Neural Networks

Hopfield Nets, Auto Associators,
Boltzmann machines

Spring 2025

Story so far: 2024 Nobel Prize in Physics

They trained artificial neural networks using
physics

This year’s two Nobel Laureates in Physics have used tools from physics to
develop methods that are the foundation of today’s powerful machine
learning. John Hopfield created an associative memory that can store and
reconstruct images and other types of patterns in data. Geoffrey Hinton
invented a method that can autonomously find properties in data, and so
perform tasks such as identifying specific elements in pictures.

Hopfield Net

o= (1120 g 1= o(Zme)

JED!

A symmetric network:
Wij — Wji

* Each neuronis a perceptron with +1/-1 output
* Every neuron receives input from every other neuron
* Every neuron outputs sighals to every other neuron

Story so far

A Hopfield network is a loopy binary network with symmetric connections

Every neuron in the network attempts to “align” itself with the sign of the
weighted combination of outputs of other neurons

— The local “field”

Given an initial configuration, neurons in the net will begin to “flip” to
align themselves in this manner

— Causing the field at other neurons to change, potentially making them flip

Each evolution of the network is guaranteed to decrease the “energy” of
the network

— The energy is lower bounded and the decrements are upper bounded, so the
network is guaranteed to converge to a stable state in a finite number of steps

120 evolutions of a loopy net

-';'
ﬁ

£ -o,,
-, '
W \‘r "' lh

K

Ay
PN .gr SO "a-

v 4"41
e

m .

‘A’v“ ‘!v %h\ %
- ‘f&ﬁ 2P _-?.\. m "

é l“-, 5 r';"‘!l-ld"-. 3
N TR TRRRL
X 'f'«)

XY

f%;"
ﬂ‘gi
“VP 41

.,
e

t.:-r.r

Tt
=
"’R‘.{‘

&
-
X

.'%'-

> o .-'

5

[RS

\ ..'a' v
"

‘-
SRR ".':;?ﬁ'- t::ﬂ'.t o

* All neurons which do not “align
field “flip”

with the local

Story so far

e The network acts as a content-addressable
memory

— If you initialize the network with a somewhat
damaged version of a local-minimum pattern, it will
evolve into that pattern

— Effectively “recalling” the correct pattern, from a
damaged/incomplete version

Examples: Content addressable
memory

FEeconstruction

Hopfield network reconstmicting degraded images
frotn nowsy (top) o partial (bottorn) cues.

o http://staff.itee.ug.edu.au/janetw/cmc/chapters/Hopfield/

Story so far

 The network must be designed to store the desired
memories

— Memory patterns must be stationary and stable on the
energy contour

* Network memory can be trained by Hebbian learning

— Guarantees that a network of N bits trained via Hebbian
learning can store 0.14N random patterns with less than
0.4% probability that they will be unstable
* However, empirically it appears that we may
sometimes be able to store more than 0.14N patterns

Story so far

* Hopfield nets with N neurons can store up to
O(N) random patterns

— But comes with many parasitic memories

* Networks that store O(N) memories can be
trained through optimization

— By minimizing the energy of the target patterns,
while increasing the energy of the neighboring
patterns

Storing more than N patterns

* The memory capacity of an N-bit network is at
most N

— Stable patterns (not necessarily even stationary)
* Abu Mustafa and St. Jacques, 1985
e Although “information capacity” is O(N3)
* How do we increase the capacity of the
network

— How to store more than N patterns

Expanding the network

N Neurons

A /
L .’.- ’.-'.'.

b ? . ’p“ .p,-."-_.'ﬁ;'-'-:;.u

A "y ‘ 4 .,-"'_- 4 ¥
>N AN
%%#‘i%‘éfi'] 2
N PSRTING :
PSR #<

S DK

3

b ; A1
raTer L\ LT
AT ANy A TN
':'E;/_:-}'*t\-‘-“ '-'5;#2" o

 Add a large number of neurons whose actual
values you don’t care about!

11

Expanded Network

N Neurons

LIRS /
L ”.-'.'.

L .‘. :
e)
‘.‘ .g.':%";-:;:.
i e AN 1
"e ey’ HaAN
N i\ o
AT
= "-.‘
X J

PR
e

* New capacity: ~(N + K) pattern

— Although we only care about the pattern of the first N
neurons

— We're interested in N-bit patterns

12

Terminology

Hidden
Neurons

Visible
Neurons

 Terminology:

— The neurons that store the actual patterns of interest: Visible
neurons

— The neurons that only serve to increase the capacity but whose
actual values are not important: Hidden neurons

— These can be set to anything in order to store a visible pattern

Increasing the capacity: bits view

Visible bits

00000000

o] o] oo (@
00000000

o, (000 | @

oo o @ @

00000000
00000000

QOCCOCC?

 The maximum number of patterns the net can store is bounded by the
width N of the patterns..

14

Increasing the capacity: bits view

Visible bits Hidden bits

L 0 00 o | 00000000 000eeee.

o] o] (00 (000000 00000000000
L 0 (0] [0 000000 00000000000

o, (000 | [0000000000000000.

o0 [0 0 00000000000000ee.

L 1 19 (00 | (0000000000000 0e0
ol l [l [0 000000000000 0eee0

QOQQOQQ?OOOOOOOOOOOOOOOO

N+ K

 The maximum number of patterns the net can store is bounded by the
width N of the patterns..

