• All neurons which do not “align” with the local 
field “flip”
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Story so far
• The network acts as a content-addressable 

memory
– If you initialize the network with a somewhat 

damaged version of a local-minimum pattern, it will 
evolve into that pattern

– Effectively “recalling” the correct pattern, from a 
damaged/incomplete version
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Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7



Story so far
• The network must be designed to store the desired 

memories
– Memory patterns must be stationary and stable on the 

energy contour

• Network memory can be trained by Hebbian learning
– Guarantees that a network of N bits trained via Hebbian 

learning can store 0.14N random patterns with less than 
0.4% probability that they will be unstable

• However, empirically it appears that we may 
sometimes be able to store more than 0.14N patterns 
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Story so far

• Hopfield nets with neurons can store up to 
random patterns

– But comes with many parasitic memories

• Networks that store memories can be 
trained through optimization
– By minimizing the energy of the target patterns, 

while increasing the energy of the neighboring 
patterns
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Storing more than N patterns

• The memory capacity of an -bit network is at 
most 
– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985
• Although “information capacity” is 

• How do we increase the capacity of the 
network
– How to store more than patterns
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Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons
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Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons
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Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So lets pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!
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Increasing the capacity: bits view

• The maximum number of patterns the net can store is bounded by the 
width N of the patterns..

• So, let’s pad the patterns with K “don’t care” bits
– The new width of the patterns is N+K
– Now we can store N+K patterns!
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Issues: Storage

• What patterns do we fill in the don’t care bits?
– Simple option: Randomly

• Flip a coin for each bit

– Optimize

• How do we store the patterns?
– Standard optimization method should work 16

Visible bits Hidden bits



Issues: Recall

• How do we retrieve a memory?
• Can do so using usual “evolution” mechanism
• But this is not taking advantage of a key feature of the extended 

patterns:
– Making errors in the don’t care bits doesn’t matter
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Poll 1
• Which of the following is true of the memory capacity of an N-bit Hopfield net

– It can store 0.14N patterns perfectly
– It can store O(N) patterns
– Patterns can be trained into the network using gradient descent

• How can we increase the memory capacity of a Hopfield net from N to N+K
– By appending K irrelevant bits to the patterns to increase pattern length (and the size of the 

net) to N+K
– By using alternate optimization rules that increase the mathematical capacity of the network

• If we try to increase the capacity of the network by adding K irrelevant bits to the 
patterns, it is important for the network to recall these additional K bits exactly to 
recall the stored patterns
– Yes
– No
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Robustness of recall

• The value taken by the K hidden neurons during recall 
doesn’t really matter
– Even if it doesn’t match what we actually tried to store

• Can we take advantage of this somehow?

N Neurons K Neurons
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Robustness of recall

• Also, we can have multiple extended patterns 
with the same pattern over visible bits
– Can we exploit this somehow?

N Neurons K Neurons
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Taking advantage of don’t care bits
• Simple random setting of don’t care bits, and using the usual 

training and recall strategies for Hopfield nets should work

• However, it doesn’t sufficiently exploit the redundancy of the don’t 
care bits
– Possible to set the don’t care bits such that the overall pattern (and 

hence the “visible” bits portion of the pattern) is more memorable
– Also, may have multiple don’t-care patterns for a target pattern

• Multiple valleys, in which the visible bits remain the same, but don’t care bits 
vary

• To exploit it properly, it helps to view the Hopfield net differently: as 
a probabilistic machine

22



A return to physics…

• The behavior of the Hopfield net is analogous 
to annealed dynamics of a spin glass 
characterized by a Boltzmann distribution…
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Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?
• No – the state is actually continuously changing

– Based on the temperature of the system
• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability of 
the state
– And the expected value of the state

state

PE



The Helmholtz Free Energy of a System

• A thermodynamic system at temperature can exist in 
one of many states
– Potentially infinite states
– At any time, the probability of finding the system in state 

at temperature is 

• At each state it has a potential energy 
• The internal energy of the system, representing its 

capacity to do work, is the average:



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

• The Helmholtz free energy of the system combines the 
two terms



The Helmholtz Free Energy of a System

• A system held at a specific temperature anneals by 
varying the rate at which it visits the various states, to 
reduce the free energy in the system, until a minimum 
free-energy state is achieved

• The probability distribution of the states at steady state 
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

• Minimizing, while applying a Lagrangian

• Differentiating w.r.t.

• Solving



The Helmholtz Free Energy of a System

• Minimizing this w.r.t , we get

– Also known as the Gibbs distribution
– is a normalizing constant
– Note the dependence on 
– A = 0, the system will always remain at the lowest-

energy configuration with prob = 1.



The Boltzmann Distribution

• is the Boltzmann constant
• is the temperature of the system
• The energy terms are the negative loglikelihood of a Boltzmann 

distribution at to within an additive constant
– Derivation of this probability is in fact quite trivial..
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The evolution of the system

• The system probabilistically selects states with 
lower energy
– With infinitesimally slow cooling, at it 

arrives at the global minimal state
31



Poll 2

• A Hopfield network is a computational analogue of a deterministic 
ferroelectric material
– True
– False

• The true behavior of thermodynamic systems is stochastic
– True
– False

• Hopfield networks too can be modified to emulate the stochastic 
behavior of thermodynamic systems
– True
– False
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A probabilistic interpretation of Hopfield 
Nets with thermodynamic analogy

• Instead of viewing the network as a deterministic machine, model it as a statistical
system that is in any state with probability following thermodynamic 
principles

• For binary y the energy of a pattern is the analog of the negative log likelihood of a 
Boltzmann distribution
– The system has a native energy for each state, which is countered by entropy
– The system “evolves” to minimize the expected energy of the system
– Minimizing energy gives us a Boltzmann distribution over states with T=1
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The Equilibrium Distribution

• Neurons are stochastic, with disorder or entropy
– The network evolves to minimize the energy, while maximizing the 

entropy

• The equilibrium probability distribution over states is the 
Boltzmann distribution at T=1
– This is the probability of different states that the network will wander 

over at equilibrium

Visible 
Neurons



The Hopfield net is a distribution

• The stochastic Hopfield network models a probability distribution over 
states
– Where a state is a binary string
– Specifically, at Equilibrium, it models a Boltzmann distribution
– The parameters of the model are the weights of the network

• The probability that (at equilibrium) the network will be in any state is 
– It is a generative model: generates states according to 

Visible 
Neurons



How does a stochastic Hopfield Net 
evolve

• How does this stochastic (probabilistic) 
network evolve?
– What is the rule by which neurons flip?
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The field at a single node
• Let and be otherwise identical states that only differ in the i-th bit

– S has i-th bit = and S’ has i-th bit =  
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The field at a single node

• Let and be the states with the ith bit in the and 
states

•
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The field at a single node

• Exponentiating and expanding
ೕ ೕೕಯ೔ ೔

• Giving us
ೕ ೕೕಯ೔ ೔

ೕ ೕೕಯ೔ ೔ ೕ ೕೕಯ೔ ೔

• The probability of any node taking value 1 given other node 
values is a logistic
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Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system
• Each neuron is now a stochastic unit with a binary state ,  which 

can take value 0 or 1 with a probability that depends on the local 
field
– Note the slight change from Hopfield nets
– Not actually necessary; only a matter of convenience

Visible 
Neurons

೔



The Hopfield net is a distribution

• The Hopfield net is a probability distribution over 
binary sequences
– The Boltzmann distribution

• The conditional distribution of individual bits in the 
sequence is a logistic

Visible 
Neurons

೔



Running the network

• Initialize the neurons
• Cycle through the neurons and randomly set the neuron to 1 or 0 according to the 

probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable
– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons

೔



Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜

45

Assuming T = 1
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Evolution of a stochastic Hopfield net

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

– Estimates the probability that the bit is 1.0. 
– If it is greater than 0.5, sets it to 1.0