 So, let’s pad the patterns with K “don’t care” bits
— The new width of the patterns is N+K
— Now we can store N+K patterns!

15

Issues: Storage

Visible bits | Hidden bits

000000000 0000000000OO000

o o] (00 (0000000000000 0000
L 9 0] 0] [©000000000000e00n

o] Joloe] | looo/oclclclol00cccl0000

ool o] o] (0000000000 eeeeee0.

L 1 19 00 | O0000000000000e0
C000000OO000000O0000O000000

QOCQOQQQOOOOOOOOOOOOOOOO

N+ K

 What patterns do we fill in the don’t care bits?

— Simple option: Randomly
* Flip a coin for each bit

— Optimize

e How do we store the patterns?

— Standard optimization method should work 16

Issues: Recall

Visible bits | Hidden bits

000000000 0000000000OO000

o o] (00 (0000000000000 0000
L 9 0] 0] [©000000000000e00n

o] Joloe] | looo/oclclclol00cccl0000

ool o] o] (0000000000 eeeeee0.

L 1 19 00 | O0000000000000e0
C000000OO000000O0000O000000

QOCQOQQQOOOOOOOOOOOOOOOO

N+ K

* How do we retrieve a memory?

* Can do so using usual “evolution” mechanism

* But this is not taking advantage of a key feature of the extended

patterns:
— Making errors in the don’t care bits doesn’t matter

17

Poll 1

Which of the following is true of the memory capacity of an N-bit Hopfield net
— It can store 0.14N patterns perfectly
— It can store O(N) patterns
— Patterns can be trained into the network using gradient descent

How can we increase the memory capacity of a Hopfield net from N to N+K

— By appending K irrelevant bits to the patterns to increase pattern length (and the size of the
net) to N+K

— By using alternate optimization rules that increase the mathematical capacity of the network

If we try to increase the capacity of the network by adding K irrelevant bits to the
patterns, it is important for the network to recall these additional K bits exactly to
recall the stored patterns

— Yes

— No

Poll 1

Which of the following is true of the memory capacity of an N-bit Hopfield net
— It can store 0.14N patterns perfectly
— It can store O(N) patterns
— Patterns can be trained into the network using gradient descent

How can we increase the memory capacity of a Hopfield net from N to N+K

— By appending K irrelevant bits to the patterns to increase pattern length (and the size of the
net) to N+K

— By using alternate optimization rules that increase the mathematical capacity of the network

If we try to increase the capacity of the network by adding K irrelevant bits to the
patterns, it is important for the network to recall these additional K bits exactly to
recall the stored patterns

— Yes

— No

19

Robustness of recall

K Neuron

NS

N Neurons

TS TS
ST
SIS

= Ny
Z S i
MR
NS =gy e s 2N ie g gy
F .’t‘f‘-‘tﬁ‘-’(‘_ !-‘5,‘."‘.1-'; TN SRS T
S S S s AN Sy S S N

s ‘ﬁr"*. "P&Tﬁ‘. A =
. E.‘.A.;“’- AT

e

B Fal .-
£l .‘.J"“

o

253

“g\‘
s

e

i

£
A

LT
i

_— N3 ; es . X
\"%;;-..::__ S

.

|
i
a

]
.

A

e

e

‘2“
Ch

s

({7
s

07

i

< SOt

S T A2
e o, S TR ol
e S

* The value taken by the K hidden neurons during recall
doesn’t really matter
— Even if it doesn’t match what we actually tried to store

* Can we take advantage of this somehow?

Robustness of recall

N Neurons

\ o
SRR
AR B
S RRIOR, il
B N A . - ! “'H
R A
IR RSN A AS SES

By ‘

'|’ . o

A=

00000060
O *0

0008 08
QOeCeOe0

-'aﬁﬁﬁ R R ==
“0 b s

L Lol S T

a4

‘qﬁﬁaﬁdéﬁ=L—

* Also, we can have multiple extended patterns
with the same pattern over visible bits

— Can we exploit this somehow?

21

Taking advantage of don’t care bits

Simple random setting of don’t care bits, and using the usual
training and recall strategies for Hopfield nets should work

However, it doesn’t sufficiently exploit the redundancy of the don’t
care bits

— Possible to set the don’t care bits such that the overall pattern (and
hence the “visible” bits portion of the pattern) is more memorable

— Also, may have multiple don’t-care patterns for a target pattern

* Multiple valleys, in which the visible bits remain the same, but don’t care bits
vary

To exploit it properly, it helps to view the Hopfield net differently: as
a probabilistic machine

A return to physics...

 The behavior of the Hopfield net is analogous
to annealed dynamics of a spin glass
characterized by a Boltzmann distribution...

-
— — L
— il _— L
L --__ ___.I — -
e P " i

1
!
)
-
PE

state

* [sthe system actually in a specific state at any time?