1. Initialize network with initial pattern

௜ ௜

2. Iterate 

௝௜ ௝

௝ஷ௜

௜
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Assuming T = 1



The “Boltzmann” Machine

• Selecting a next state is analogous to drawing a sample 
from the Boltzmann distribution at in a universe 
where 
– Energy landscape of a spin-glass model: Exploration and 

characterization, Zhou and Wang, Phys. Review E 79, 2009

48

state

Energy



Evolution of the stochastic network

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter
a) For 

௝௜ ௝

௝ஷ௜

௜
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Pattern completion: Fix the “seen” bits and only
let the “unseen” bits evolve

Noisy pattern completion:  Initialize the entire 
network and let the entire network evolve



Including a “Temperature” term

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
50



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
51

The field quantifies the energy difference obtained by flipping the
current unit
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If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit



Recap: Stochastic Hopfield Nets

• Including a temperature term in computing the local field
– This is much more in accord with Thermodynamic models

• At the energy “surface” will be flat. At the 
surface will be the usual energy surface
– This can be used to improve the likelihood of finding good (or 

optimal) minimum-energy states
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If the difference is not large, the probability of flipping approaches 0.5

The field quantifies the energy difference obtained by flipping the
current unit

T is a “temperature” parameter:  increasing it moves the probability of the
bits towards 0.5
At T=1.0 we get the traditional definition of field and energy
At T = 0, we get deterministic Hopfield behavior



Annealing

• Let the system evolve to “equilibrium”
• Let ଴ ଵ ଶ ௅ be the sequence of values ( large)
• Final predicted configuration: from the average of the final few iterations

௧

௅

௧ୀ௅ିெାଵ

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For 
ଵ

் ௝௜ ௝௝ஷ௜

௜
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Evolution of a stochastic Hopfield net

• When do we stop?
• What is the final state of the system

– How do we “recall” a memory?

55

1. Initialize network with initial pattern

௜ ௜

2. For ଴ ௠௜௡

i. For iter

a) For 
ଵ

் ௝௜ ௝௝ஷ௜

௜



Recap: Stochastic Hopfield Nets

• The probability of each neuron is given by a 
conditional distribution

• What is the overall probability of the entire set 
of neurons taking any configuration 
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The overall probability

• The probability of any state can be shown to be 
given by the Boltzmann distribution

– Minimizing energy maximizes log likelihood
57



The overall probability

• Stop when the running average of the log 
probability of patterns stops increasing
– I.e. when the (running average) of the energy of 

the patterns stops decreasing
58



Poll 3

• The stochastic Hopfield net flips neurons according to a
probability computed by a logistic activation at the
neuron
– True
– False

• The stochastic Hopfield net can flip a neuron even if 
doing so increases the energy
– True
– False
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Recap: The Hopfield net is a distribution

• The Hopfield net is a probability distribution over binary sequences
– The Boltzmann distribution

்

– The parameter of the distribution is the weights matrix 

• The conditional distribution of individual bits in the sequence is a logistic
• We will call this a Boltzmann machine

೔



The Boltzmann Machine

• The entire model can be viewed as a generative model
• Has a probability of producing any binary vector :

೔



Training the model

• How does the probabilistic view affect how we 
train the model?

• Not much…
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Hopfield nets: Optimizing W

• Simple gradient descent:

64

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Simple gradient descent:
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THIS LOOKS LIKE AN EXPECTATION!

More importance to more frequently 
presented memories

More importance to more attractive
spurious memories



Hopfield nets: Optimizing W

• Update rule

66

Natural distribution for variables:  The Boltzmann Distribution

We can arrive at the same result a bit more formally…



Training the network

• Training a Hopfield net: Must learn weights to “remember” target states and 
“dislike” other states
– “State” == binary pattern of all the neurons

• Training Boltzmann machine: Must learn weights to assign a desired probability 
distribution to states 
– (vectors 𝐲, which we will now calls 𝑆 because I’m too lazy to normalize the notation)
– This should assign more probability to patterns we “like” (or try to memorize) and less to 

other patterns



Training the network

• Must train the network to assign a desired probability distribution 
to states 

• Given a set of “training” inputs 
– Assign higher probability to patterns seen more frequently
– Assign lower probability to patterns that are not seen at all

• Alternately viewed:  maximize likelihood of stored states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all “training” 
vectors 
– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

௜௝ ௜ ௝

௜ழ௝

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

ௌ∈𝐒

௜௝ ௜ ௝

௜ழ௝ௌ

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

Average log likelihood of training vectors
(to be maximized)



Maximum Likelihood Training

• We will use gradient ascent, but we run into a problem..
• The first term is just the average sisj over all training 

patterns
• But the second term is summed over all states

– Of which there can be an exponential number!
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The second term
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The second term
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The second term

• The second term is simply the expected value 
of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we 
can compute it by sampling!