* No —the state is actually continuously changing

— Based on the temperature of the system
* At higher temperatures, state changes more rapidly

 What s actually being characterized is the probability of
the state
— And the expected value of the state

The Helmholtz Free Energy of a System

 Athermodynamic system at temperature T can exist in
one of many states

— Potentially infinite states

— At any time, the probability of finding the system in state s
at temperature T is Py (s)

* At each state s it has a potential energy E

 The internal energy of the system, representing its
capacity to do work, is the average:

Ur =) Pr(s)E

The Helmholtz Free Energy of a System

* The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

Hy = —k) Pr(s)log Pr(s)

 The Helmholtz free energy of the system combines the
two terms

FT —_ UT_THT

— Z Pr(s)Es + kT z Pr(s)log Pr(s)

The Helmholtz Free Energy of a System

Fr = z Pr(s)E; + sz P;(s)log Py (s)

* A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

* The probability distribution of the states at steady state
is known as the Boltzmann distribution

The Helmholtz Free Energy of a System

Fr = Z Pr(s)E; + kTZ Pr(s)log Py (s)

* Minimizing, while applying a Lagrangian

F, = Z P.(s) E, + kT Z P..(s) log Pr(s) + A(Z P.(s) — 1)

* Differentiating w.r.t. P;(s)

dF;
dPr(s)

= E;+ kt(1+1logPr(s)) +4 =0

* Solving

1 —E,
Pr(s) = ~ €XP (T)

The Helmholtz Free Energy of a System

Fr = z P;(s)E + sz P;(s)log Pr(s)

* Minimizing this w.r.t P-(s), we get

1 [—E,
Pr(s) = Z€XP |\ 7

— Also known as the Gibbs distribution
— Z is a normalizing constant
— Note the dependenceon T

— AT =0, the system will always remain at the lowest-
energy configuration with prob = 1.

The Boltzmann Distribution

1 —E(y)
E(y)=—-y"Wy —Db'y P(y) = Cexp
2 kT
FL = A N —E(y)
B Rm 2y exp(kT)

* k is the Boltzmann constant
T isthe temperature of the system

 The energy terms are the negative loglikelihood of a Boltzmann
distribution at T = 1 to within an additive constant

— Derivation of this probability is in fact quite trivial..
30

The evolution of the system

—E(y)
kT

1 T T
E(y) = —5Y Wy —b'y P(y) = Cexp

i e
_qh--.-l 1

B N C =
il —E(y)
A e Zyexp(kT)

* The system probabilistically selects states with
lower energy

— With infinitesimally slow cooling, at T = 0, it
arrives at the global minimal state

31

Poll 2

A Hopfield network is a computational analogue of a deterministic
ferroelectric material

— True
— False

* The true behavior of thermodynamic systems is stochastic
— True
— False

* Hopfield networks too can be modified to emulate the stochastic
behavior of thermodynamic systems

— True
— False

Poll 2

A Hopfield network is a computational analogue of a deterministic
ferroelectric material

— True
— False

* The true behavior of thermodynamic systems is stochastic
— True
— False

* Hopfield networks too can be modified to emulate the stochastic
behavior of thermodynamic systems

— True
— False

A probabilistic interpretation of Hopfield
Nets with thermodynamic analogy

* |[nstead of viewing the network as a deterministic machine, model it as a statistical
system that is in any state y with probability P(y) following thermodynamic
principles

 For binaryy the energy of a pattern is the analog of the negative log likelihood of a
Boltzmann distribution
— The system has a native energy for each state, which is countered by entropy
— The system “evolves” to minimize the expected energy of the system
— Minimizing energy gives us a Boltzmann distribution over states with T=1

W) =—5y™Wy P() = Cop(-E(¥))

The Equilibrium Distribution

Visible E(S) = —2 W;jSiSj — b;s;
Neurons i<j
exp(—E(S))
P(S) =
) = 5 exp(CES))

* Neurons are stochastic, with disorder or entropy

— The network evolves to minimize the energy, while maximizing the
entropy

* The equilibrium probability distribution over states is the
Boltzmann distribution at T=1

— This is the probability of different states that the network will wander
over at equilibrium

The Hopfield net is a distribution

Visible E(S) = —Z W;jSiSj — b;s;
Neurons i<j
exp(—E(S))
P(S) =
) = S exp(CES)

 The stochastic Hopfield network models a probability distribution over
states

— Where a state is a binary string
— Specifically, at Equilibrium, it models a Boltzmann distribution
— The parameters of the model are the weights of the network

* The probability that (at equilibrium) the network will be in any state is P(S)
— Itis a generative model: generates states according to P(S5)

How does a stochastic Hopfield Net
evolve

e

 How does this stochastic (probabilistic)
network evolve?

— What is the rule by which neurons flip?

37

The field at a single node

* LetS andS ' be otherwise identical states that only differ in the i-th bit
— Shasi-th bit=41 and S’ has i-th bit= —1

P(S) = P(s; = 1|sj2:)P(Sj2i)
P(S") = P(s; = —1|8j;) P(Sj=i)

logP(S) — logP(S') = logP(si = 1|Sj¢i) — logP(sl- = —1|Sj¢i)

P(Si = 1|Sj¢i)

logP(S) — logP(S") =lo
J I 1— P(Si — 1|Sj¢i)

38

The field at a single node

 LetS and S ' be the states with the ith bit in the +1 and
— 1 states

logP(S) =—-E(S)+C

1
= _E(Enoti +szSj +bi

5o
|

, 1
E(S :—E(Enoti—ZWij—bi

J#FI

* logP(S) —logP(S') = E(S') —E(S) = X+ W;sj + b;