௜௝ ௜
ᇱ
௝
ᇱ

௜ழ௝ௌᇱ

௜௝

ᇱ
௜
ᇱ
௝
ᇱ

ௌᇱ



Estimating the second term

• The expectation can be estimated as the average of 
samples drawn from the distribution

• Question:  How do we draw samples from the Boltzmann 
distribution?
– How do we draw samples from the network?

ೞೌ೘೛೗೐ೞ
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The simulation solution

• Initialize the network randomly and let it “evolve”
– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state
• Repeat this many many times
• Let the collection of states be 



The simulation solution for the second 
term

• The second term in the derivative is computed 
as the average of sampled states when the 
network is running “freely”

ೞ೔೘ೠ೗
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Maximum Likelihood Training

• The overall gradient ascent rule

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

Sampled estimate



Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗



Overall Training

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗

state

Energy

Note the similarity to the update rule for the Hopfield network



Adding Capacity to the Hopfield 
Network / Boltzmann Machine

• The network can store up to -bit patterns
• How do we increase the capacity

81



Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons K Neurons
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Expanded Network

• New capacity:   patterns
– Although we only care about the pattern of the first N 

neurons
– We’re interested in N-bit patterns

N Neurons K Neurons
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Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons
– The neurons that only serve to increase the capacity but whose 

actual values are not important:  Hidden neurons
– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Training the network

• For a given pattern of visible neurons, there are any 
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!

Visible 
Neurons

Hidden 
Neurons



The patterns
• In fact we could have multiple hidden patterns 

coupled with any visible pattern
– These would be multiple stored patterns that all give 

the same visible output
– How many do we permit

• Do we need to specify one or more particular 
hidden patterns?
– How about all of them
– What do I mean by this bizarre statement?



Boltzmann machine without hidden 
units

• This basic framework has no hidden units

• Extended to have hidden units

௜௝
௜ ௝

ௌ

௜
ᇱ
௝
ᇱ

ௌᇱ∈𝐒ೞ೔೘ೠ೗



With hidden neurons

• Now, with hidden neurons the complete state 
pattern for even the training patterns is 
unknown
– Since they are only defined over visible neurons

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We are interested in the marginal probabilities over visible bits
– We want to learn to represent the visible bits
– The hidden bits are the “latent” representation learned by the network

•

– = visible bits
– = hidden bits

Visible 
Neurons

Hidden 
Neurons

Must train to maximize 
probability of desired
patterns of visible bits



Training the network

• Must train the network to assign a desired 
probability distribution to visible states 

• Probability of visible state sums over all 
hidden states

Visible 
Neurons



Maximum Likelihood Training

• Maximize the average log likelihood of all visible bits of “training” 
vectors 1 2 𝑁

– The first term also has the same format as the second term
• Log of a sum

– Derivatives of the first term will have the same form as for the second term
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Maximum Likelihood Training

• We’ve derived this math earlier
• But now both terms require summing over an exponential number of states

– The first term fixes visible bits, and sums over all configurations of hidden states 
for each visible configuration in our training set

– But the second term is summed over all states
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The simulation solution

• The first term is computed as the average 
sampled hidden state with the visible bits fixed

• The second term in the derivative is computed as 
the average of sampled states when the network 
is running “freely”
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More simulations

• Maximizing the marginal probability of requires 
summing over all values of 
– An exponential state space
– So we will use simulations again
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Hidden 
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Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training

Visible 
Neurons

Hidden 
Neurons



Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate

Visible 
Neurons

Hidden 
Neurons



Gradients

• Gradients are computed as before, except that 
the first term is now computed over the 
expanded training data
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Overall Training