39

The field at a single node

P(s; =1
log((Sl _‘S]#) ZW]S] + b;
1 - P(Sl 1‘S]¢l

]-‘/—'l

* Exponentiating and expanding
P(Si = 1|Sj¢i) = (1 - P(Si = 1‘Sj¢i)) e(zfiiwfsf"'bi)
* @Giving us
e(zjiiszj'l'bi) 1

P S: = 1 S::) = —
(i | Jil) {4 e(zjilesjﬂ?) 1+e (ZlilWJSJ-I_b)

 The probability of any node taking value 1 given other node
values is a logistic

Redefining the network

Visible Zi = 2 w;jisj + bi
Neurons J

P(s; = 1|sj%) =]

+ e %

First try: Redefine a regular Hopfield net as a stochastic system
Each neuron is now a stochastic unit with a binary state s;, which
can take value 0 or 1 with a probability that depends on the local
field

— Note the slight change from Hopfield nets

— Not actually necessary; only a matter of convenience

The Hopfield net is a distribution

Visible Zi = Z wjiSj + b
Neurons J

1
@ PE =) = e

 The Hopfield net is a probability distribution over
binary sequences

— The Boltzmann distribution

e The conditional distribution of individual bits in the
sequence is a logistic

Running the network

Visible Zi = 2 wjiSj + b
Neurons J

P(si = 1sj21) =7

+ e4i

Initialize the neurons
Cycle through the neurons and randomly set the neuron to 1 or 0 according to the

probability given above
— Gibbs sampling: Fix N-1 variables and sample the remaining variable
— As opposed to energy-based update (mean field approximation): run the test z, >0 ?

After many many iterations (until “convergence”), sample the individual neurons

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern
yl-(O):xl-, 0<i<N-1

2. lterate 0 <i<N-1

y;(t + 1) ~ Binomial(P)

Assuming T =1

44

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

_ Assuming T =1
yl-(O):xl-, 0<i<N-1

2. lterate 0 <i<N-1

y;(t + 1) ~ Binomial(P)

* When do we stop?
 What is the final state of the system

— How do we “recall” a memory?

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

_ Assuming T =1
yi(0)=xl-, 0<i<N-1

2. lterate 0 <i<N-1

y;(t + 1) ~ Binomial(P)

* When do we stop?

 What is the final state of the system

— How do we “recall” a memory?

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

_ Assuming T =1
yl-(O):xl-, 0<i<N-1

2. lterate 0 <i<N-1

<o)

J#I

y;(t + 1) ~ Binomial(P)

* Let the system evolve to “equilibrium”
* Letyy V1,¥2, ..., ¥, bethe sequence of values (L large)
* Final predicted configuration: from the average of the final few iterations

1 L
== > 0.57
Y (M Zt=L—M+1Yt)

— Estimates the probability that the bit is 1.0.
— If it is greater than 0.5, sets it to 1.0

The “Boltzmann” Machine

RIN
» *.
Q -
D .
0 0y
» .
» .
N 0y
.
o .
.
y .

Energy

v

state

* Selecting a next state is analogous to drawing a sample
from the Boltzmann distribution at T = 1, in a universe
where k =1

— Energy landscape of a spin-glass model: Exploration and
characterization, Zhou and Wang, Phys. Review E 79, 2009

48

Evolution of the stochastic network

1. Initialize network with initial pattern

yi(O):xi! 0<i<N-1

2. ForT = Tydown to Ty,

Noisy pattern completion: Initialize the entire
network and let the entlre network evolve

Pattern completlon Fix the ‘seen’ blts and only
let the “unseen” bits evolve

* Let the system evolve to “equilibrium”
* Letyy, V1, Y2, ..., ¥, bethe sequence of values (L large)
* Final predicted configuration: from the average of the final few iterations

1 L
== > 0.57
d (M zt=L—M+1Yt)

Including a “Temperature” term

P(y; =1) =0(z)
Ply;=0)=1-0(z)

* Including a temperature term in computing the local field

— This is much more in accord with Thermodynamic models

e AtT = oo the energy “surface” will be flat. At T = 1 the
surface will be the usual energy surface

— This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
50

Recap: Stochastic Hopfield Nets

P(yi=1) = 0(z)
oy

The field quantifies the energy difference obtained by flipping the
current unit

* |Including a temperature term in computing the local field

— This is much more in accord with Thermodynamic models

e AtT = oo the energy “surface” will be flat. At T = 1 the
surface will be the usual energy surface

— This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states
51

Recap: Stochastic Hopfield Nets

0

P(y; =1) =0a(z)

The field quantifies the energy difference obtained by flipping the

current unit

’

If the dlfference s no’r large the probability of fllppmg approachesO 5

JIuU VW

in]d

e AtT = oo the energy “surface” will be flat. At T = 1 the

surface will be the usual energy surface

— This can be used to improve the likelihood of finding good (or

optimal) minimum-energy states

Recap: Stochastic Hopfield Nets

O

The field quantifies the energy difference oI:>/‘ra/ned by flipping the /

current unit

) [] .l._ YN A a a [Y] [] Aldala .. ars [/} = -Id
If the dlfference is no’r large the pr'ob bility of flipping approaches 0.5

P(yi =1) = a(z)

T is a "temperature” parameter: increasing it moves the probability of the
bits towards 0.5

At T=1.0 we get the traditional definition of field and energy

At T = O, we get deterministic Hopfield behavior

— This can be used to improve the likelihood of finding good (or
optimal) minimum-energy states

53

Annealing

1. Initialize network with initial pattern

y; (0) = x;, 0<i<N-1
2. ForT = T,downto T,,;,
i. Foriter 1..L

a) Foro<i<N-1

P=o (%Zj;tiwjiyj)

y;(t + 1) ~ Binomial(P)

* Let the system evolve to “equilibrium”
* Letyy, V1, Y2, ..., ¥, bethe sequence of values (L large)
* Final predicted configuration: from the average of the final few iterations

1 L
=|— > 07
Y (M Zt=L—M+1Yt)

Evolution of a stochastic Hopfield net

1. Initialize network with initial pattern

yl.(()):xl-, OSLSN_].
2. ForT = Tydownto Ty,
i. Foriter1..L

a) Foro0<i<N-1

P=o¢ (%Zjiiwjiyj)

y;(t + 1) ~ Binomial(P)

* When do we stop?

 What is the final state of the system

— How do we “recall” a memory?

Recap: Stochastic Hopfield Nets

1
Zi = TZ WjiYj
) JE!

P(y; = 1|yjzi) = 0(z)

* The probability of each neuron is given by a
conditional distribution

* What is the overall probability of the entire set
of neurons taking any configuration y

56

The overall probability

* The probability of any state y can be shown to be
given by the Boltzmann distribution

1 —F
E(y)=—§yTWy P(y)=Cexp< T(Y))

— Minimizing energy maximizes log likelihood

57

The overall probability

£

i 1 —E
&E(y) = —EyTWy P(y) =Cexp< T(Y)>

)

e Stop when the running average of the log
probability of patterns stops increasing

— |l.e. when the (running average) of the energy of
the patterns stops decreasing

58

Poll 3

* The stochastic Hopfield net flips neurons according to a

probability computed by a logistic activation at the
neuron

— True
— False

* The stochastic Hopfield net can flip a neuron even if
doing so increases the energy

— True
— False

Poll 3

* The stochastic Hopfield net flips neurons according to a

probability computed by a logistic activation at the
neuron

— True
— False

* The stochastic Hopfield net can flip a neuron even if
doing so increases the energy

— True
— False

Recap: The Hopfield net is a distribution
1
Zi = TZWjiSj

P(si = 1sj21) =7

+ e4i

 The Hopfield net is a probability distribution over binary sequences
— The Boltzmann distribution

1 T
E(y)=—zy Wy

2
E(y)

P(y) = Cexp (— T)

— The parameter of the distribution is the weights matrix W

 The conditional distribution of individual bits in the sequence is a logistic
 We will call this a Boltzmann machine

The Boltzmann Machine

1
Zi = TZ le'Sj
@ J

P(si = 1sj21) =7

+ e4i

 The entire model can be viewed as a generative model

* Has a probability of producing any binary vector y:
1
E(y)=—5y Wy

2
E(y)

P(y) = Cexp (— T)

Training the model

* How does the probabilistic view affect how we
train the model?

e Not much...

Hopfield nets: Optimizing W

1

E(y) = —EyTWy W = argmin 2 E(y) — 2 E(y)

yEYp Y€Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ,B(E(Y))YYT)

YEYp [

More importance to more frequently
presented memories

yEYp \

More importance to more attractive
spurious memories

64

Hopfield nets: Optimizing W

1

E(y) = —EyTWy W = argmin 2 E(y) — 2 E(y)

YEYp y&Yp

* Simple gradient descent:

W=W+n (2 ayyy' — ,B(E(Y))YYT)

YyEYp [y&Yp \
More importance to more frequently More importance to more attractive
presented memories spurious memories

THIS LOOKS LIKE AN EXPECTATIONI

65

Hopfield nets: Optimizing W

1 .
E(y) = —EyTWy W= argvflnin 2 E(y) — 2 E(y)

YEYp YEYp
e Update rule

W=W-+7 (2 ayyy' — 2 ,B(E(Y))YYT>
VEYp VEYp

W =W +1(Ey-y,yy" — Ey_yyy")

Natural distribution for variables: The Boltzmann Distribution

We can arrive at the same result a bit more formally... -

Training the network
E(S) — _ZwijSiSj

i<j
_ exp(—E(S))
F8) = Y exp(—E(S"))
p(s) = exp(ZKj WijSiSj)
2/ €XD (ZK] WijSi'Sf)

Training a Hopfield net: Must learn weights to “remember” target states and
“dislike” other states

“State” == binary pattern of all the neurons

Training Boltzmann machine: Must learn weights to assign a desired probability
distribution to states
— (vectorsy, which we will now calls S because I’'m too lazy to normalize the notation)

— This should assign more probability to patterns we “like” (or try to memorize) and less to
other patterns

Training the network
E(S) — _ZwijSiSj

Visible =
Neurons :
b(s) = _CPCEE)
ZSI exp(_E(S’))
exp(ZKj WijSiSj)
P(S) =
2/ €XD (ZK] WijSi'Sf)

Must train the network to assign a desired probability distribution
to states
Given a set of “training” inputs 54, ..., Sy

— Assign higher probability to patterns seen more frequently

— Assign lower probability to patterns that are not seen at all

Alternately viewed: maximize likelihood of stored states

Maximum Likelihood Training

log(P(S)) = (Z w; jsl-sj> ~log (Z exp (Z Wi))

i<j 1<J

1 Average log likelihood of training vectors
- _z log(P($)) (to be maximized)

SES

Nz(z Wl,ss,) 1og<z exp (Z wigs!))

i<j 1<J

 Maximize the average log likelihood of all “training”
vectors S = {S5,,S,, ..., SN}
— In the first summation, s; and s;are bits of S

— In the second, s;"and s;” are bits of &’

Maximum Likelihood Training

D)

i<j i<j

dL _12 oo
dwij_N ST T
S

 We will use gradient ascent, but we run into a problem..