• Initialize weights
• Run simulations to get clamped and unclamped 

training samples
• Compute gradient and update weights
• Iterate
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Poll 4

• The ‘irrelevant bits’ that we used to extend the Hopfield 
net’s capacity correspond to which components of the 
Boltzmann machine 
– The hidden neurons
– The visible neurons

• The training paradigm of Boltzmann machines through 
gradient descent samples the hidden values to complete 
patterns
– True
– False
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Poll 4

• The ‘irrelevant bits’ that we used to extend the Hopfield 
net’s capacity correspond to which components of the 
Boltzmann machine 
– The hidden neurons
– The visible neurons

• The training paradigm of Boltzmann machines through 
gradient descent samples the hidden values to complete 
patterns
– True
– False
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Boltzmann machines

• Stochastic extension of Hopfield nets
• Enables storage of many more patterns than 

Hopfield nets
• But also enables computation of probabilities 

of patterns, and completion of pattern



Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights
• Run simulations to get clamped and unclamped training samples
• Compute gradient and update weights
• Iterate
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Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units
– Let the network evolve
– Sample the unknown visible units

• Choose the most probable value



Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?



Boltzmann machines for classification

• Training patterns:
– [f1, f2, f3, ….  , class]
– Features can have binarized or continuous valued representations
– Classes have “one hot” representation

• Classification:
– Given features,  anchor features,  estimate a posteriori probability 

distribution over classes
• Or choose most likely class



Boltzmann machines: Issues

• Training takes for ever
• Doesn’t really work for large problems

– A small number of training instances over a small 
number of bits



Solution: Restricted Boltzmann 
Machines

• Partition visible and hidden units
– Visible units ONLY talk to hidden units
– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..
– Originally proposed as “Harmonium Models” by Paul 

Smolensky

VISIBLE

HIDDEN



Solution: Restricted Boltzmann 
Machines

• Still obeys the same rules as a regular Boltzmann machine
• But the modified structure adds a big benefit..
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Solution: Restricted Boltzmann 
Machines
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Recap: Training full Boltzmann 
machines: Step 1

• For each training pattern 
– Fix the visible units to 
– Let the hidden neurons evolve from a random initial point to 

generate 
– Generate , ]

• Repeat K times to generate synthetic training
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Sampling: Restricted Boltzmann 
machine

• For each sample:
– Anchor visible units
– Sample from hidden units
– No looping!!
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Recap: Training full Boltzmann 
machines: Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate
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Sampling: Restricted Boltzmann 
machine

• For each sample:
– Iteratively sample hidden and visible units for a long time
– Draw final sample of both hidden and visible units

VISIBLE

HIDDEN
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Pictorial representation of RBM training

• For each sample:
– Initialize (visible) to training instance value
– Iteratively generate hidden and visible units

• For a very long time

h0 h1 h2 h

v0 v1 v2 v



Pictorial representation of RBM training

• Gradient (showing only one edge from visible node i to 
hidden node j)

• <vi, hj> represents average over many generated training 
samples
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Recall: Hopfield Networks
• Really no need to raise the entire surface, or even 

every valley
• Raise the neighborhood of each target memory

– Sufficient to make the memory a valley
– The broader the neighborhood considered, the 

broader the valley
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A Shortcut: Contrastive Divergence

• Sufficient to run one iteration!

• This is sufficient to give you a good estimate of 
the gradient
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Restricted Boltzmann Machines

• Excellent generative models for binary (or 
binarized) data

• Can also be extended to continuous-valued data
– “Exponential Family Harmoniums with an Application 

to Information Retrieval”, Welling et al., 2004

• Useful for classification and regression
– How?
– More commonly used to pretrain models
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Continuous-values RBMs

VISIBLE

HIDDEN

೔
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Hidden units may also be continuous values



Other variants

• Left:  “Deep” Boltzmann machines
• Right: Helmholtz machine

– Trained by the “wake-sleep” algorithm



Topics missed..

• Other algorithms for Learning and Inference 
over RBMs
– Mean field approximations

• RBMs as feature extractors
– Pre training

• RBMs as generative models
• More structured DBMs
• …
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