* The first term is just the average s;s; over all training
patterns

e But the second term is summed over all states

— Of which there can be an exponential number!

The second term

dlog (ZS, exp(zkj Wl-jSl-’Sj’)) ~ 1 d s exP(ZKj WijSi’SJ")
dw;; Dign exXp (ZK] WlJS]) dw;;
= EQXP(EWUSS>SS
ZS" exp (Zl<] Wl] Sr 1<]j

L=]

dlog(zs, exp(ZKjwijSi'sjf)) =2 BXP(ZK]'WU z’]l) o
dwi; 5 g exp (B wiysis;)

The second term

dlog (ZS, exp(ZKj Wl-jsl-'sjf)) ~ 1 d s eXp(Zi<j WijSi,Sj’)

dw;; Dgn exp (Zi<j WijSlS]'-') dw;;

1
— — z exp (Z Wi jsl-’ S]f) S; S]f

25" exp (Zi<j WijSi Sj) S i<j

— O~

dlog (ZS, exp(ZKj Wl-]-sl-'sjf)) ~ exp(ZKj WijSi,S]{NS{S{
dw;; - =Y. exp (ZKJ,WW i

P(S)

The second term

dlog (ZS, exp(zkj Wl-jSl-’Sj’)) ~ 1 d s exP(ZKj WijSi’SJ")
dw;; Dign exXp (ZK] Wl]S]) dw;;
= zexp<2WUSS>SS
ZS" exp (Zl<] Wl] Sr 1<]j

L=]

dlog(zs, exp(ZKjwijSi'sjf)) =z BXP(ZK]'WU z’]l) o
dwi; 5 g exp (B wiysis;)

dlog(ZS, exp(s Wi;Si ZP(S)s!
S;S

dwi;

The second term

dlog (Zsr exp(zkf WifSl{SJ{)) z P(S’

dWij

* The second term is simply the expected value

of s:s.

S, over all possible values of the state

* We cannot compute it exhaustively, but we
can compute it by sampling!

Estimating the second term

dlog (Zsr exp(zkf Wi SJ{)) Z P(S’

dw;;

ZP(S)SiS; z S; Sf

S’Essamples

 The expectation can be estimated as the average of
samples drawn from the distribution

* Question: How do we draw samples from the Boltzmann
distribution?

— How do we draw samples from the network?

The simulation solution

Initialize the network randomly and let it “evolve”
— By probabilistically selecting state values according to our model

After many many epochs, take a snapshot of the state
Repeat this many many times
Let the collection of states be

Ssimut = {Ssimul,l» Ssimul,1=2» ey Ssimul,M}

The simulation solution for the second
term

dlog (ZS, exp(o W;;Si ZP(S)
S:S

dw;;

 The second term in the derivative is computed
as the average of sampled states when the
network is running “freely”

Maximum Likelihood Training

Sampled estimate

log(P(S))
e DR PAR

d(log(P (S)))

dWij

Wi = wij +1

* The overall gradient ascent rule

Overall Training

log(P(S)) ZS S; — — z S;Sj
dw;; N *J o

S’Essimul

d(log(P (S)))

dWij

Wij = W;ij +1

Initialize weights
Let the network run to obtain simulated state samples
Compute gradient and update weights

Ilterate

Overall Training

log(P(S))
e DRLEST PRR

d(log(P (S)))

dWij

Wij = W;ij +1

Note the similarity to the update rule for the Hopfield network

Energy @

state

Adding Capacity to the Hopfield
Network / Boltzmann Machine

* The network can store up to N N-bit patterns
* How do we increase the capacity

81

Expanding the network

N Neurons

A /
L .’.- ’.-'.'.

b ? . ’p“ .p,-."-_.'ﬁ;'-'-:;.u

A "y ‘ 4 .,-"'_- 4 ¥
>N AN
%%#‘i%‘éfi'] 2
N PSRTING :
PSR #<

S DK

3

b ; A1
raTer L\ LT
AT ANy A TN
':'E;/_:-}'*t\-‘-“ '-'5;#2" o

 Add a large number of neurons whose actual
values you don’t care about!

82

Expanded Network

N Neurons

LIRS /
L ”.-'.'.

L .‘. :
e)
‘.‘ .g.':%";-:;:.
i e AN 1
"e ey’ HaAN
N i\ o
AT
= "-.‘
X J

PR
e

* New capacity: ~(N + K) pattern

— Although we only care about the pattern of the first N
neurons

— We're interested in N-bit patterns

83

Terminology

Hidden
Neurons

Visible
Neurons

 Terminology:

— The neurons that store the actual patterns of interest: Visible
neurons

— The neurons that only serve to increase the capacity but whose
actual values are not important: Hidden neurons

— These can be set to anything in order to store a visible pattern

the network

ining

Tra

Hidden

Neurons

Visible
Neurons

s

isible neurons, there are any

Ml

e

 For agiven pattern of v

dden patterns (2X)

]

number of h

Which of these do we choose?

— ldeally choose the one that results in the lowest energy

— But that’s an exponential search space!

The patterns

* |n fact we could have multiple hidden patterns
coupled with any visible pattern

— These would be multiple stored patterns that all give
the same visible output

— How many do we permit

Do we need to specify one or more particular
hidden patterns?

— How about all of them
— What do | mean by this bizarre statement?

Boltzmann machine without hidden

uni(ts :
log P(S) o
dWU NZS S] __SIESz
d(log(P(S)
Wij = Wij + n (dEVU)>

 This basic framework has no hidden units

e Extended to have hidden units

With hidden neurons

Hidden

Visible Neurons

Neurons

* Now, with hidden neurons the complete state
pattern for even the training patterns is
unknown

— Since they are only defined over visible neurons

With hidden neurons
Hidden

Neurons

Visible

Neurons

exp(—E(S))
Y. exp(—E(S))

P(S) =

P(S) = P(V,H)

P(V) = 21)(5)
H

 We are interested in the marginal probabilities over visible bits

— We want to learn to represent the visible bits
— The hidden bits are the “latent” representation learned by the network

e S = (V,H)
— V =visible bits
— H = hidden bits

With hidden neurons
Hidden

Neurons

Visible

Neurons
exp(—E(S))

Y. exp(—E(S))

P(S) =

P(S) = P(V,H)

50N

==

N P(V) 2 P(S)
H

 We are interested in the marginal probabilities over visible bits

— We want to learn to represent the visible bits
— The hidden bits are the “latent” representation learned by the network

. S = (V,H) Must train to maximize
_ V= visible bits probability of desired
— H = hidden bits patterns of visible bits

Training the network

Visible E(S) = _ZW”S"SJ'

i<j
Neurons .
exp (ZK]- WijSiSj)

!

7 s exXp (Zi<j WijSiS]{)

P(S) =
@ D51 €xXp (Zi<f WijS; SJ{)
P(V) = Z exp(Riy wissis))

* Must train the network to assign a desired
probability distribution to visible states

* Probability of visible state sums over all
hidden states

Maximum Likelihood Training

log(P(V)) = log (Z exp (

R)

I<j I<j

1
L= Nz log(P(V))

Vev

Average log likelihood of training vectors
(to be maximized)

(e

VeV 1<j

D R)

* Maximize the average log likelihood of all visible bits of “training”

vectorsV ={V,V,, ...,V\}

— The first term also has the
* Log of asum

same format as the second term

— Derivatives of the first term will have the same form as for the second term

Maximum Likelihood Training

=ige(E (zwusisf))—mg(z (g))

Vev <j 1<j
ZZ exp(2k<lwklsksl) 5, exp(2k<kalS Sl’)
dWU Nvev H 2y exP(quWlekSl) l Zs exp(zkdwljsksl)
ZZP(S“/)SS ZP(S)SiS;
dW” NVEV H]

e We’'ve derived this math earlier

* But now both terms require summing over an exponential number of states

— The first term fixes visible bits, and sums over all configurations of hidden states
for each visible configuration in our training set

— But the second term is summed over all states

The simulation solution

dWU NZZP(SW)S Sj — ZP(S)SiS;

VevV H

zp(sw)ss, = 2

HEHSLmul

ZP(S)S M Z

S1ESsimul

* The first term is computed as the average
sampled hidden state with the visible bits fixed

 The second term in the derivative is computed as
the average of sampled states when the network
IS running “freely”

More simulations

Hidden

Visible Neurons

Neurons

exp(—E(S))

P(S) =

ZS/ exp(_E(S,))

P(V) = ZP(S)
H

* Maximizing the marginal probability of VV requires
summing over all values of H

— An exponential state space

— So we will use simulations again

Step 1

Hidden
Neurons

Visible
Neurons

* For each training pattern V;

— Fix the visible units to V/;

— Let the hidden neurons evolve from a random initial point to
generate H;

— Generate S; = |V}, H;]
 Repeat K times to generate synthetic training
S — {51’1, 51,2: ""SlK’ 52,1, ""SN,K}

Step 2

Hidden
Neurons

Visible
Neurons

* Now unclamp the visible units and let the
entire network evolve several times to
generate

simul — {Ssimul,l: simul,1=2») 2simul,M

Gradients

d{log(P($))} »
dw; NKZSS]__ Z iy

SIESsimul

* Gradients are computed as before, except that
the first term is now computed over the
expanded training data

Overall Training

* [nitialize weights

* Run simulations to get clamped and unclamped
training samples

 Compute gradient and update weights
* |terate

Poll 4

* The ‘irrelevant bits’ that we used to extend the Hopfield
net’s capacity correspond to which components of the
Boltzmann machine

— The hidden neurons
— The visible neurons

* The training paradigm of Boltzmann machines through

gradient descent samples the hidden values to complete
patterns

— True
— False

Poll 4

* The ‘irrelevant bits’ that we used to extend the Hopfield
net’s capacity correspond to which components of the
Boltzmann machine

— The hidden neurons
— The visible neurons

* The training paradigm of Boltzmann machines through

gradient descent samples the hidden values to complete
patterns

— True
— False

Boltzmann machines

* Stochastic extension of Hopfield nets

* Enables storage of many more patterns than
Hopfield nets

* But also enables computation of probabilities
of patterns, and completion of pattern

Boltzmann machines: Overall

= z WjiSi + bi
J

P(Si=1)=

14+e %2

i

d{log(P(8))) ,,
dw;; NKZ SiSj —S,E;mul SiSj
d(log(P(S)
vy =y L2

Training: Given a set ot training patterns

— Which could be repeated to represent relative probabilities

* |nitialize weights

* |terate

Compute gradient and update weights

Run simulations to get clamped and unclamped training samples

Boltzmann machines: Overall

* Running: Pattern completion
— “Anchor” the known visible units
— Let the network evolve
— Sample the unknown visible units

* Choose the most probable value

Applications

Criginal Degraded Eeconstruction
1 o e i

Hophield network reconstructing degraded images
from nowsy (top) or partial (bottorm) cues.

Filling out patterns

Denoising patterns

Computing conditional probabilities of patterns
Classification!!

— How?

Boltzmann machines for classification

* Training patterns:
— [fy, f,, f5, ..., class]
— Features can have binarized or continuous valued representations

— Classes have “one hot” representation

e (Classification:

— Given features, anchor features, estimate a posteriori probability
distribution over classes

* Or choose most likely class

Boltzmann machines: Issues

* Training takes for ever
* Doesn’t really work for large problems

— A small number of training instances over a small
number of bits

Solution: Restricted Boltzmann
Machines

o VISIBLE

e Partition visible and hidden units
— Visible units ONLY talk to hidden units
— Hidden units ONLY talk to visible units

e Restricted Boltzmann machine..

— Originally proposed as “Harmonium Models” by Paul
Smolensky

Solution: Restricted Boltzmann
Machines

o VISIBLE

Zj = sziSi + b; P(s;=1) = .
i 1+ e~%

* Still obeys the same rules as a regular Boltzmann machine
e But the modified structure adds a big benefit..

Solution: Restricted Boltzmann

Machines
HIDDEN
VISIBLE
HIDDEN Zi = ijivi + b; P(h;=1) = 1+ e~%
VISIBLE Yi = ijihi + b; P(v;=1) = 1+ o7

Recap: Training full Boltzmann

machines: Step 1

Visible Neurons Hidden Neurons

* For each training pattern V;

— Fix the visible units to V/;

— Let the hidden neurons evolve from a random initial point to
generate H;

— Generate S; = [V, H;]
* Repeat K times to generate synthetic training
S = {51,1151,21 ---ile’ 52,1’ '"’SN:K}

Sampling: Restricted Boltzmann

machine

HIDDEN

* For each sample:
— Anchor visible units
— Sample from hidden units
— No looping!!

Zi = z Wjivi + bi
J

P(hl=1)=

1+ e %

Recap: Training full Boltzmann

machines: Step 2
Visib| Hidden

sible Neurons
Neurons

* Now unclamp the visible units and let the
entire network evolve several times to
generate

Ssimut = {Ssimul,l: Ssimul,1=2: ae) Ssimul,M}

Sampling: Restricted Boltzmann
machine

O VISIBLE
Zi = Z Wjivi + bi f‘> Vi = Z Wjihi + bi
j j
<:: P(v;=1) =
* For each sample:

— lteratively sample hidden and visible units for a long time
— Draw final sample of both hidden and visible units

Pli=1D =1 1+ e~V

+ e~ %

Pictorial representation of RBM training

* For each sample:
— Initialize V}y (visible) to training instance value
— |teratively generate hidden and visible units

* For avery long time

Pictorial representation of RBM training

e Gradient (showing only one edge from visible node i to
hidden node j)

dlog p(v)

ﬁwl-j

* <v,, h> represents average over many generated training

samples

_ 0 o
= <vh;> —<v;h;>

Recall: Hopfield Networks

* Really no need to raise the entire surface, or even
every valley
* Raise the neighborhood of each target memory

— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state

A Shortcut: Contrastive Divergence

e Sufficient to run one iteration!
Olog p(v)

_ 0 1
= <vl.hj> —<vl.h].>

* This is sufficient to give you a good estimate of
the gradient

Restricted Boltzmann Machines

* Excellent generative models for binary (or
binarized) data

e Can also be extended to continuous-valued data

— “Exponential Family Harmoniums with an Application
to Information Retrieval”, Welling et al., 2004

* Useful for classification and regression

— How?
— More commonly used to pretrain models

Continuous-values RBMs

HIDDEN

VISIBLE

Zi = 2 Wjivi —+ bi
J

Vi = z wjih; + b;
J

Hidden units may also be continuous values

HIDDEN

VISIBLE

P =D =1 e

P(v;) = r(y)exp(y:)

Other variants

Q O--Q)

e Left: “Deep” Boltzmann machines
* Right: Helmholtz machine

— Trained by the “wake-sleep” algorithm

Topics missed..

Other algorithms for Learning and Inference
over RBMs

— Mean field approximations

RBMs as feature extractors

— Pre training
RBMs as generative models
More structured DBMs

